
M A N N I N G

John Clingan
Ken Finnigan

with Quarkus and MicroProfile

Bank application architecture overview

Minikube Kubernetes cluster

Observability namespace

Keycloak

Keycloak namespace
Monitoring namespace

Jaeger

Kafka namespace

Kafka

Overdraft fee

topic

Update fee

topic

Overdraft

topic
Overdraft

service

4. Overdraft events exchanged between
Kafka topics and Bank microservices

2. JSON Web Tokens retrieved from Keycloak
and propagated between services

1. Instrumented services traces
forwarded to Jaeger

3. Metrics data pulled from instrumented
services by Prometheus and graphed with
Grafana

quarkus_banking

database

Account

service

Prometheus

J
S

O
N

 W
e
b

T
o
k
e
n

J
W

T

M
e
tric

s
 d

a
ta

tra
c
e
s

K
a
fk

a
 e

v
e
n
ts

Grafana

Transaction

service

Default namespace

Kubernetes Native
Microservices with

Quarkus and
MicroProfile

JOHN CLINGAN

AND KEN FINNIGAN

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Development editor: Elesha Hyde
Technical development editor: Raphael Villela

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Pamela Hunt
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Mladen Knežić
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298653
Printed in the United States of America

www.manning.com

contents
preface ix
acknowledgments xi
about this book xii
about the authors xv
about the cover illustration xvi

PART 1 INTRODUCTION ..1

1 Introduction to Quarkus, MicroProfile, and Kubernetes 3
1.1 What is a microservice? 4

The rise of microservices 6 ■ Microservices architecture 7
The need for microservices specifications 8

1.2 MicroProfile 8
History of MicroProfile 9 ■ MicroProfile community core
principles 10

1.3 Quarkus 11
Developer joy 12 ■ MicroProfile support 13 ■ Runtime
efficiency 13

1.4 Kubernetes 14
Introduction to Kubernetes 14

1.5 Kubernetes-native microservices 18
iii

CONTENTSiv
2 Your first Quarkus application 20
2.1 Creating a project 21
2.2 Developing with live coding 27
2.3 Writing a test 35
2.4 Creating a native executable 40
2.5 Running in Kubernetes 43

Generating Kubernetes YAML 44 ■ Packaging an application 46
Deploying and running an application 47

PART 2 DEVELOPING MICROSERVICES51

3 Configuring microservices 53
3.1 MicroProfile Config architecture overview 54
3.2 Accessing a configuration 55
3.3 The Bank service 55

Creating the Bank service 56 ■ Configuring the Bank service
name field 57

3.4 Configuration sources 59
3.5 Configuring the mobileBanking field 62
3.6 Grouping properties with @ConfigProperties 62
3.7 Quarkus-specific configuration features 64

Quarkus configuration profiles 64 ■ Property expressions 65
Quarkus ConfigMapping 66 ■ Run-time vs. build-time
properties 67

3.8 Configuration on Kubernetes 69
Common Kubernetes configuration sources 69 ■ Using a
ConfigMap for Quarkus applications 70 ■ Editing a
ConfigMap 71 ■ Kubernetes Secrets 72

4 Database access with Panache 76
4.1 Data sources 77
4.2 JPA 78
4.3 Simplifying database development 84

Active record approach 84 ■ Data repository approach 87
Which approach to use? 89

4.4 Deployment to Kubernetes 90
Deploying PostgreSQL 90 ■ Package and deploy 91

CONTENTS v
5 Clients for consuming other microservices 93
5.1 What is MicroProfile REST Client? 94
5.2 Service interface definition 95

CDI REST client 97 ■ Programmatic REST client 101
Choosing between CDI and a programmatic API 103
Asynchronous response types 103

5.3 Customizing REST clients 105
Client request headers 105 ■ Declaring providers 109

6 Application health 115
6.1 The growing role of developers in application health 116
6.2 MicroProfile Health 117

Liveness vs. readiness 118 ■ Determining liveness and readiness
status 118

6.3 Getting started with MicroProfile Health 119
Account service MicroProfile Health liveness 121 ■ Creating an
Account service liveness health check 122 ■ Account service
MicroProfile Health readiness 123 ■ Disabling vendor readiness
health checks 124 ■ Creating a readiness health check 124
Quarkus health groups 128 ■ Displaying the Quarkus
Health UI 129

6.4 Kubernetes liveness and readiness probes 129
Customizing health check properties 131 ■ Deploying to
Kubernetes 131 ■ Testing the readiness health check in
Kubernetes 133

7 Resilience strategies 137
7.1 Resilience strategies overview 137
7.2 Executing a method under a separate thread

with @Asynchronous 138
7.3 Constraining concurrency with bulkheads 138
7.4 Updating a TransactionService with a bulkhead 140
7.5 Exception handling with fallbacks 142
7.6 Defining execution timeouts 143
7.7 Recovering from temporary failure with @Retry 146
7.8 Avoiding repeated failure with circuit breakers 147

MicroProfile Fault Tolerance: @CircuitBreaker 148 ■ How a
circuit breaker works 148 ■ Updating the TransactionService to
use @CircuitBreaker 150 ■ Testing the circuit breaker 152

CONTENTSvi
7.9 Overriding annotation parameter values using
properties 154

7.10 Deploying to Kubernetes 155

8 Reactive in an imperative world 158

8.1 Reactive example 159
8.2 What is Reactive Streams? 160

Publisher, Subscriber, and Processor 161 ■ The importance of back
pressure 161

8.3 Reactive Messaging in Quarkus 163
Bridging from imperative to reactive with emitters 164 ■ What
about blocking? 167 ■ Testing “in memory” 169

8.4 How does it work? 172
MicroProfile Reactive Messaging specification 172 ■ Message
content and metadata 173 ■ Messages in the stream 176

8.5 Deploying to Kubernetes 177
Apache Kafka in Minikube 177 ■ Putting it all together 179

9 Developing Spring microservices with Quarkus 183

9.1 Quarkus/Spring API compatibility overview 184
9.2 Spring dependency injection and configuration

compatibility 185
Setting up the Spring Cloud Config Server 185 ■ Using the Spring
Config Server as a configuration source 186 ■ Converting the
Bank service to use Spring Configuration APIs 187

9.3 Quarkus/Spring Web API compatibility 188
9.4 Quarkus/Spring Data JPA compatibility 192
9.5 Deploying to Kubernetes 196
9.6 How Quarkus implements Spring API compatibility 197
9.7 Common Quarkus/Spring compatibility questions 197
9.8 Comparing the Spring Boot and Quarkus startup

processes 198

CONTENTS vii
PART 3 OBSERVABILITY, API DEFINITION, AND
SECURITY OF MICROSERVICES...........................201

10 Capturing metrics 203

10.1 The role of metrics in a microservices architecture 204
10.2 Getting started with MicroProfile Metrics 204

Graphing metrics with Prometheus and Grafana 206
MicroProfile Metrics 211 ■ Instrumenting the Account
service 216 ■ Instrumenting the TransactionService 217
Creating business metrics 223 ■ MicroProfile Fault Tolerance and
JAX-RS integration with MicroProfile Metrics 226 ■ Micrometer
metrics 228 ■ Simulating a busy production system 230

11 Tracing microservices 232

11.1 How does tracing work? 233
11.2 Jaeger 234

Trace sampling 235 ■ Setting up the Minikube environment 235
Installing Jaeger 235 ■ Microservice tracing with Jaeger 237

11.3 Tracing specifications 242
OpenTracing 242 ■ What is MicroProfile OpenTracing? 243
OpenTelemetry 243

11.4 Customizing application tracing 244
Using @Traced 244 ■ Injecting a tracer 245 ■ Tracing
database calls 245 ■ Tracing Kafka messages 249

12 API visualization 257

12.1 Viewing OpenAPI documents with Swagger UI 258
Enabling OpenAPI 258 ■ Swagger UI 261

12.2 MicroProfile OpenAPI 263
Application information 263 ■ Customizing the schema
output 265 ■ Defining operations 266 ■ Operation
responses 267 ■ Tagging operations 271 ■ Filtering
OpenAPI content 272

12.3 Design-first development 273
OpenAPI file base 273 ■ Mixing the file and annotations 274

12.4 Code first or OpenAPI first? 275

CONTENTSviii
13 Securing a microservice 277
13.1 Authorization and authentication overview 278
13.2 Using file-based authentication and authorization 279
13.3 Authentication and authorization with OpenID

Connect 284
Introduction to OpenID Connect (OIDC) 284 ■ OIDC and
Keycloak 284 ■ Accessing a protected resource with OpenID
Connect 286 ■ Testing the Code Authorization Flow 289

13.4 Json Web Tokens (JWT) and MicroProfile JWT 292
JWT header 292 ■ JWT payload 293 ■ JWT signature 295

13.5 Securing the Transaction service using
MicroProfile JWT 297

13.6 Propagating the JWT 299
Secure an Account service endpoint 299 ■ Propagating JWT from
the Transaction service to the Account service 300

13.7 Running the services in Kubernetes 301

index 303

preface
We, the authors, have been involved in the Enterprise Java industry for more than a
decade. We started working together at Red Hat in 2016, during the founding of
MicroProfile to create Java microservices specifications, and with WildFly Swarm, now
called Thorntail, as a runtime to implement those specifications.

 Since then, Kubernetes has continued to grow as a container orchestration plat-
form. Given Red Hat’s integral involvement with Kubernetes and OpenShift—its
enterprise distribution—our job was to facilitate Thorntail deployments on Kuberne-
tes. We also worked with the MicroProfile community, who also recognized the growth
of Kubernetes, to evolve its specifications to add support for Java microservices deploy-
ments on Kubernetes.

 We also recognized the limitations of Java and runtimes like Thorntail deployed to
Kubernetes, consuming hundreds of megabytes of RAM for each microservice
instance. Resource utilization can put Java at a considerable disadvantage, compared
with other runtimes like Node.js or Golang, for shared deployment environments like
Kubernetes clusters. To address this, Red Hat introduced Supersonic Subatomic
Java—in other words, Quarkus!

 Quarkus is a unique runtime. It supports MicroProfile and other industry-leading
specifications and frameworks, helping developers become productive quickly. Kuber-
netes is a first-class deployment platform for Quarkus, with built-in tooling that
reduces native compilation and Kubernetes deployment to a single command. We
have to say that working together with a couple of dozen other Red Hat employees
crammed into a conference room in Neuchâtel, Switzerland, on Quarkus’s “launch
day” was one of the most memorable and rewarding days of our professional careers.
ix

PREFACEx
 We recognize that plenty of books are available for MicroProfile, Kubernetes, and,
more recently, Quarkus. We set out to write a book that reflects how the three used
together are greater than the sum of their parts. Deploying to Kubernetes is not an
afterthought; it is integral to each chapter. We wanted to go beyond developing an
application locally by deploying it (implemented as a collection of microservices) to
Kubernetes as it evolves throughout the book. We wanted to show how MicroProfile-
based APIs interoperate with backend services while running in a Kubernetes cluster,
like Prometheus and Grafana, Jaeger, and Kafka. We wanted a balance between
demonstrating the step-by-step Quarkus live coding iterative development style with
MicroProfile and Quarkus APIs like JUnit 5 and WireMock for automated testing of
MicroProfile applications.

 The challenge is to bring microservices development with Quarkus, MicroProfile,
and Kubernetes together in a single book and make it feel like the natural experience
it truly is. Hopefully, we have met this challenge, and you learn as much from reading
this book as we did in writing it. Happy reading (and coding)!

acknowledgments
We would like to thank Elesha Hyde, our development editor, for being so under-
standing of our delays in finishing the writing. In addition, we’d like to thank all the
reviewers: Alain Lompo, Alessandro Campeis, Andres Sacco, Asif Iqbal, Daniel Cortés,
David Torrubia Iñigo, DeUndre’ Rushon, John Guthrie, Kent R. Spillner, Krzysztof
Kamyczek, Michał Ambroziewicz, Mladen Knežić, Ramakrishna Chintalapati, Sergio
Britos, and Yogesh Shetty. Their suggestions helped make this a better book.

 Also, a thank-you goes to the entire Manning team for all their efforts on the proj-
ect: Raphael Villela, technical development editor; Aleksander Dragosavljević, review
editor; Keri Hales, production editor; Pamela Hunt, copyeditor; Mladen Knežić, tech-
nical proofreader; Katie Tennant, proofreader; as well as the rest of the production
team. It’s been greatly appreciated, and the book wouldn’t be here today without them.

JOHN CLINGAN: I’d like to thank my wife, Tran, and daughters, Sarah and Hailey, who
had a part-time spouse and father, respectively, while working on this book in the
home office, car, and hotel during many weekend soccer tournaments. I also thank
my coauthor, Ken, as an experienced author and friend, for his patience and guid-
ance while authoring my first book.

KEN FINNIGAN: I will be forever indebted to Erin, my wife, for her continued under-
standing and support throughout the process. I would also like to thank my sons,
Lorcán and Daire, for understanding their dad disappearing to work on the book in
the evenings or weekends.
xi

about this book
Over the last couple of years, Quarkus has exploded in popularity as a framework
for developing microservices, and Eclipse MicroProfile is continuing to grow as a set
of APIs for developing microservices with Java. This book details how to create,
build, debug, and deploy Quarkus microservices with MicroProfile and Spring APIs
to Kubernetes.

 Building and deploying a microservice is not the end of the story. To that end, this
book also covers related aspects of microservices on Kubernetes, such as application
health, monitoring and observability, security, and visualizing endpoints.

Who should read this book?
The audience for the book includes Java EE and Jakarta EE developers with a few
years of experience who may have some knowledge of microservices but are looking
for guidance on best practices and the latest developments. Developers will gain
insight into Eclipse MicroProfile and how to use the APIs within Quarkus, as well as
how to deploy their Quarkus microservices to Kubernetes.

How this book is organized: A road map
Chapter 1 introduces the reader to microservices by covering what they are, what a
microservices architecture is, and why specifications for microservices are needed.
Then it introduces Eclipse MicroProfile, Quarkus, and Kubernetes. Lastly, it intro-
duces some characteristics of Kubernetes-native microservices.
xii

ABOUT THIS BOOK xiii
 Chapter 2 delves deeper into Quarkus, starting with how to create a Quarkus proj-
ect. It covers important topics such as live coding, writing tests, native executables,
and how to package a Quarkus application and deploy it to Kubernetes.

 Chapter 3 introduces configuration with Eclipse MicroProfile in Quarkus, includ-
ing how to set and retrieve it. Then it covers how to use a ConfigSource to define a
new source of configuration for Quarkus.

 Chapter 4 covers database interactions with Panache. It explains how data sources
work in Quarkus before covering three different patterns for database access with
Panache: JPA, active record, and data repository. Lastly, it explains how to deploy a
PostgreSQL database to Kubernetes.

 Chapter 5 introduces how Quarkus enables the consumption of external services
with MicroProfile by using the REST Client and defines type-safe representations for
them. It explains how to use CDI or a programmatic API to use the REST Client, and
how it can be mocked for testing. Lastly, it covers how to add headers to the client
request, or additional filters and providers used in processing the request.

 Chapter 6 introduces the concept of application health and how MicroProfile Health
integrates with the Kubernetes Pod life cycle. It covers how to combine similar checks
into a custom group and how to see the checks in a convenient manner in the UI.

 Chapter 7 covers all the resilience strategies offered by MicroProfile Fault Toler-
ance, including bulkheads, fallbacks, retries, and circuit breakers. It then covers how
to override the settings of each strategy through properties.

 Chapter 8 introduces reactive streams, explaining what they are and how they are
constructed from publishers, subscribers, and processors. It then explains how to create
Reactive Streams in Quarkus with Reactive Messaging, as well as bridging imperative
and reactive code with an emitter. Lastly, it covers deploying Apache Kafka to Kuberne-
tes and deploying a reactive system consisting of microservices using it as a backbone.

 Chapter 9 covers how existing Spring developers can convert their applications to
Quarkus with minimal changes. It then explains how to use the Spring Config Server
as a ConfigSource in Quarkus. Lastly, it details what is compatible between Spring and
Quarkus, without modification, for web and data access.

 Chapter 10 explains the importance of metrics in monitoring applications, espe-
cially in microservices architectures. It covers how to use Prometheus and Grafana for
visualizing metrics, whether from MicroProfile Metrics or Micrometer.

 Chapter 11 introduces how to trace microservices with MicroProfile and Open-
Tracing. It then explains how to deploy Jaeger to Kubernetes, send traces from micro-
services to Jaeger, and view them in the UI. Next, it covers how to customize span
names and inject a tracer to create custom spans. Lastly, the chapter covers how to
trace database calls and messages sent to or from Apache Kafka.

 Chapter 12 examines API visualization with MicroProfile OpenAPI and how to
view the generated documents with Swagger UI. Then it covers how to customize the
OpenAPI document with application information, schema information, and specific
details of the operations for REST endpoints. Lastly, it covers a design-first approach
and how to use an existing OpenAPI document.

ABOUT THIS BOOKxiv
 Chapter 13 explains authentication and authorization for microservices, first with
file-based authentication and also when using OpenID Connect with Keycloak. Then
it covers protecting specific resources and how to test the authorization flow. Next, it
explains JSON Web Tokens (JWT) and the APIs included for retrieving different parts
of the token. Lastly, it covers how to secure a microservice with JWT and propagate
tokens between microservices.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 All the code from the book can be found in the source code accompanying the
book. You can get executable snippets of code from the liveBook (online) version of
this book at https://livebook.manning.com/book/kubernetes-native-microservices-with-
quarkus-and-microprofile. The complete source code can be downloaded free of charge
from the Manning website at https://www.manning.com/books/kubernetes-native-
microservices-with-quarkus-and-microprofile and is also available via the GitHub reposi-
tory at https://github.com/jclingan/manning-kube-native-microservices. The sample
code is structured as a series of Maven modules for each chapter, or part of a chapter.

liveBook discussion forum
Purchase of Kubernetes Native Microservices with Quarkus and MicroProfile includes free
access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive dis-
cussion features, you can attach comments to the book globally or to specific sections or
paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions,
and receive help from the author and other users. To access the forum, go to https://
livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-
microprofile/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://www.manning.com/books/kubernetes-native-microservices-with-quarkus-and-microprofile
https://www.manning.com/books/kubernetes-native-microservices-with-quarkus-and-microprofile
http://livebook.manning.com/book/kubernetes-native-microservices-with-quarkus-and-microprofile
https://github.com/jclingan/manning-kube-native-microservices
http://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
https://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
http://livebook.manning.com/book/kubernetes-native-microservices-with-quarkus-and-microprofile

about the authors
JOHN CLINGAN has more than 30 years of experience in the
enterprise software industry as a developer, system administra-
tor, consultant, technical sales engineer, and product manager.
He has been a product manager for Java EE and the GlassFish
reference implementation and is a founding member of Micro-
Profile. He is currently an active member of the Jakarta EE and
MicroProfile communities and a member of the Quarkus team,
where he focuses on the Quarkus community and its partners.

KEN FINNIGAN has been a consultant and software engineer for
more than 20 years with enterprises throughout the world. Ken
has a history of delivering projects on time and on budget
across many industries, providing key customer value. Ken is
currently focused on all things observability, while also looking
to innovate with Kubernetes-native development. Ken is part of
the team developing Quarkus to be Supersonic Subatomic Java.
He has previously served as the project lead for SmallRye,
Thorntail, and LiveOak, with more than 10 years of experience
contributing to open source. Ken is an author of several books
in the tech space, including Enterprise Java Microservices (Man-
ning, 2018).
xv

about the cover illustration
The figure on the cover of Kubernetes Native Microservices with Quarkus and MicroProfile is
captioned “Femme insulaire de Minorque,” or islander woman of Menorca. The illus-
tration is taken from a collection of dress costumes from various countries by Jacques
Grasset de Saint-Sauveur (1757–1810), titled Costumes civils actuels de tous les peuples con-
nus, published in France in 1788. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in life
was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xvi

Part 1

Introduction

What are microservices? When should I use Quarkus? Why is Kubernetes
so important? These are a few of the questions we will address in part 1.

 Part 1 also takes the reader through creating their first Quarkus application
and describes some key features of Quarkus, such as live reload and deployment
to Kubernetes.

Introduction to
Quarkus, MicroProfile,

and Kubernetes
Entire books are available on Quarkus, microservices, MicroProfile, Spring, and
Kubernetes. However, they tend to focus only on each specific topic. This book
covers how to combine these topics into an effective and integrated development
and deployment stack. Kubernetes-native microservices utilize and integrate with
Kubernetes features naturally and efficiently. The result is a productive developer
experience that is consistent with the expectations of Kubernetes platform
administrators.

 This chapter begins by defining microservices and how and why they have
evolved over the last decade as a popular enterprise software architecture. We then
provide a brief history and overview of MicroProfile and its growth into a signifi-
cant collection of microservices-related specifications. With a baseline understand-
ing of microservices and MicroProfile, we introduce Quarkus as a Java runtime that

This chapter covers
 Microservices overview

 Overview and history of MicroProfile

 Quarkus introduction

 Kubernetes introduction
3

4 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
supports these technologies. Last, we introduce some core Kubernetes concepts and
why they make Kubernetes an ideal microservice deployment platform.

NOTE A “runtime” is an execution environment that includes a collection of
packaged frameworks that collectively support a developer’s application logic.
Java EE (now Jakarta EE [https://jakarta.ee/]) application servers, Spring
Boot, and Quarkus are all examples of Java runtimes: each is a Java execution
environment with Java frameworks that support application logic.

1.1 What is a microservice?
An internet search will result in hundreds of microservice definitions. There is no
industry consensus on a single definition, but some common and well-understood
principles exist. We are using a definition that aligns with those principles but with a
particular emphasis on one principle—isolation. As defined in Enterprise Java Microser-
vices (https://livebook.manning.com/book/enterprise-java-microservices), a micro-
service consists of a single deployment executing within a single process, isolated from
other deployments and processes, that supports the fulfillment of a specific piece of
business functionality.

 We are going to put a bit more emphasis on the runtime aspect of isolation than
most other writings. With Kubernetes as the target deployment platform, we have an
opportunity for optimizing code and the Java runtime itself. Although a microservice
is isolated business functionality, it nearly always interacts with other microservices.
That is the basis of many code examples for this book. There are a couple of useful
points to make when breaking down the selected definition.

 First, a microservice implements a specific piece of business functionality, known as a
bounded context (as explained by Eric Evans; https://www.amazon.com/Domain-Driven-
Design-Tackling-Complexity-Software/dp/0321125215), which is a logical separation of
multiple business problem domains within an enterprise. By logically breaking down a
business domain into multiple bounded contexts, each bounded context more accu-
rately represents its specific view of the business domain and becomes easier to model.

 As represented in figure 1.1, the set of bounded contexts for a small business
accounting application may include accounts receivable, accounts payable, and invoic-
ing. A traditional monolithic application would implement all three bounded contexts.
Multiple bounded contexts within in a single monolith can result in “spaghetti code” as
a result of unnecessary interdependencies and unplanned intermixing of contexts. In
a microservices architecture, each of these capabilities is modeled individually as a
bounded context and implemented as a microservice that addresses each specific
bounded context.

 Next, a microservice executes within a single isolated process. Although this is not
a concrete requirement, it has become a preferred architectural approach. There are
some practical reasons behind this, based on more than a decade of experience of
deploying applications to Java EE application servers and servlet containers like
Apache Tomcat. We refer to these synonymously as “application servers.”

https://jakarta.ee/
https://livebook.manning.com/book/enterprise-java-microservices
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

5What is a microservice?
From a technical perspective, application servers can host multiple microservices. How-
ever, this deployment model has fallen out of favor for the following reasons:

 Resource management—One microservice can starve other microservices of
resources. The Java Virtual Machine (JVM) does not have built-in resource
management to limit resource consumption by different applications within the
same JVM instance.

 Patching/upgrading—Patching or upgrading an application server negatively
impacts the availability of all hosted microservices simultaneously.

 Versioning—Each microservice development team may want to evolve at a dif-
ferent pace, causing an application server versioning-requirements mismatch.
Some may want to leverage new features of the latest version, whereas others
may prefer to avoid introducing risk because the current version is stable in
production.

 Stability—One poorly written microservice can cause stability issues for the
entire application server, impacting the availability of the remaining stable
applications.

 Control—Developers rightfully cede control of shared infrastructure, like appli-
cation servers, to a separate DevOps team. This limits developer options like
JDK version, tuning for a specific microservice’s optimal performance, applica-
tion server version, and more.

Figure 1.2 shows that these issues have driven the industry toward adopting a single-
application stack for microservices, which is a one-to-one mapping between a microser-
vice application and its runtime. This began nearly a decade ago by deploying a single
microservice per application server, and shortly thereafter evolved into specialized
microservice runtimes like Dropwizard, Spring Boot, and, more recently, Quarkus to

Microservice

Invoicing

Microservice

Microservice

Monolithic application

Invoicing

Bounded context

Accounts

payable

Accounts

payable

Accounts

receivable

Accounts

receivable

Figure 1.1 Bounded
context: monolith vs.
microservices

6 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
improve the developer and administrator experience. We refer to these single-applica-
tion stacks as Java microservice runtimes and cover this concept in more detail later in
the chapter. Note that with microservices, it is easier to split out and optimize the stack
for a particular runtime like Java EE or Spring. An added benefit of the single-application
stack is that it can also be implemented in non-Java technologies like Node.js or Golang,
although this is out of scope of this discussion.

1.1.1 The rise of microservices

Early microservices tended to directly communicate with one another, an approach
sometimes referred to as “smart services with dumb pipes.” A possible downside to this
approach is the encoding within each service of the knowledge of what happens next.
Tightly coupling this knowledge into the code makes it inflexible to dynamic change—
and a potentially tedious task for engineers if it experiences regular change. If the knowl-
edge around what happens next changes frequently, consider implementing the func-
tionality using a business rules engine or utilizing events as part of an event-driven
architecture. We will use both approaches in the example application.

 With the popularity of Netflix, with its thousands of microservices, and other uni-
corns like them, the popularity and thrall of microservices exploded. Microservices
became the thing everyone wanted to develop for their next project.

Accounts payable

microservice

(Java EE)

Accounts payable

microservice

Accounts receivable

microservice

Invoicing

microservice

Java Virtual Machine

Java Virtual Machine

Spring

Spring

Java EE

Java Virtual Machine

Accounts receivable

microservice

(Spring)

Invoicing

microservice

(Spring)

Java Virtual Machine

Application server

Single-application stack

Single-application stack

Single-application stack

Figure 1.2 Application servers vs. single-application stacks

7What is a microservice?
 The rise of microservices led to perceived benefits in delivery speed, better utiliza-
tion of resources with smaller teams, and shifting of operational concerns to the team
developing the code. This last item we now refer to as DevOps.

 However, microservices were not the panacea that everyone hoped they would
be. The benefits we mentioned previously don’t come automatically by virtue of devel-
oping a microservice. It takes organizational change for all the benefits to be achieved.
It’s often forgotten that not all implementation patterns, such as microservices, are
right for every organization, team, or even group of developers. Sometimes we must
acknowledge that although microservices are not appropriate for a given situation,
they would be perfect for another. As with everything in software engineering, do
your homework, and don’t blindly adopt a pattern because it’s cool. That is the path
to disaster!

1.1.2 Microservices architecture

So, what is a microservices architecture, and what does it look like?
 Figure 1.3 shows just one example of many possible architectures that are applica-

ble when developing microservices. We can have microservices calling databases,
microservices calling other microservices, microservices communicating with external
services, or microservices passing messages, or events, to brokers and streaming ser-
vices. For example, to add a user experience, a frontend web UI microservice has
been added whose purpose is to add, update, delete, and view relevant information in
the accounts payable and accounts receivable microservices. The freedom of archi-
tecting microservices in any desired manner offers limitless options, which is also its
downside. It becomes difficult to chart a path toward a meaningful microservices
architecture. The key is to start with the smallest possible piece of functionality and
begin building out from there. When it’s the first time a team is developing micro-
service architectures, it’s even more critical to not create a “big picture” up front. Tak-
ing the time to create that big picture without previous experience of microservices
architecture design will consume time when it’s likely the final architecture will actu-
ally be very different. During the process of gaining experience with microservices,
the architecture will shift over time toward a more appropriate one.

Accounts

receivable

microservice

Accounts

payable

microservice

Frontend web

UI

microservice

Create, update,

delete operation

Data

Data

Figure 1.3 Microservices architecture: collaborating microservices

8 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
NOTE An alternative approach is to develop a monolith of loosely coupled
components that can then be extracted out into microservices, strangling the
monolith if deemed necessary down the road.

In short, a microservices architecture can be almost anything that incorporates the
coordination of services into a cohesive application that meets business requirements.

 Granted, with a limitless set of options for what can constitute a microservices
architecture, architects and developers can benefit tremendously from having pat-
terns and recommendations for how they can be designed.

 This is where microservices specifications come to the aid of enterprise Java
developers.

1.1.3 The need for microservices specifications

Java EE has been the standard-bearer for Enterprise Java specifications for roughly 20
years. However, Java EE has been traditionally focused on three-tier monolithic archi-
tecture with a steady, measured evolution and a strong focus on backward compatibil-
ity. Java EE stopped evolving between 2014 and 2017, just as the industry began to
heavily adopt microservices.

 During that pause, the Java EE community began to experiment and deliver early
microservices APIs. The risk of API fragmentation across Java runtimes that had been
known for application portability increased. In addition, there was a risk of losing
reusable skills. For example, Java EE APIs like JPA and JAX-RS are used with non-Java
EE platforms like Spring and Dropwizard, making it easier to switch to a Java runtime
that better meets business criteria. To avoid fragmentation and loss of reusable skills,
the community decided to collaborate on microservice specifications.

1.2 MicroProfile
To avoid Java API fragmentation and to leverage the collective vendor and community
knowledge and resources, IBM, London Java Community (LJC), Payara, Red Hat, and
Tomitribe founded MicroProfile in June 2016. The tagline, “Optimizing Enterprise
Java for a Microservices Architecture,” recognizes that Java offers a solid foundation
for building microservices. MicroProfile extends that foundation through the cre-
ation and evolution of Java API specifications for well-understood microservices pat-
terns and cloud-related standards. These common APIs can be used by multiple
frameworks and implementations or runtimes.

 Today, 12 specifications have been developed by the MicroProfile community,
listed in table 1.1 and table 1.2. Most of the specifications in table 1.1 will be covered
in future chapters.

NOTE MicroProfile has grown to include 12 specifications. Some are con-
cerned that including too many specifications in the overall platform is a bar-
rier to entry for new implementations. For this reason, any new specification is
outside the existing platform and referred to as a “standalone” specification.

9MicroProfile
The MicroProfile community plans to review how to organize specifications in
the future.

1.2.1 History of MicroProfile

MicroProfile is unique in the industry. Whereas specification organizations tend to
evolve in an intentionally slow and measured manner, MicroProfile delivers industry
specifications that evolve rapidly. In four short years, MicroProfile has released 12
specifications with nearly all having multiple updates and some having major updates.
These updates deliver new features that work across multiple implementations in the
hands of developers up to three times per year. In other words, MicroProfile keeps
pace with changes in the industry.

 Figure 1.4 puts this in perspective. MicroProfile 1.0 was released in September
2016, adopting three Java EE specifications to define its core programming model,
specifically, Java API for RESTful Services (JAX-RS) 2.0, Contexts and Dependency
Injection (CDI) 1.2, and JSON Processing (JSON-P) 1.0. The MicroProfile founders
looked to expand the vendor and community members, while also beginning specifica-
tion development. The community immediately recognized that hosting MicroProfile

Table 1.1 MicroProfile platform specifications

Specification Description

Config Externalizes application configuration

Fault Tolerance Defines multiple strategies to improve application robustness

Health Expresses application health to the underlying platform

JWT RBAC Secures RESTful endpoints

Metrics Exposes platform and application metrics

Open API Java APIs for the OpenAPI specification that documents RESTful endpoints

OpenTracing Defines behaviors and an API for accessing an OpenTracing-compliant Tracer object

REST Client Type-safe invocation of REST endpoints

Table 1.2 MicroProfile standalone specifications

Specification Description

Context propagation Propagates contexts across units of work that are thread-agnostic

GraphQL Java API for the GraphQL query language

Reactive Streams
operators

Allows two different libraries that provide asynchronous streaming to be able to
stream data to and from each other

Reactive Streams
messaging

Provides asynchronous messaging support based on Reactive Streams

10 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
in a vendor-neutral foundation would facilitate these goals. After considering the
options, the Eclipse Foundation became the home of MicroProfile in December 2016.
Over the next four years, MicroProfile released three major releases and nine minor
releases that adopted JSON-B from Java EE and defined 12 “homegrown” specifica-
tions outlined in table 1.1 and table 1.2.

1.2.2 MicroProfile community core principles

As an Eclipse Foundation working group, MicroProfile follows some of the Founda-
tion’s core tenets like open source, vendor neutrality, and community engagement
and collaboration. The MicroProfile Working Group Charter (https://www.eclipse.org/
org/workinggroups/microprofile-charter.php) extends those tenets with the following
additional principles:

 Limited processes—MicroProfile uses the Eclipse Development Process and the
MicroProfile Specification Process. Any additional processes specific to Micro-
Profile are created only when necessary.

 Experiment and innovate—MicroProfile as a community provides an industry
proving ground to incubate and experiment with well-established problems need-
ing cross-Java-runtime APIs, gather user feedback, and adapt and iterate at a fast
pace.

 No backward-compatibility guarantee—Major versions of a specification developed
within MicroProfile may break backward compatibility.

MicroProfile 1.1

MicroProfile 1.1

Config 1.0

MicroProfile 1.0

JAX-RS 2.0

CDI 1.2

JSON-P 1.0

MicroProfile 1.2

MicroProfile 1.1

Config 1.1

Fault Tolerance 1.0

Health 1.0

Metrics 1.0

JWT RBAC 1.0

MicroProfile 1.4

MicroProfile 1.3

Config 1.3

Fault Tolerance 1.1

JWT RBAC 1.1

OpenTracing 1.1

REST Client 1.1

MicroProfile 2.2

MicroProfile 2.0.1

Fault Tolerance 2.0

OpenAPI 1.1

OpenTracing 1.3

REST Client 1.2

MicroProfile 3.0

MicroProfile 2.2

Metrics 2.0

Health Check 2.0

REST Client 1.3

MicroProfile 4.0

MicroProfile 2.0.1

MicroProfile 1.4

JAX-RS 2.1

CDI 2.0

JSON-P 1.1

JSON-B 1.0

MicroProfile 2.1

MicroProfile 2.0

OpenTracing 1.2

MicroProfile 3.3

MicroProfile 3.2

Config 1.4

Metrics 2.3

Fault Tolereance 2.1

Health 2.2

REST Client 1.4

MicroProfile 3.1, 3.2

MicroProfile 3.0

Metrics 2.2

Health Check 2.1

MicroProfile 1.3

MicroProfile 1.2

Config 1.2

Metrics 1.1

OpenAPI 1.0

OpenTracing 1.0

REST Client 1.0

2017

2018

2019

MicroProfile release history

2020

Figure 1.4 MicroProfile releases

https://www.eclipse.org/org/workinggroups/microprofile-charter.php
https://www.eclipse.org/org/workinggroups/microprofile-charter.php
https://www.eclipse.org/org/workinggroups/microprofile-charter.php

11Quarkus
 Implementation first—MicroProfile specifications are released only after an imple-
mentation has been created and both the specification and implementation
have had sufficient time for community review.

 Encourage brand adoption—Define guidelines that would allow usage of the Micro-
Profile brand without charge.

 Openness—Transparency, inclusiveness, and eliminating barriers to participate
are highly valued principles. Public meetings and lists are preferred. Lists are
favored for key decisions. Specifications have been managed in a way that pro-
vides open access to all MicroProfile committers.

 Low barrier to entry—It is MicroProfile’s intent to operate a low-cost working
group. Budget will be evaluated annually and as membership changes for
opportunities to maintain low fees and costs.

These tenets make MicroProfile somewhat different from most organizations that cre-
ate specifications. For example, MicroProfile considers itself an agile project and is
willing to break backward compatibility. This willingness results from a rapid-moving
specification project, and any breaking changes are well thought out with strong justi-
fication and as narrow a scope as possible.

1.3 Quarkus
Quarkus is a Java microservice runtime. Does the industry really benefit from yet
another Java microservice runtime? Yes! To understand why, let’s take a look at some
inherent problems with existing runtimes.

 Most Java microservice runtimes use existing frameworks that were developed for
shared environments like application servers, where each application has its own set
of requirements. These frameworks are mature and still relevant but haven’t funda-
mentally changed since the mid-2000s and continue to rely heavily on dynamic run-
time logic using Java reflection. More specifically, no substantive optimizations have
been made to these frameworks for Java microservice runtimes. The result is high
RAM utilization and slower startup time due to a large amount of work at applica-
tion startup.

 Another pain point is that developer productivity often suffers with Java microser-
vice runtimes. Every time a developer makes a change, they have to save the file,
rebuild the application, restart the application, and refresh the browser. This can take
tens of seconds, significantly impacting the productivity of the developer. Multiply
that by the number of developers in a team over time, and it quickly equates to a large
sunk resource cost for an enterprise.

 Developers and DevOps teams began to feel the pain of developing and deploying
Java microservices and have been increasingly considering alternatives like Node.js
and Golang due to their reduced RAM requirements and fast startup time. These
alternatives can also achieve a 5- to 10-times deployment density on the same hard-
ware, significantly reducing cost.

12 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
 Quarkus is a Java runtime that takes a fresh look at the needs of the modern Java
microservice developer. It is designed to be as productive as Node.js for developers
and consume as few resources as Golang. To many developers, Quarkus feels both new
and familiar at the same time. It includes a lot of new, impactful features while sup-
porting the APIs that developers are already familiar with.

 When developing microservices, runtimes often do not consider the target envi-
ronment. Most runtimes are deployment-environment agnostic to be broadly rele-
vant. Although Quarkus is used in a wide variety of deployment environments, it has
specific enhancements and optimizations for Linux containers and Kubernetes. For
this reason, Quarkus is referred to as Kubernetes-native Java.

1.3.1 Developer joy

Developer joy is a top priority for Quarkus. Developers are rightfully enamored with
the productivity of dynamic language runtimes like Node.js, and Quarkus is driving to
deliver that experience, even though Java is a “static” (precompiled) language.

 The top developer joy feature is live coding, where code changes are detected,
recompiled, and reloaded without having to restart the JVM. Live coding is enabled
when Quarkus is started in developer mode using mvn quarkus:dev. Specifically,
Quarkus checks for code changes when it receives external events like HTTP requests
or Kafka messages. The developer simply makes code changes, saves the file, and
refreshes the browser for near-instant updates. Live coding even works with pom.xml
changes. The Quarkus Maven plugin will detect pom.xml changes and restart the
JVM. It is not uncommon for Quarkus developers to start Quarkus in developer mode
and then minimize the terminal window, never having to restart the JVM during a cod-
ing session.

NOTE Quarkus supports both Maven and Gradle. This book references Maven
commands and features, but equivalent capabilities are available with Gradle.

Another developer joy feature is a unified configuration. Quarkus supports APIs and
concepts from multiple ecosystems like Java EE, Eclipse Vert.x, and even Spring. Each
of these ecosystems defines its own collection of configuration files. Quarkus unifies
configuration so that all configuration options can be specified in a single application
.properties configuration file. Quarkus supports MicroProfile Config, an API specifi-
cation that includes support for multiple configuration sources. Chapter 3, “Configur-
ing microservices,” discusses this in more detail.

 Future chapters discuss additional developer joy features as they are used. For
example, chapter 4, “Database access with Panache,” discusses how to replace boiler-
plate database access code with a simplified data access API layered on the Java Per-
sistence API (JPA) and Hibernate.

13Quarkus
1.3.2 MicroProfile support

Quarkus is a Java runtime with a focus on developing microservices to run on Kuber-
netes. MicroProfile is a collection of Java specifications for developing microservices.
Therefore, it is a natural fit for Quarkus to implement MicroProfile specifications to
facilitate microservices development. Also, developers can rehost their existing Micro-
Profile applications on Quarkus for improved productivity and runtime efficiency.
Quarkus is continually evolving to stay current with MicroProfile releases. At the time
of this writing, Quarkus supports MicroProfile 4.0 as described in section 1.2, Micro-
Profile, and all standalone MicroProfile specifications. Besides CDI and MicroProfile
Config, which are included in the Quarkus core, each MicroProfile specification is
available as a Quarkus extension that can be included using Maven dependencies.

1.3.3 Runtime efficiency

Quarkus has become known for its fast startup time and low memory usage, earning
its “Supersonic, Subatomic Java” marketing tagline. Quarkus can run applications on
the JVM. It can also compile the application to a native binary using GraalVM Native
Image (https://graalvm.org/). Table 1.3 compares Quarkus startup times with a tradi-
tional cloud-native Java stack, packaged and run as uber-JARs.

The REST application replies to HTTP REST requests, and the CRUD application cre-
ates, updates, and deletes data in a database. This table demonstrates that Quarkus
can start significantly faster than traditional Java runtimes. Next, let’s look at the mem-
ory usage, as shown in table 1.4.

Quarkus achieves compelling RAM and startup time improvements over traditional
cloud-native Java runtimes. It achieves this by rethinking the problem. Traditional cloud-
native Java runtimes do a lot of work when they boot. Each time an application boots, it

Table 1.3 Startup plus time to first HTTP response (seconds)

Traditional cloud-native
Java stack

Quarkus JVM Quarkus native

REST application 4.3 .943 .016

CRUD application 9.5 2.03 .042

Table 1.4 Memory usage (megabytes)

Traditional cloud-native
Java stack

Quarkus JVM Quarkus native

REST application 136 73 12

CRUD application 209 145 28

https://graalvm.org/

14 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
scans configuration files, scans for annotations, and instantiates and binds annota-
tions to build an internal metamodel before executing application logic.

 Quarkus, on the other hand, executes these steps during compilation and records
the results as bytecode that executes at application startup. In other words, Quarkus
executes application logic immediately upon startup. The result is rapid startup time
and lower memory utilization.

1.4 Kubernetes
During the 2000s, virtual machines were the go-to platform for hosting Java applica-
tion servers, which in turn often hosted dozens of monolithic applications. This was
sufficient until the adoption of microservices within the enterprise, which caused an
explosion in the number of application instances to hundreds, thousands, and up to
tens of thousands for large organizations. Virtual machines use too many compute
and management resources at this scale. For example, a virtual machine contains an
entire operating system image, consuming more RAM and CPU resources than needed
by the microservice, and must be tuned, patched, and upgraded. This was typically
managed by a team of administrators, leaving little flexibility to developers.

 These limitations led to the popularity of Linux containers, in part due to their
balanced approach to virtualization. Containers, like virtual machine images, include
the capability of packaging an entire application stack in container images. These
images can be run on any number of hosts and instantiated any number of times to
achieve horizontal scalability for service reliability and performance. Linux containers
are significantly more efficient than virtual machines because all containers running
on the same host share the same Linux operating system kernel.

 Although containers offer efficient execution of microservices, managing hun-
dreds to thousands of container instances and ensuring proper distribution across
container hosts to ensure scalability and availability is difficult without help from an
orchestration platform for containers. Kubernetes has become that platform, and it
is available from popular cloud providers and can also be installed locally within
a datacenter.

 This also redraws the boundary between developers and those who manage the
Kubernetes clusters. Developers are no longer required to utilize the Java version,
application server version, or even the same runtime that had been dictated to them
in the past. Developers now have the freedom to choose their own stack, as long as it
can be containerized.

1.4.1 Introduction to Kubernetes

Kubernetes is a container orchestration platform that offers automated container
deployment, scaling, and management. It originated at Google in various forms as a
means to run internal workloads, was publicly announced in mid-2014, and version
1.0 was released mid-2015. Coinciding with the 1.0 release, Google worked with the
Linux Foundation to form the Cloud Native Computing Foundation (CNCF), with

15Kubernetes
Kubernetes being its first project. Today, Kubernetes has more than 100 contributing
organizations and well over 500 individual contributors. With such large, varied, and
active contributions, Kubernetes has become the de facto standard enterprise con-
tainer orchestration platform. It is quite broad in functionality, so we’ll focus on the
underlying Kubernetes features and concepts that are most relevant when developing
and deploying a microservice.

 Kubernetes was not available before 2015, so early microservice deployments had
to not only manage microservices but also manage infrastructure services to support
a microservices infrastructure. Kubernetes offers some of these infrastructure ser-
vices out of the box, making Kubernetes a compelling microservices platform.
Although we are focusing on Java microservices, the following built-in features are
runtime agnostic:

 Service discovery—Services deployed to Kubernetes are given a stable DNS name
and IP address. For a microservice to consume another microservice, it only has
to locate the service by a DNS name. Unlike early microservice deployments,
Kubernetes does not need a third-party service registry to act as an intermediary
to locate a service.

 Horizontal scaling—Applications can be scaled out and scaled in manually or
automatically based on metrics like CPU usage.

 Load balancing—Kubernetes load-balances across application instances. This
removes the need for client-side load balancing that became popular during
the early days of microservices.

 Self-healing—Kubernetes restarts failing containers and directs traffic away from
containers that are temporarily unable to serve traffic.

 Configuration management—Kubernetes can store and manage microservice
configuration. Configurations can change without updating the application,
removing the need for external configuration services used by early micro-
service deployments.

The Kubernetes architecture enables these features and is outlined next in figure 1.5,
illustrating this summary of each architectural component:

 Cluster—A Kubernetes cluster abstracts hardware or virtual servers (nodes) and
presents them as a pool of resources. A cluster consists of one or more adminis-
tration (“master”) servers used to manage the cluster and any number of worker
nodes used to run workloads (pods). The administration server exposes an API
server used by administration tools, like kubectl, to interact with the cluster.
When a workload (pod) is deployed to the cluster, the scheduler schedules the
pod to execute on a node within the cluster.

 Namespace—A means to divide cluster resources between projects or teams. A
namespace can span multiple nodes in a cluster, so the diagram is a bit oversim-
plified for readability. Names defined within a namespace must be unique but
can be reused across namespaces.

16 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
 Pod—A pod is one or more containers that share the same storage volumes, net-
work, namespace, and life cycle. Pods are atomic units, so deploying a pod
deploys all containers within that pod to the same node. For example, a micro-
service may use a local out-of-process cache service. It may make sense to place
the microservice and the caching service in the same pod if they are tightly cou-
pled. This ensures they are deployed to the same node and have the same life
cycle. The pods in the exercises consist of one container per pod, so it will “feel”
as if a pod is the same thing as a container, but that is not the case. A pod is
ephemeral, meaning a pod’s state is not maintained between destruction and
any subsequent creation.

 Replication controller—Ensures the number of running pods matches the speci-
fied number of replicas. Specifying more than one replica improves availability
and service throughput. If a pod is killed, then the replication controller will
instantiate a new one to replace it. A replication controller can also conduct a
rolling upgrade when a new container image version is specified.

 Deployment—A deployment is a higher-level abstraction that describes the state
of a deployed application. For example, a deployment can specify the container
image to be deployed, the number of replicas for that container image, health
check probes used to check pod health, and more.

Container

Pod

Namespace

Node 3

kubelet

Container

Pod

Namespace

Node 3

kubelet

Container

Pod

Namespace

Container

Pod

Namespace

Container

Pod

Container

Pod

Administration

server

kubectl

Namespace

Internet

Node 3

etcd

Replication

controller

Scheduler

API server kubelet kube-proxy

Kubernetes cluster

Container

Pod

Container

Figure 1.5 Kubernetes architecture

17Kubernetes
 Service—A stable endpoint used to access a group of like pods that brings stabil-
ity to a highly dynamic environment.

Microservices are deployed within pods, and pods come and go, each with
their own IP address. This is reflected in figure 1.6. For example, the replication
controller scales the number of pods, either up or down, to meet the specified
number of replicas (running pods). The Accounts Payable service has three rep-
licas. The pod at IP address 172.17.0.4 is failing and needs to be replaced with
a new pod. The pod at IP address 172.17.0.5 is running and receiving traffic.
The pod at IP address 172.17.0.6 is starting and will be able to serve traffic once
booted. This example shows quite a bit of instability with pods, each with its
own IP address, failing and starting. Any service, such as the Frontend Web UI
microservice described earlier, needs a stable IP address to connect to. A service
creates a single IP address and a DNS name within the cluster so other micros-
ervices can access the service in a consistent manner, and requests are proxied
to one of the replicas.

 ConfigMap—Used to store microservice configuration, separating configuration
from the microservice itself. ConfigMaps are clear text. As an option, a Kuber-
netes Secret can be used to store confidential information.

With the exception of the cluster, each of these concepts is represented by a Kuberne-
tes object. Kubernetes objects are persistent entities that collectively represent the cur-
rent state of the cluster. We can manipulate the cluster by creating, manipulating, and
deleting Kubernetes objects. By manipulating the state, we are defining what we want
the desired state to be. We manipulate objects by invoking APIs on the Kubernetes API
server running on an administration server. The three most popular means of invok-
ing the API server is by using a web UI such as the Kubernetes Dashboard, by using
the kubectl CLI to directly manipulate state, or by defining the state in YAML and
applying the desired state with kubectl apply.

 Once a desired state is defined, a Kubernetes cluster updates its current state to
match the desired state. This is done by using the controller pattern. Controllers monitor
the state of the cluster, and when a controller is notified of a state change, it reacts to

Starting pod

Pod
(IP: 172.17.0.6)

Pod
(IP: 172.17.0.5)

Service
(DNS: accounts-payable-service)

(IP: 192.168.64.8)

Pod
(IP: 172.17.0.4)

Failing pod Running pod Figure 1.6 Kubernetes service

18 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
that change by updating the current state to match the desired state. For example, if a
replication controller sees a change to a ReplicationController object from a cur-
rent state of three replicas to a desired state of two replicas, the replication controller
will kill one of the pods.

 Defining Kubernetes objects using YAML and applying object state with kubectl is
very popular among administrators, but not all Java developers have embraced YAML.
Luckily, we can avoid YAML by using the Quarkus Kubernetes extension that lets us
define the desired state using a property file. When building the application, the Kuber-
netes deployment YAML is generated automatically. The YAML can be applied automati-
cally as a part of the Quarkus build process, or it can be applied manually using kubectl.

1.5 Kubernetes-native microservices
What does it mean to develop Kubernetes-native microservices? It’s developing a
microservice with the understanding that Kubernetes is the underlying deployment
platform and is facilitated by having a Kubernetes runtime like Quarkus. How is this
different from any other microservice, or the frequently mentioned “cloud-native
Java”? Some differentiating characteristics follow:

 Low memory consumption—A Kubernetes cluster is a shared infrastructure, and
organizations want to extract as much value out of their Kubernetes investment
by consolidating as many services across as many departments on a Kubernetes
cluster as possible. Reduced memory consumption is a gating factor. Until run-
times like Quarkus, organizations were considering leaving Java runtimes for
Node.js or Golang to better utilize their Kubernetes clusters.

 Fast startup—Kubernetes can automatically create new microservice instances to
meet demand. Without fast startup, existing instances can become overloaded
and fail before new instances come online, impacting overall application stabil-
ity. This potential complication can also impact rolling upgrades when a new
version of a service is incrementally deployed to replace an existing one.

 Minimize operating system threads—A Kubernetes node may be running hundreds
of microservice instances, each of which may have up to hundreds of threads. It
is not uncommon for a thread to consume a megabyte of memory. In addition,
the operating system scheduler works increasingly harder as the number of
threads increases. Quarkus runs its asynchronous, reactive, and (by default) tra-
ditional thread-blocking imperative APIs on an event loop, which significantly
reduces the number of threads.

 Consume Kubernetes ConfigMaps—Services deployed to Kubernetes can be config-
ured using a Kubernetes ConfigMap. A ConfigMap is a file that is typically
mounted to a pod filesystem. However, Quarkus can seamlessly use the Kuber-
netes client API to access a ConfigMap without mounting the filesystem in the
pod, simplifying configuration.

 Expose health endpoints—A service should always expose its health so Kuberne-
tes can restart an unhealthy service or redirect traffic away from a pod that

19Summary
is temporarily unavailable. In addition to supporting custom health checks,
Quarkus has built-in data source and messaging client (ActiveMQ and Kafka)
readiness health checks to automatically pause traffic when those backend ser-
vices are unavailable.

 Support CNCF projects—CNCF is the Cloud-Native Computing Foundation, which
is responsible for the evolution of Kubernetes and related projects like Pro-
metheus monitoring (using the OpenMetrics format) and Jaeger (using Open-
Tracing/OpenTelemetry).

 Inherent Kubernetes deployment support—Quarkus has built-in support for deploy-
ing to Kubernetes. It enables a developer to compile, package, and deploy a
microservice to Kubernetes using a one-line Maven (or Gradle) command. In
addition, Quarkus requires no Kubernetes YAML expertise. Kubernetes YAML
is generated automatically and can be customized using Java properties.

 Kubernetes client API—Quarkus includes a Java-friendly API for interacting with a
Kubernetes cluster, enabling programmatic access to any Kubernetes capability
to extend or tailor it for enterprises needs.

Summary
 A microservice models and implements a subset of business functionality called

a bounded context.
 A microservices architecture is a collection of evolving, collaborating micro-

services.
 MicroProfile is a collection of microservice specifications that facilitate the cre-

ation of portable microservices across multiple implementations.
 Microservices have evolved from running in a shared environment, like an

application server, to running on a single-application stack.
 Kubernetes has replaced the application server as the shared application

environment.
 Quarkus is a Java single-application stack that can efficiently run MicroProfile

applications on Kubernetes.

Your first Quarkus
application
Throughout the book we will use the domain of banking to create microservice
examples, highlighting key concepts from each chapter. The example will be an
Account service. The purpose of the Account service is to manage bank accounts,
holding information like customer name, balance, and overdraft status. In develop-
ing the Account service, the chapter will cover the ways to create Quarkus projects,
developing with live coding for real-time feedback, writing tests, building native exe-
cutables for an application, how to package an application for Kubernetes, and
how to deploy to Kubernetes.

 There’s a lot to cover; let’s dive into creating the Account service!

This chapter covers
 Creating a Quarkus project

 Developing with Quarkus live coding

 Writing tests for a Quarkus microservice

 Deploying and running a microservice to
Kubernetes
20

21Creating a project
2.1 Creating a project
We can create a microservice using Quarkus in the following ways:

1 With the project generator at https://code.quarkus.io/
2 In a terminal with the Quarkus Maven plugin
3 By manually creating the project and including the Quarkus dependencies and

plugin configuration

Of these options, option 3 is the more complicated and prone to errors, so we won’t
cover it in this book.

NOTE Examples work with JDK 11 and Maven 3.8.1+.

Option 2 would use a command such as the following:

mvn io.quarkus:quarkus-maven-plugin:2.1.3.Final:create \
 -DprojectGroupId=quarkus \
 -DprojectArtifactId=account-service \
 -DclassName="quarkus.accounts.AccountResource" \
 -Dpath="/accounts"

For the Account service, we will use option 1, using the project generator at https://
code.quarkus.io/.

 Figure 2.1 is a view of the Quarkus project generator, at the time the screenshot
was taken. The top left of the page contains fields for customizing project informa-
tion, such as the group and artifact ids, and the build tool for the project.

 The bottom of the page shows all the possible extensions that can be selected for
the application.

TIP The Quarkus project generator lists hundreds of extensions. Use the
search box to filter the list of available extensions to more quickly locate a
particular set of extensions.

Select the RESTEasy JAX-RS extension, and leave Starter Code set to Yes.
 Figure 2.2 shows all the changes we’ve made to the generator for the Account

service. The group has been set to quarkus, the artifact to account-service, and the
RESTEasy JAX-RS extension selected. Also notice the number next to Generate Your
Application. The number shows how many extensions are selected, and hovering over
the rocket displays a pop-up with them listed.

 Once the changes have been made, hover over the arrow next to Generate Your
Application, as seen in figure 2.3.

https://code.quarkus.io/
https://code.quarkus.io/
https://code.quarkus.io/
https://code.quarkus.io/

22 CHAPTER 2 Your first Quarkus application
Figure 2.1 Quarkus project generator

Figure 2.2 Quarkus project generator: selected extension

23Creating a project
Figure 2.3 highlights the following options we have for generating the project:

 Download as a Zip
 Push to GitHub

Select Download as a Zip, and a zip file containing the project source will be created
and downloaded.

 Once the zip file has downloaded, extract the contents into a directory. We
explain the generated contents shortly, but first open a terminal window and
change into the directory where the zip file was extracted. In that directory, run the
following command:

mvn quarkus:dev

Maven artifacts and their dependencies must be downloaded the first time a particu-
lar version of Quarkus is used, as shown in listing 2.1.

 Listing 2.1 contains the console output when Quarkus starts the project. The out-
put includes the version used, in this case 2.1.3.Final, and installed features include
cdi and resteasy.

__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
INFO [io.quarkus] (Quarkus Main Thread) account-service 1.0.0-SNAPSHOT on
JVM (powered by Quarkus 2.1.3.Final) started in 1.653s. Listening on:

http:/ /localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding
activated.

Listing 2.1 Quarkus startup

Figure 2.3 Quarkus project generator: generate application

24 CHAPTER 2 Your first Quarkus application
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi, resteasy,
smallrye-context-propagation]

Once started, the application can be accessed at http:/ /localhost:8080, as shown in
figure 2.4.

The default page of the generated application provides some pointers on what can be
done next for creating REST endpoints, servlets, and static assets.

 In addition to the default index page, open http:/ /localhost:8080/hello to be
greeted by the generated JAX-RS resource. With the generated application run-
ning, take a look through what the project includes from the generation process as
shown in figure 2.5. Open up the project in an editor or whatever tool might be
preferred.

 The project root contains the build file, in this case pom.xml, a README.md with
information on how to run the project, and Maven wrappers for those who may not
have Maven installed already.

 Looking in src/main, we see directories for Docker files, Java source files, and
other resources. In the docker directory are Dockerfiles for the JVM, native execut-
able, native executable with a distroless base image, and legacy-jar format. Native exe-
cutables will be discussed in “Creating a native executable,” section 2.4.

Figure 2.4 Quarkus default index page

25Creating a project
Each of the Docker files uses the Red Hat Universal Base Image (UBI) as their base.
Full details on the image content can be found here: http://mng.bz/J6WQ.

 Within the Java source directory, src/main/java, is the quarkus package. Inside the
package is the GreetingResource class, containing a JAX-RS resource endpoint, as
shown in the next listing.

@Path("/hello")
public class GreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "Hello RESTEasy";
 }
}

Listing 2.2 GreetingResource

Figure 2.5 Quarkus-generated
project structure

Defines the JAX-RS
resource to respond
at /hello-resteasy

The method responds to
an HTTP GET request.

Responds to the browser
to set the content type
to TEXT_PLAIN

Returns "Hello RESTEasy"
as the HTTP GET response

http://mng.bz/J6WQ

26 CHAPTER 2 Your first Quarkus application
Take a look at the next directory, src/main/resources. The first file is applica-
tion.properties. This is where any configuration packaged within the application
should be placed. Configurations can also reside outside the application, but these
are restricted to aspects we can configure at runtime.

NOTE We discuss the different types of configuration in chapter 3, including
the ability to use application.yaml instead of a properties file.

Currently, there is no configuration in application.properties, but we will add that soon.
 Also in src/main/resources is the META-INF/resources directory. Any static assets

for the application should be placed in this directory. Inside the directory is the static
index.html that created the page seen in figure 2.4.

 Moving on from what was generated in src/main/, next is src/test. Here there are
two classes, GreetingResourceTest and NativeGreetingResourceIT. The first uses
@QuarkusTest to run a unit test on the JVM, verifying the endpoint returns hello as
expected, as shown in the next listing.

@QuarkusTest
public class GreetingResourceTest {
 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/hello")
 .then()
 .statusCode(200)
 .body(is("Hello RESTEasy"));
 }
}

NativeGreetingResourceIT runs the same tests, but with the native executable of the
application, as shown next.

@NativeImageTest
public class NativeGreetingResourceIT
 extends GreetingResourceTest {
 // Execute the same tests but in native mode.
}

NOTE It’s not required to run the same set of tests with a native executable
and the JVM. However, it is a convenient means of testing on the JVM and a
native executable with a single set of common tests.

Having looked through what the project generator creates, all Java source files—and
the index.html file—can be deleted. Don’t modify the Dockerfiles, application.prop-
erties, or Java packages for now.

Listing 2.3 GreetingResourceTest

Listing 2.4 NativeGreetingResourceIT

Tells JUnit to use the Quarkus
extension, which starts the
application for the test

A regular JUnit test
method marker

Uses RestAssured
to access the /hello-
resteasy URLVerifies the response had a body

that contained Hello RESTEasy

Tells JUnit to use
the Quarkus-native
executable extension

Extends from the JUnit
unit tests to reuse them

27Developing with live coding
2.2 Developing with live coding
With a blank application, it’s time to develop the Account service. For developing the
service, we use the live coding functionality of Quarkus.

 Using live coding enables us to update Java source, resources, and configuration of
a running application. All changes are reflected in the running application automati-
cally, enabling developers to improve the turnaround time when developing a new
application.

 Live coding enables hot deployment via background compilation. Any changes to
the Java source, or resources, will be reflected as soon as the application receives a
new request from the browser. Refreshing the browser or issuing a new browser
request triggers a scan of the project for any changes to then recompile and redeploy
the application. If any issues arise with compilation or deployment, an error page pro-
vides details of the problem.

 To begin, create a minimal JAX-RS resource as shown here.

@Path("/accounts")
public class AccountResource {
}

There’s not much there right now, just a JAX-RS resource that defines a URL path of
/accounts. There are no methods to respond to any requests, but restart live coding if
it had been stopped as follows:

mvn quarkus:dev

TIP Live coding handles the deletion and creation of new files without issue
while it’s still running.

In the terminal window, output similar to the following appears.

Listening for transport dt_socket at address: 5005
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
INFO [io.quarkus] (Quarkus Main Thread) chapter2-account-service
1.0.0-SNAPSHOT on JVM (powered by Quarkus 2.1.3.Final) started in 1.474s.
Listening on: http:/ /localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding
activated.
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi, resteasy,
smallrye-context-propagation]

Listing 2.5 AccountResource

Listing 2.6 Account service startup

28 CHAPTER 2 Your first Quarkus application
Notice the first line indicates that a debugger has been started on port 5005. This is an
added benefit to using live coding—Quarkus opens the default debug port for the
application.

 Figure 2.6 shows the result of opening a browser to http:/ /localhost:8080.

Don’t be concerned with the error: it makes sense because the JAX-RS resource
defined a URL path and no methods to process HTTP requests. If we access http:/ /
localhost:8080/accounts, the same error message is in the browser.

 Notice some additional endpoints are available, even without application code.
These endpoints are provided by the installed extensions of the application. Most of
the endpoints are related to Arc, the CDI container for Quarkus, which provides
information about CDI Beans and CDI in general.

 The last endpoint for Dev UI contains extension-specific behavior, such as editing
configuration, and links to the guides for each installed extension. The Dev UI for the
application can be seen in figure 2.7.

 Now it’s time to start developing some code. While live coding is still running,
create the Account POJO to represent a bank account in the system, as shown in list-
ing 2.7.

Figure 2.6 Account service no resources

29Developing with live coding
public class Account {
 public Long accountNumber;
 public Long customerNumber;
 public String customerName;
 public BigDecimal balance;
 public AccountStatus accountStatus = AccountStatus.OPEN;

 public Account() {
 }

 public Account(Long accountNumber, Long customerNumber, String
customerName, BigDecimal balance) {

 this.accountNumber = accountNumber;
 this.customerNumber = customerNumber;
 this.customerName = customerName;
 this.balance = balance;
 }

 public void markOverdrawn() {
 accountStatus = AccountStatus.OVERDRAWN;
 }

Listing 2.7 Account

Figure 2.7 Quarkus Dev UI

30 CHAPTER 2 Your first Quarkus application
 public void removeOverdrawnStatus() {
 accountStatus = AccountStatus.OPEN;
 }

 public void close() {
 accountStatus = AccountStatus.CLOSED;
 balance = BigDecimal.valueOf(0);
 }

 public void withdrawFunds(BigDecimal amount) {
 balance = balance.subtract(amount);
 }

 public void addFunds(BigDecimal amount) {
 balance = balance.add(amount);
 }

 public BigDecimal getBalance() {
 return balance;
 }

 public Long getAccountNumber() {
 return accountNumber;
 }

 public String getCustomerName() {
 return customerName;
 }

 public AccountStatus getAccountStatus() {
 return accountStatus;
 }
}

Account has some fields to hold data about the account: account number, customer
number, customer name, balance, and account status. It has a constructor that takes
values to populate the fields, except for the account status because that defaults to
OPEN. After are methods for setting and clearing the overdrawn status, closing the
account, adding and withdrawing account funds, and, lastly, some getters for balance,
account number, and customer name.

 Not a lot to it, but it’s a foundation to build from. Right now it won’t compile,
because AccountStatus needs to be created, as shown in the next code listing.

public enum AccountStatus {
 OPEN,
 CLOSED,
 OVERDRAWN
}

There’s nothing there yet, but open up http:/ /localhost:8080/accounts to show the
error page. With live coding running, open pom.xml and change the quarkus-resteasy

Listing 2.8 AccountStatus

31Developing with live coding
dependency to quarkus-resteasy-jsonb. Doing this adds support for returning JSON
objects in the endpoints.

NOTE Instead of quarkus-resteasy-jsonb, quarkus-resteasy-jackson could
also be used.

IMPORTANT Modifying dependencies in pom.xml can be done with live cod-
ing, but the delay before restarting is complete is longer if new dependencies
need to be downloaded.

To begin creating the Account service, open up AccountResource and add the follow-
ing code.

@Path("/accounts")
public class AccountResource {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Set<Account> allAccounts() {
 return Collections.emptySet();
 }
}

To add some data, add the code snippet shown in the next listing to AccountResource.

@Path("/accounts")
public class AccountResource {
 Set<Account> accounts = new HashSet<>();

 @PostConstruct
 public void setup() {
 accounts.add(new Account(123456789L, 987654321L, "George Baird", new

BigDecimal("354.23")));
 accounts.add(new Account(121212121L, 888777666L, "Mary Taylor", new

BigDecimal("560.03")));
 accounts.add(new Account(545454545L, 222444999L, "Diana Rigg", new

BigDecimal("422.00")));
 }
 ...
}

NOTE Though the JAX-RS resource does not specify a CDI Scope annotation,
Quarkus defaults JAX-RS resources to @Singleton. The JAX-RS resource can
utilize whatever is the preferred CDI Scope: @Singleton, @Application-
Scoped, or @RequestScoped.

Right now allAccounts() returns an empty Set. Change it to return the accounts
field, as shown next.

Listing 2.9 AccountResource

Listing 2.10 AccountResource

Indicates
the response is
converted to JSON

Returns a Set of
Account objects

Creates a Set of
Account objects
to hold the state

@PostConstruct indicates the method should
be called straight after creation of the CDI Bean.

setup()
prepopulates
some data
into the list
of accounts.

32 CHAPTER 2 Your first Quarkus application
@Path("/accounts")
public class AccountResource {
 ...
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Set<Account> allAccounts() {
 return accounts;
 }
 ...
}

Refresh the browser window open to http:/ /localhost:8080/accounts, as shown in fig-
ure 2.8. The page has reloaded to show all the accounts that are stored in the service.

NOTE Figure 2.8 uses the JSON Formatter extension for Chrome to format
the JSON response. Such an extension provides a better means of viewing the
structure of the JSON document.

Listing 2.12 creates a method for retrieving a single Account instance.

Listing 2.11 AccountResource

Figure 2.8 Account service:
all accounts

33Developing with live coding

R
No

Exc
no m

ac
@Path("/accounts")
public class AccountResource {
 ...
 @GET
 @Path("/{accountNumber}")
 @Produces(MediaType.APPLICATION_JSON)
 public Account getAccount(@PathParam("accountNumber") Long accountNumber) {
 Optional<Account> response = accounts.stream()
 .filter(acct -> acct.getAccountNumber().equals(accountNumber))
 .findFirst();

 return response.orElseThrow(()
 -> new NotFoundException("Account with id of " + accountNumber + "

does not exist."));
 }
 ...
}

With these changes, open http:/ /localhost:8080/accounts/121212121 in a browser to
see the account details in a JSON document.

 Quarkus has a nice feature with live coding for showing available URLs when
accessing a URL that doesn’t exist. This feature isn’t present when running the appli-
cation with java -jar. Open http:/ /localhost:8080/accounts/5 in a browser. The
error page is shown in figure 2.9.

Listing 2.12 AccountResource

Defines the name
of the parameter
on the URL path

@PathParam maps
the accountNumber
URL parameter into
the accountNumber
method parameter.

Streams the accounts, filters by accountNumber,
and finds the first account, if there is one

eturns a
tFound-
eption if
atching
count is
present

Figure 2.9 Quarkus error page

34 CHAPTER 2 Your first Quarkus application

e
Not finding an account number, the response is an HTTP 404, but the page offers use-
ful information about what endpoints are available. In this case, there is the main
/accounts/ URL path, and the two URL paths within it that have been created.

 Because the endpoint we accessed was valid, but the requested record was not
found, there is a nicer 404 response that we can create to provide more details.
Instead of getAccount() throwing a NotFoundException when no record is found,
change it to WebApplicationException and pass 404 as the response code, as shown
in the next listing.

return response.orElseThrow(()
 -> new WebApplicationException("Account with id of " + accountNumber + "

does not exist.", 404));

To convert the exception into a meaningful response, create a JAX-RS exception map-
per in AccountResource, as shown in listing 2.10 and in figure 2.10.

@Path("/accounts")
public class AccountResource {
 ...
 @Provider
 public static class ErrorMapper implements ExceptionMapper<Exception> {

 @Override
 public Response toResponse(Exception exception) {

 int code = 500;
 if (exception instanceof WebApplicationException) {
 code = ((WebApplicationException)

exception).getResponse().getAccountStatus();
 }

Listing 2.13 AccountResource.getAccount()

Listing 2.14 AccountResource

Figure 2.10 Account not found

@Provider indicates the
class is an autodiscovered
JAX-RS Provider

Implements
ExceptionMapper for

all Exception types

Overrides the toResponse
method for converting th
exception to a Response

Checks for WebApplicationException,
and extracts the HTTP status code;

otherwise defaults to 500

35Writing a test
 JsonObjectBuilder entityBuilder = Json.createObjectBuilder()
 .add("exceptionType", exception.getClass().getName())
 .add("code", code);

 if (exception.getMessage() != null) {
 entityBuilder.add("error", exception.getMessage());
 }

 return Response.status(code)
 .entity(entityBuilder.build())
 .build();
 }
 }
}

As an exercise for the reader, add methods to AccountResource for creating accounts,
withdrawing funds, depositing funds, and deleting accounts. The full code for
AccountResource is in /chapter2/account-service.

2.3 Writing a test
The Account service has methods for the following tasks:

 Retrieving all accounts
 Retrieving a single account
 Creating a new account
 Updating an account
 Deleting an account

However, no verification exists that what has been coded actually works. Only retrieving
all accounts and retrieving a single account have been verified, by accessing specific
URLs from a browser to trigger HTTP GET requests. Even with manual verification, any
additional changes that might be made are not verified, unless manual verification fol-
lows every change.

 It’s important to ensure the developed code has been tested and verified appropri-
ately against expected outcomes. For that, we must add, at a minimum, some level of
tests for the code.

 Quarkus supports running JUnit 5 tests with the addition of @QuarkusTest onto a
test class. @QuarkusTest informs JUnit 5 of the extension to use during the test. The
extension performs the necessary augmentation of the service being tested, equiva-
lent to what happens during compilation with the Quarkus Maven or Gradle plugin.
Prior to running the tests, the extension starts the constructed Quarkus service, just as
if it was constructed with any build tool.

 To begin adding tests to the Account service, add the following dependencies in
the pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>

Uses builder to
construct JSON-
formatted data

containing
exception type

and HTTP
status code

If there is a
message,
adds it to
the JSON

object

Returns a Response
with the HTTP status
code and JSON object

36 CHAPTER 2 Your first Quarkus application
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>

If we generate the project from https://code.quarkus.io, the Account service already
includes the testing dependencies.

NOTE rest-assured is not a required dependency for testing, but it offers a
convenient means of testing HTTP endpoints. It would be possible to use dif-
ferent testing libraries for the same purpose, but the examples that follow all
use rest-assured. In addition, using rest-assured has a dependency on
Hamcrest for asserting and matching test data.

The project generator also sets up the Maven Surefire plugin for testing, as shown next:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>
 <java.util.logging.manager>org.jboss.logmanager.LogManager</java.util

.logging.manager>
 </systemPropertyVariables>
 </configuration>
</plugin>

A test case to verify retrieving all accounts returns the expected result, as shown in the
next listing.

@QuarkusTest
public class AccountResourceTest {
 @Test
 void testRetrieveAll() {
 Response result =
 given()
 .when().get("/accounts")
 .then()
 .statusCode(200)
 .body(
 containsString("George Baird"),
 containsString("Mary Taylor"),
 containsString("Diana Rigg")
)
 .extract()
 .response();

Listing 2.15 AccountResourceTest

Sets to a version of the
Surefire plugin that works
with JUnit 5. A minimum of
3.0.0-M5 is required.

Sets a system property
to ensure the tests use
the correct log manager

Declares the method
as a test method

With JUnit 5, test methods
don’t need to be public.

Issues an HTTP GET
request to /accounts URL

Verifies the
response had
a 200 status

code, meaning
it returned

without problem

Verifies the body contains
all customer names

Extracts the
response

https://code.quarkus.io

37Writing a test

the a
re

obje
ex
 List<Account> accounts = result.jsonPath().getList("$");
 assertThat(accounts, not(empty()));
 assertThat(accounts, hasSize(3));
 }
}

One test method is not sufficient to ensure the prevention of future breakages. The
next code snippet displays a test method for verifying the retrieval of a single Account.

@Test
void testGetAccount() {
 Account account =
 given()
 .when().get("/accounts/{accountNumber}", 545454545)
 .then()
 .statusCode(200)
 .extract()
 .as(Account.class);

 assertThat(account.getAccountNumber(), equalTo(545454545L));
 assertThat(account.getCustomerName(), equalTo("Diana Rigg"));
 assertThat(account.getBalance(), equalTo(new BigDecimal("422.00")));
 assertThat(account.getAccountStatus(), equalTo(AccountStatus.OPEN));
}

The tests written so far do not verify updating or adding data with the Account service;
they only verify that existing data returns with the correct values. Next, add a test to
verify that the creation of a new account succeeds.

 Testing account creation covers multiple facets. In addition to verifying the cre-
ation of the new account, the test needs to ensure that the list of all accounts includes
the new account. When including tests for mutating the state within a service, it
becomes necessary to order the execution sequence of tests.

 Why is it necessary to order the test execution? When there is a test to create,
delete, or update the state within a service, it will impact any tests that read the state.
For instance, in the earlier test to retrieve all accounts, listing 2.15, the expectation is
it returns three accounts. However, when the test method execution order is nonde-
terministic, that is, not in a defined order, it’s possible for the test creating an account
to execute before listing 2.15, causing it to fail by finding four accounts.

 To define the test method execution order, add @TestMethodOrder(Order-
Annotation.class) to the test class definition, as shown in listing 2.17. Above or
below @QuarkusTest is fine. @Order(x) is added to each test method, where x is a
number to indicate where in the execution sequence of all tests is this particular test.
testRetrieveAll() and testGetAccount() can either be Order(1) or Order(2); they
don’t mutate data, so it does not matter.

Listing 2.16 AccountResourceTest

Extracts the
JSON array and
converts it to a
list of Account
objects

Asserts the
array of Account
objects is not
empty

Asserts the array of Account
objects has three items

Passes the ID of the
account to be retrieved

as a URL path parameter

Verifies
ccount
sponse
ct with
pected
values

38 CHAPTER 2 Your first Quarkus application
@Test
@Order(3)
void testCreateAccount() {
 Account newAccount = new Account(324324L, 112244L, "Sandy Holmes", new

BigDecimal("154.55"));

 Account returnedAccount =
 given()
 .contentType(ContentType.JSON)
 .body(newAccount)
 .when().post("/accounts")
 .then()
 .statusCode(201)
 .extract()
 .as(Account.class);

 assertThat(returnedAccount, notNullValue());
 assertThat(returnedAccount, equalTo(newAccount));

 Response result =
 given()
 .when().get("/accounts")
 .then()
 .statusCode(200)
 .body(
 containsString("George Baird"),
 containsString("Mary Taylor"),
 containsString("Diana Rigg"),
 containsString("Sandy Holmes")
)
 .extract()
 .response();

 List<Account> accounts = result.jsonPath().getList("$");
 assertThat(accounts, not(empty()));
 assertThat(accounts, hasSize(4));
}

Open a terminal window in the directory where the Account service is located and
run the next test:

mvn test

Figure 2.11 shows the error when running the tests.
 Though creating an account should have returned a 201 HTTP status code, the

test received 200 instead. Though the request succeeded, it didn’t return an expected
HTTP status code.

 To fix it, instead of returning the created Account instance, the method should
return a Response to enable the appropriate HTTP status code to be set. The next list-
ing contains the updated create method.

Listing 2.17 AccountResourceTest

Defines the test execution order to
be third, after the retrieve all and
get account tests

Sets the content type to
JSON for the HTTP POST

Sets the new account object
into the body of the HTTP POST

Sends the HTTP POST
request to /accounts URL

Verifies the HTTP status code returned is
201, indicating it was created successfully

Asserts that the account
from the response was
not null and equals the
account we posted

Sends an HTTP GET
request to /accounts URL,
for retrieving all accounts

Verifies the response
contains the name of
the customer on the
new account

Asserts there are
now four accounts

39Writing a test
@Path("/accounts")
public class AccountResource {
 ...
 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response createAccount(Account account) {
 if (account.getAccountNumber() == null) {
 throw new WebApplicationException("No Account number specified.", 400);
 }

 accounts.add(account);
 return Response.status(201).entity(account).build();
 }
 ...
}

Running mvn test again shows a different error. Now it fails because the two accounts,
the one sent in the HTTP POST request and the one returned, are not equal. The test
failure follows:

Expected: <quarkus.accounts.repository.Account@22361e23>
 but: was <quarkus.accounts.repository.Account@46994f26>
 at quarkus.accounts.activerecord.AccountResourceTest.testCreateAccount(

AccountResourceTest.java:77)

Account doesn’t have any equals or hashcode methods, making any equality check use
the default object comparison, which in this case means they are not the same object.
To fix it, update Account with equals and hashcode methods, as shown here.

public class Account {
 ...
 @Override
 public boolean equals(Object o) {
 if (this == o) return true;

Listing 2.18 AccountResource

Listing 2.19 Account

Figure 2.11 Create account test failure

Constructs a Response with status code
201 containing the new account entity

40 CHAPTER 2 Your first Quarkus application
 if (o == null || getClass() != o.getClass()) return false;
 Account account = (Account) o;
 return accountNumber.equals(account.accountNumber) &&
 customerNumber.equals(account.customerNumber);
 }

 @Override
 public int hashCode() {
 return Objects.hash(accountNumber, customerNumber);
 }
 ...
}

NOTE The equality check and hashcode creation use only the account and
customer numbers. All the other data on Account can change, and it still rep-
resents the same instance. It’s very important to ensure objects have an appro-
priately unique business key.

Run mvn test again; all tests now pass.
 In future sections and chapters, we discuss additional aspects of testing, including

running tests with native executables and defining required resources for tests.

2.4 Creating a native executable
Java programs require a Java Virtual Machine (JVM) as their operating system for exe-
cution. The JVM includes all the low-level Java APIs wrapping operating system librar-
ies, as well as convenience APIs to simplify Java programming. The JVM, including all
the APIs it provides, is not small. It occupies large parts of memory, measured by its
resident set size (RSS), when running Java programs.

 Native executables are files containing programs to be executed directly on an oper-
ating system, only relying on operating system libraries to be present. Embedded
within them are all the necessary operating system instructions required by a particu-
lar program. The key difference between a native executable and Java programs is
that there is no requirement for a JVM to be present during runtime execution.

 The ability to compile a Java program down into a native executable significantly
reduces the file size of the program because the JVM is no longer required. It also sig-
nificantly reduces the amount of RSS memory used while executing and shortens the
time required to start the program.

WARNING The reduction in the program size is a result of the dead code elimi-
nation process. Several aspects of this impact how code can execute inside a
native executable. A key difference is that dynamic class loading will not work,
because nondirectly referenced code is removed from the native executable.
Full details of what won’t work in a native executable can be found on the
GraalVM website: https://www.graalvm.org/reference-manual/native-image/.

Over the last couple of years, a part of the GraalVM project offering compilation to
native executable has become popular. GraalVM might sound familiar because of the

https://www.graalvm.org/reference-manual/native-image/

41Creating a native executable
Truffle compiler subproject offering polyglot programming on the JVM, but the com-
pilation of Java down to native executable is from a different subproject.

 Native executables are particularly beneficial in serverless environments where
processes need to start promptly and require as few resources as possible. Quarkus
offers first-class support for native executable creation and optimization. Such optimi-
zation is possible through ahead-of-time (AOT) compilation, build-time processing of
framework metadata, and native image preboot.

NOTE Ahead-of-time refers to the process of compiling Java bytecode to a native
executable. The JVM offers only just-in-time compilation.

Metadata processing at build time ensures any classes required for initial application
deployment are used during the build and are no longer required during runtime
execution. This reduces the number of classes needed at runtime, providing the dual
benefits of reduced memory utilization and faster startup time.

NOTE Examples of metadata processing include processing persistence.xml,
and defining required processing based on annotations in the code.

Quarkus further reduces the number of classes needed at runtime in a native execut-
able by performing a preboot when building the native image. During this phase,
Quarkus starts as much of the frameworks as possible within the application and stores
the serialized state within the native executable. The resulting native executable has
therefore already run most, if not all, of the necessary startup code for an application,
resulting in further improvement to startup time.

 In addition to what Quarkus does, GraalVM performs dead code elimination on
the source and packaged libraries. This process traverses the code to remove methods
and classes that aren’t actually on the execution path. Doing so reduces both the size
of the native executable and the memory required to run the application.

 How does a project create a native executable? In the pom.xml for the project, the
profile for the native executable creation was added by the generator as follows:

<profile>
 <id>native</id>
 <activation>
 <property>
 <name>native</name>
 </property>
 </activation>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>

Specifies the ID of the
profile when activating
with -Pnative

Defines a flag that
when present will
activate the profile,
-Dnative

Includes the
Failsafe plugin to
run integration
tests with a native
executable

42 CHAPTER 2 Your first Quarkus application
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>

<native.image.path>${project.build.directory}/${project.build.finalName}
-runner</native.image.path>

 <java.util.logging.manager>org.jboss.logmanager
.LogManager</java.util.logging.manager>

 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <properties>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
</profile>

If we generate the project from https://code.quarkus.io, the Account service already
includes the native profile in the pom.xml.

NOTE Instead of using a new profile, we can create a native executable by
passing -Dquarkus.package.type=native to mvn clean install. However,
having a profile is more convenient and enables integration testing with a
native executable.

Before creating a native executable, it’s necessary to install GraalVM for the JDK ver-
sion and operating system in use, in this instance, JDK 11. Follow the instructions on
the Quarkus website for installing and configuring GraalVM: http://mng.bz/GOl8. Pre-
requisites for GraalVM are available at http://mng.bz/zEog.

 Once GraalVM is installed, to build the native executable, run the following:

mvn clean install -Pnative

The native build process can take a few minutes to complete—much slower than regu-
lar Java compilation—depending on the number of classes in the application and the
number of external libraries included.

 Once complete, a -runner executable will be in the /target directory, which is the
result of the native executable build process. The native executable will be specific to
the operating system it was built on, as GraalVM uses native libraries to implement cer-
tain functionality.

TIP To create a native executable that is suitable for use within a Linux con-
tainer, run mvn package -Pnative -Dquarkus.native.container-build=true.

Defines the path
to the native
executable for use
when testing

Tells the Quarkus
Maven plugin to
build a native
executable in
addition to the
usual Java JAR
runner

https://code.quarkus.io
http://mng.bz/GOl8
http://mng.bz/zEog

43Running in Kubernetes
Try running the native executable version of the Account service, shown here:

./target/chapter2-account-service-1.0.0-SNAPSHOT-runner

As with the earlier startup, listing 2.20 contains the console output when the native
executable starts. Notice the startup time for the Account service? In this case it was
only 0.023s!

__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
INFO [io.quarkus] (main) chapter2-account-service 1.0.0-SNAPSHOT native
(powered by Quarkus 2.1.3.Final) started in 0.023s. Listening on:
http://0.0.0.0:8080
INFO [io.quarkus] (main) Profile prod activated.
INFO [io.quarkus] (main) Installed features: [cdi, resteasy,
resteasy-jsonb, smallrye-context-propagation]

NOTE Within a native executable, we still have garbage collection, though it
uses different garbage collectors than the JVM. One impact of this is very
long-running processes will see better memory performance over time with
the JVM instead of the native executable, due to the JVM continually optimiz-
ing memory utilization.

In addition to the native executable build, we can now also run native executable tests,
as was seen with the generated project earlier. To run the current test with a native
executable, create the test as shown in the next code listing.

@NativeImageTest
public class NativeAccountResourceIT extends AccountResourceTest {
 // Execute the same tests but in native mode.
}

mvn clean install -Pnative will do the native executable build as before, but also
run the earlier tests against that generated executable. If everything works as
expected, the native executable will build, and the tests defined in AccountResource-
Test will execute and all will pass.

2.5 Running in Kubernetes
Quarkus focuses on Kubernetes native, so it’s time to put that to the test, packaging
and deploying the Account service to Kubernetes. We have several options when it
comes to deploying Quarkus applications to Kubernetes, and this section covers some
of them.

Listing 2.20 Quarkus-native executable startup

Listing 2.21 Account

44 CHAPTER 2 Your first Quarkus application
2.5.1 Generating Kubernetes YAML

When using Kubernetes, everything is YAML—there’s just no way around that. How-
ever, Quarkus provides some ways to alleviate the hassle of handcrafting YAML by
offering extensions to generate it.

 The first thing to do is add a dependency into the Account service pom.xml, as
follows:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-kubernetes</artifactId>
</dependency>

This dependency adds the Kubernetes extension for Quarkus, which offers the ability
to generate, and customize, the necessary YAML for deploying to Kubernetes.

 To see what it produces, run mvn clean install on the project, then look at the
files produced in /target/kubernetes. By default, it will produce a .yml and a .json ver-
sion of the required configuration.

 An example of what can be seen for the Account service is shown in the next code
snippet.

apiVersion: "v1"
kind: "Service"
metadata:
 annotations:
 app.quarkus.io/build-timestamp: "...."
 app.quarkus.io/commit-id: "...."
 labels:
 app.kubernetes.io/name: "chapter2-account-service"
 app.kubernetes.io/version: "1.0.0-SNAPSHOT"
 name: "chapter2-account-service"
spec:
 ports:
 - name: "http"
 port: 80
 targetPort: 80
 selector:
 app.kubernetes.io/name: "chapter2-account-service"
 app.kubernetes.io/version: "1.0.0-SNAPSHOT"
 type: "ClusterIP"

apiVersion: "apps/v1"
kind: "Deployment"
metadata:
 annotations:
 app.quarkus.io/build-timestamp: "...."
 app.quarkus.io/commit-id: "...."
 labels:
 app.kubernetes.io/name: "chapter2-account-service"

Listing 2.22 kubernetes.yml

Defines the Kubernetes
service, Account service,
to be provisioned

Indicates the service will expose
port 80, and the application will
be running on 80

Creates the Kubernetes
Deployment of the
service

45Running in Kubernetes
 app.kubernetes.io/version: "1.0.0-SNAPSHOT"
 name: "chapter2-account-service"
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: "chapter2-account-service"
 app.kubernetes.io/version: "1.0.0-SNAPSHOT"
 template:
 metadata:
 annotations:
 app.quarkus.io/build-timestamp: "...."
 app.quarkus.io/commit-id: "...."
 labels:
 app.kubernetes.io/name: "chapter2-account-service"
 app.kubernetes.io/version: "1.0.0-SNAPSHOT"
 spec:
 containers:
 - env:
 - name: "KUBERNETES_NAMESPACE"
 valueFrom:
 fieldRef:
 fieldPath: "metadata.namespace"
 image: "{docker-user}/chapter2-account-service:1.0.0-SNAPSHOT"
 imagePullPolicy: "Always"
 name: "chapter2-account-service"
 ports:
 - containerPort: 80
 name: "http"
 protocol: "TCP"

With the default kubernetes.yml, the following customizations are worth making:

 Change the name of the service to account-service.
 Use a more meaningful name for the Docker image.

To make these changes, modify application.properties in src/main/resources to include
the following:

quarkus.container-image.group=quarkus-mp
quarkus.container-image.name=account-service
quarkus.kubernetes.name=account-service

After running mvn clean install again and looking at kubernetes.yml in /target/
kubernetes, notice that the name used is now account-service, and the Docker
image is quarkus-mp/account-service:1.0.0-SNAPSHOT.

 With Minikube as the deployment target, we can generate specific resource files.
These resource files are required to expose the Kubernetes services to the local
machine. Add the following dependency into the pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>

Tells Kubernetes to create only one instance;
it’s possible to set the value higher, but it’s
not necessary in this situation.

Names the Docker
image to use for the

Deployment

46 CHAPTER 2 Your first Quarkus application
 <artifactId>quarkus-minikube</artifactId>
</dependency>

TIP Full details on how to deploy to Minikube can be found here: https://
quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube.

Running mvn clean install will now generate Minikube-specific resources into the
target/kubernetes directory. Looking at the files, we see they’re virtually identical.
The only difference is with the Service definition, as shown here:

spec:
 ports:
 - name: http
 nodePort: 30704
 port: 80
 targetPort: 80
 selector:
 app.kubernetes.io/name: account-service
 app.kubernetes.io/version: 1.0.0-SNAPSHOT
 type: NodePort

IMPORTANT It is not recommended to use Minikube-specific Kubernetes
resources when deploying to a Kubernetes environment for production.
The examples will use the dependency, because it exposes the services to
localhost.

2.5.2 Packaging an application

With Quarkus we have the following ways to package an application for deployment to
Kubernetes:

 Jib (https://github.com/GoogleContainerTools/jib)
 Docker
 S2I (Source to Image) binary build

Each requires the addition of their respective dependency to the pom.xml, either
quarkus-container-image-jib, quarkus-container-image-docker, or quarkus-

container-image-s2i.
 To minimize the required dependencies for running the examples, Docker is not

required. The advantage with Jib is that all requirements for producing container
images are part of the dependency itself. Container images with Docker utilize the con-
tents of the src/main/docker directory but require the Docker daemon to be installed.

 Add the following dependency into the pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-container-image-jib</artifactId>
</dependency>

For Kubernetes, nodePort is not required, but
when using Minikube, the nodePort indicates
which port on the local machine will receive
any traffic forwarded from the service.

With Kubernetes the type is set
to ClusterIP, but for Minikube,
NodePort is required.

https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://github.com/GoogleContainerTools/jib

47Running in Kubernetes
Then run the following code to create the container image for JVM execution:

mvn clean package -Dquarkus.container-image.build=true

IMPORTANT If there isn’t a Docker daemon running locally, the container
image creation will fail. The Docker daemon inside Minikube can be used
instead. Run minikube start, and then expose the Minikube Docker dae-
mon with eval $(minikube -p minikube docker-env). It’s necessary for the
eval command to be run in each terminal window running the Maven com-
mands to create a container, because the evaluation is specific to each ter-
minal window.

When successful, running docker images will show the quarkus-mp:account-service
image:

➜ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
quarkus-mp/account-service 1.0.0-SNAPSHOT 8bca7928d6a9 4 seconds ago 200MB

2.5.3 Deploying and running an application

It’s time to deploy to Minikube! If Minikube isn’t already installed and running, install
Minikube using the instructions provided in appendix A.

 Once installed, open a new terminal window and run the following:

minikube start

WARNING If it’s the first time you’ve run Minikube, it could take some time
to download the necessary container images.

This will start Minikube with the default settings of 4 GB RAM and 20 GB HDD.

IMPORTANT Run eval $(minikube -p minikube docker-env) in each termi-
nal window that will be executing commands to build and deploy containers.

Time to deploy! Run the following:

mvn clean package -Dquarkus.kubernetes.deploy=true

This command generates the necessary container image, using whichever container
extension is installed, and deploys to the Kubernetes cluster specified in .kube/config.
The Minikube cluster will be present in /[HOME]/.kube/config if minikube start
was executed.

 If successful, the build should finish with messages similar to the following:

[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Deploying to
kubernetes server: https:/ /192.168.64.2:8443/ in namespace: default.

48 CHAPTER 2 Your first Quarkus application
[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Applied:
Service account-service.
[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Applied:
Deployment account-service.

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue for updates on a resolution. You can
work around the problem by removing the application first with kubectl
delete -f /target/kubernetes/minikube.yaml.

The log messages indicate the following Kubernetes resources that were deployed and
that were present within the kubernetes.yml generated earlier:

 Service
 Deployment

With Account service deployed, run minikube service list to see the details of all
services:

|-------------|-----------------|--------------|---------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	account-service	http/80	http:/ /192.168.64.2:30704
default	kubernetes	No node port	
kube-system	kube-dns	No node port	
-------------	-----------------	--------------	---------------------------

For account-service, the URL for use locally is http://192.168.64.2:30704.

NOTE Because Minikube binds to the IP address of the machine, using http:/ /
localhost:30704 will not access the service in Minikube.

To see the list of all accounts, open a browser to http://192.168.64.2:30704/accounts.
Test out the other endpoints Account service has to make sure they work as expected
when deployed to Minikube.

 That is a lot of information to digest. Let’s recap the key tasks we covered during
the chapter: how to generate a Quarkus project from https://code.quarkus.io/, using
live coding to improve development speed, writing tests for a Quarkus microservice,
building native executables to reduce image size and improve startup speed, and
what’s needed to deploy a Quarkus microservice to Kubernetes.

Summary
 You can open up https://code.quarkus.io/ in a browser and select the desired

extensions for an application, choosing the name of the application, before
generating the project code to download.

http://192.168.64.2:30704
http://192.168.64.2:30704/accounts
https://code.quarkus.io/
https://code.quarkus.io/

49Summary
 Start a microservice with mvn quarkus:dev to begin live coding with Quarkus.
Make changes to a JAX-RS resource in the IDE, and see immediate changes to
the running application when refreshing the browser.

 Add @QuarkusTest on a test class so that Quarkus packages the application for a
test in the same manner as the Quarkus Maven plugin. This makes the test as
near to an actual build as possible, improving the chances of catching any issues
within a test early.

 Generate a native executable of a Quarkus application with mvn clean install
-Pnative, with the native profile in pom.xml. The generated executable can
optimize memory usage and startup time in constrained or FaaS- (function as a
service) type environments, where services aren’t necessarily running for weeks
on end.

 Kubernetes needs resource definitions to know what is being deployed. When
adding the Kubernetes extension to a Quarkus application, the extension auto-
matically creates the JSON and YAML needed to deploy it to Kubernetes.

 Add quarkus-container-image-jib dependency to pom.xml for generating
the necessary container images for deployment to Kubernetes. Running mvn
clean package -Dquarkus.container-image.build=true will generate the image
for Kubernetes.

Part 2

Developing microservices

Part 2 delves into developing microservices with MicroProfile and Quarkus.
Whether it be reading configuration, using Panache to simplify database devel-
opment, consuming external microservices, securing microservices, document-
ing the available HTTP endpoints, implementing resilience within and between
microservices, or introducing reactive programming and bridging it into the
imperative world, part 2 covers them all in detail.

Configuring microservices
Chapter 2 introduced the Account service, which runs both locally and in Kuberne-
tes. It can run in many more than two contexts, as shown next. Each context varies,
having external services like a database, messaging system, and backend business
microservices. The Account service has to interact with each service in its context,
each with configuration requirements.

 Figure 3.1 represents how enterprises may use different databases depending
on the context. The developer uses a local desktop database during development,
like the H2 embedded database. Integration testing uses a low-cost database like
PostgreSQL. Production uses a large-scale enterprise-grade database like Oracle,
and staging mimics production as closely as possible, so it also uses Oracle. The
application needs a way to access and apply a configuration specific to each context

This chapter covers
 Externalized configuration

 MicroProfile Config

 Accessing application configuration

 Configuration sources

 Quarkus configuration features

 Using Kubernetes ConfigMaps and Secrets
53

54 CHAPTER 3 Configuring microservices
without having to recompile, repackage, and redeploy for each context. What is
required is externalized configuration, where the application accesses the configuration
specific to the context in which it is running.

3.1 MicroProfile Config architecture overview
MicroProfile Config enables externalized configuration, where the application can
access and apply configuration properties without having to modify the application
when a configuration changes. Quarkus also uses MicroProfile Config to configure itself
and receives the same context-specific configuration benefits. For example, Quarkus
may need to expose a web application on port 8080 locally, whereas in staging and
production, Quarkus may need to be configured for port 80 without modifying appli-
cation code.

 Figure 3.2 outlines the MicroProfile Config architecture that enables externalized
configuration.

ProductionStagingIntegrationDevelopment

Oracle databasePostgreSQL database Oracle database

Live production

environment

Integration testing on

integration test servers

H2 database

Unit testing on

local desktop

Test with production-like

environment

Figure 3.1 Example microservice contexts

CDI njectioni

Accessed

by
Config

Integer

Boolean

Array

Custom

Converted

by
System

parameter

Kubernetes

ConfigMap

Environment

variable

Property file

Stored in

Application
ConverterConfigSource

The application accesses the
configuration either using a
programmatic API or by using
dependency injection.

The config class
contains all converted
key-value pairs.

A converter converts
from a String to a
type-safe Java object.

A onfigSource storesC
properties as String
key-value pairs.

Programmatic API

@Inject
@ConfigProperty(

name = "greeting")
String greeting

String greeting =
config.get("greeting",

String.class)

Figure 3.2 MicroProfile Config architecture

55The Bank service
Properties are String key-value pairs defined in a configuration source. When the
application starts, Quarkus uses MicroProfile Config to load properties from all avail-
able configuration sources. As the properties are loaded, they are converted from
Strings to a Java data type and stored in a Config object. An application can then
access the properties from the Config object using either a programmatic API or an
annotation-based CDI injection API.

 This section offers an overview of the MicroProfile Config architecture, and the
remainder of this chapter details the components of this architecture most often used
by developers. MicroProfile Config offers some advanced capabilities like creating
converters for custom data types and building custom data sources, but these are
beyond the scope of this book.

3.2 Accessing a configuration
Applications access a configuration through the Config object. MicroProfile Config
includes two API styles for accessing the Config object. The following examples show
the two API styles by retrieving the value of the greeting property from the Config
object and storing it in a greeting variable:

 Programmatic API—The programmatic API is available for runtimes that do not
have CDI injection available. The following listing shows a brief example.

Config config = ConfigProvider.getConfig();

String greeting = config.getValue("myapp.greeting", String.class);

 CDI injection—Available to runtimes that support CDI injection. Because Quarkus
supports CDI injection (see the next listing), future examples will focus exclu-
sively on CDI injection.

@Inject
@ConfigProperty(name="myapp.greeting")
String greeting;

NOTE When injecting a property with @ConfigProperty, the MicroProfile
Config specification requires the use of the @Inject annotation. Quarkus,
with its focus on developer joy, makes the use of @Inject on @ConfigProperty
annotations optional to simplify code. The remainder of this chapter will use
the CDI approach exclusively.

3.3 The Bank service
With a background in externalized configuration and MicroProfile Config in place,
the next step is to apply them. Let’s begin by creating a microservice, the Bank service,
that uses the configuration APIs. The Bank service is basic, allowing the focus to

Listing 3.1 Programmatic API

Listing 3.2 CDI injection API example

Directly looks up the greeting using
config.getValue() programmatic API

Injects the value of myapp.greeting
into greeting using CDI injection

56 CHAPTER 3 Configuring microservices
remain on its configuration. It consists of the following configurable fields that are
accessed using MicroProfile Config and exposed through REST endpoints:

 name—String field containing the name of the bank
 mobileBanking—Boolean indicating support for mobile banking
 supportConfig—Java object with multiple configuration values for obtaining

bank support

In later chapters, we’ll extend the Bank service with additional capabilities, including
those that extend across to the Account service, like invoking remote REST end-
points, propagating security tokens, and tracing requests.

3.3.1 Creating the Bank service

In chapter 2, we used code.quarkus.io to generate an application. We use the
Quarkus maven plugin here as an alternative approach. See the following listing for
the Maven command line to create the Bank service Quarkus project.

mvn io.quarkus:quarkus-maven-plugin:1.13.4.Final:create \
 -DprojectGroupId=quarkus \
 -DprojectArtifactId=bank-service \
 -DclassName="quarkus.bank.BankResource" \
 -Dpath="/bank" \
 -Dextensions="resteasy-jsonb, \
 quarkus-hibernate-validator \
 quarkus-kubernetes, \
 docker, \
 minikube, \
 kubernetes-config"
cd bank-service

Extensions can be easily added at any time using the add-extensions Maven goal and
removed using the remove-extension goal. If running in development mode (mvn
quarkus:dev), Quarkus will automatically reload the application with the extension
changes included! (See the Maven Tooling Guide at https://quarkus.io/guides/
maven-tooling.) To improve the developer experience, the -Dextensions property
accepts shortened extension names. The shortened name must be specific enough to
select only one extension or the command will fail. The quarkus-resteasy-jsonb
extension, selected with the shortened “resteasy-jsonb” name, adds JSON-B serializa-
tion support to RESTEasy (JAX-RS).

Listing 3.3 Generating bank-service using Maven

Uses the Quarkus Maven plugin
create goal to generate the project

Names the Java class that
implements a REST resource

Specifies the generated
REST resource path

Specifies the list of
Quarkus extensions
used in this chapter

Enables the use of
validation annotations

Adds support for Kubernetes
deployment and Kubernetes YAML
generation, customizable through
configuration properties

Generates a container image
using a Docker registry

Customizes Kubernetes YAML
generation for Minikube deployment

Reads Kubernetes
ConfigMaps and Secrets

directly through the
Kubernetes API server

https://quarkus.io/guides/maven-tooling
https://quarkus.io/guides/maven-tooling
https://quarkus.io/guides/maven-tooling

57The Bank service
NOTE A Quarkus command line tool to create and manage Quarkus applica-
tions is in experimental status at the time of this writing. See the Quarkus com-
mand line interface guide (https://quarkus.io/guides/cli-tooling) to learn more.

To prepare for this chapter’s examples, execute the following steps:

 Remove the src/test directory and its subdirectories. This example will fre-
quently break the generated tests by intentionally modifying the output.

 To prevent potential port conflicts, stop the Account service started in the previ-
ous chapter if it is still running.

With the project created and prerequisite steps taken, start the application in devel-
oper mode with the command line shown next.

mvn quarkus:dev

With developer mode enabled, it’s time to start configuring the Bank service.

3.3.2 Configuring the Bank service name field

Beginning with the bank.name property, add the getName() method in BankResource
.java, shown in the next listing.

@ConfigProperty(name="bank.name")
String name;

@GET
@Path("/name")
@Produces(MediaType.TEXT_PLAIN)
public String getName() {
 return name;
}

Load the http:/ /localhost:8080/bank/name endpoint and notice the error page simi-
lar to that shown in figure 3.3.

 The error identifies a shortcoming in the code, and Quarkus places the source of
the error immediately at the top of the page. The code attempts to inject the value
of the bank.name property, but bank.name has not been defined. Quarkus, as required
by the MicroProfile Config specification, throws a DeploymentException when attempt-
ing to inject an undefined property.

Listing 3.4 Start Live Coding

Listing 3.5 Injecting and using bank name property

Injects the value of the
bank.name property
into name

The return value will
be in text format.

Returns the
injected name

https://quarkus.io/guides/cli-tooling

58 CHAPTER 3 Configuring microservices
We can address missing property values in the following three ways, and all are com-
monly used depending on the need:

 Default value—A fallback value that is general enough to apply in all situations
when a property is missing.

 Supply a value—Define the property and value within a property source.
 Java Optional—Use when a missing property value needs to be supplied by cus-

tom business logic.

Let’s look at the first two in more detail, and the third shortly after that.
 Assigning a default value is simple. Update the @ConfigProperty code.

@ConfigProperty(name="bank.name",
 defaultValue = "Bank of Default")

Reloading the URL will show the updated bank name.

Bank of Default

The second option, assigning the property a value, can be easily accomplished by add-
ing the bank.name property to the application.properties file.

bank.name=Bank of Quarkus

Reloading the URL will show the updated bank name, as shown in the next listing.

Listing 3.6 Assigning a property a default value

Listing 3.7 Output: Bank of Default

Listing 3.8 Defining bank.name property in application.properties

Figure 3.3 Browser output

Assigns a default
value, which is used when
bank.name is undefined

59Configuration sources
Bank of Quarkus

3.4 Configuration sources
A configuration source is a source of configuration values defined as key-value pairs.
application.properties is a configuration source, and Quarkus supports nearly a dozen
more. It is common for a microservice to consume its configuration from more than
one source. Figure 3.4 shows configuration sources and sample values used through-
out this chapter.

The same property is often intentionally defined in more than one configuration
source. If this is the case, which one takes precedence? MicroProfile Config uses a sim-
ple but effective approach for property conflict resolution. Each configuration source
is assigned an ordinal. The properties defined in a configuration source with a higher
ordinal take precedence over properties defined in a configuration source with a
lower ordinal. MicroProfile Config requires support for three configuration sources,
each with its own ordinal. Table 3.1 outlines the required MicroProfile Config config-
uration sources and additional Quarkus-supported configuration sources used in this
chapter and their ordinals.

Listing 3.9 Output: Bank of Quarkus

Table 3.1 Example MicroProfile Config sources

Source Ordinal Description

System properties 400 Required by MicroProfile Config. These are JVM
properties that override nearly all property sources by
using -Dproperty=value on the Java command line.

System properties

Bank service Ordinal: 400

quarkus.http.host=0.0.0.0

application.yaml

Ordinal: 254

bank.name=Bank of Kubernetes

Environment variables

Ordinal: 300

bank.name=Bank of Env

application.properties

Ordinal: 250

bank.name=Bank of Quarkus

Kubernetes ConfigMap

Ordinal: 270

bank.name=Bank of ConfigMap

Figure 3.4 Configuration sources

60 CHAPTER 3 Configuring microservices
NOTE MicroProfile Config requires support for the META-INF/microprofile-
config.properties file for application portability. Quarkus supports microprofile-
config.properties but defaults to application.properties. This book uses
application.properties, although microprofile-config.properties works equally
well.

Let’s put the configuration source ordinal values to the test, starting with environment
variables. Environment variables are a special case. Property names can contain dots,
dashes, and forward slash characters, but some operating systems do not support
them in environment variables. For this reason, these characters are mapped to char-
acters that are broadly supported by operating systems.

 MicroProfile Config searches for environment variables in the following order
(e.g., bank.mobileBanking):

1 Exact match—Search for bank.mobileBanking. If not found, move to the next
rule.

2 Replace each nonalphanumeric with _—Search for bank_mobileBanking. If not
found, move to the next rule.

3 Replace each nonalphanumeric with _ ; convert to uppercase—Search for BANK_
MOBILEBANKING.

Define a BANK_NAME environment variable as shown in the next code listing.

export BANK_NAME="Bank of Env"

Start Quarkus in developer mode (mvn quarkus:dev) to verify that the environment
variable overrides application.properties. Reloading the http:/ /localhost:8080/bank/
name URL will result in the output shown next.

Environment variables 300 Required by MicroProfile Config. Overrides most property
settings. Linux containers use environment variables as a
form of parameter passing.

Kubernetes ConfigMap client 270 Directly access a Kubernetes ConfigMap. Overrides values
in application.properties.

application.yaml 254 Store properties in YAML format in files with a .yaml or
.yml file extension.

application.properties 250 The default property file used by most Quarkus applications.

microprofile-config.properties 100 Required by MicroProfile Config. Useful for MicroProfile-
centric applications that prefer application portability
across MicroProfile implementations.

Listing 3.10 Defining BANK_NAME environment variable

Table 3.1 Example MicroProfile Config sources (continued)

Source Ordinal Description

61Configuration sources
Bank of Env

Next, start Quarkus as a runnable JAR to test two outcomes at once. The first is to test
the system property configuration source, and the second is to test externalized con-
figuration with a different packaging format.

 Restart the application with the system property as shown in the following two
code samples.

mvn -Dquarkus.package.type=uber-jar package

java "-Dbank.name=Bank of System" \
 -jar target/bank-service-1.0.0-SNAPSHOT-runner.jar

__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2021-05-10 14:27:25,976 INFO [io.quarkus] (main) bank-service
1.0.0-SNAPSHOT on JVM (powered by Quarkus 1.13.4.Final) started in 0.587s.
Listening on: http:/ /0.0.0.0:8080
2021-05-10 14:27:25,993 INFO [io.quarkus] (main) Profile prod activated.
2021-05-10 14:27:25,994 INFO [io.quarkus] (main) Installed features: [cdi,
resteasy]

Reload the http:/ /localhost:8080/bank/name endpoint, with the output shown next.

Bank of System

There are a couple of items to point out in this approach. First, Quarkus applications
can run as an uber-JAR file like many popular Java runtimes. Second, it started in just
over .5 seconds! Although uber-JARs have become a popular package format in recent
years, it is not container friendly. For this reason, Quarkus applications are rarely
packaged as uber-JARs. More on this later.

 Stop Quarkus and remove the BANK_NAME environment variable as follows.

unset BANK_NAME

Listing 3.11 Output: Bank of Env

Listing 3.12 Running the Bank service as a runnable .jar file

Listing 3.13 Startup output

Listing 3.14 Output: Bank of System

Listing 3.15 Removing environment variable

Packages the application
into a runnable uber-JAR.
Only the JAR file and the
JVM are needed to run
the application.Runs the application, specifying

bank.name as a system property

Quarkus running as an
uber-JAR started in

0.587 seconds!

62 CHAPTER 3 Configuring microservices
3.5 Configuring the mobileBanking field
To begin coding mobileBanking configuration, start Quarkus in developer mode. To
avoid exceptions, in this example we use an approach different from the earlier
defaultValue by introducing the use of the Java Optional type. Add the code in from
the next listing to BankResource.java.

@ConfigProperty(name="app.mobileBanking")
Optional<Boolean> mobileBanking;

@GET
@Produces(MediaType.TEXT_PLAIN)
@Path("/mobilebanking")
public Boolean getMobileBanking() {
 return mobileBanking.orElse(false);
}

mobileBanking is a Boolean, and properties are stored as strings. The string needs to
be converted to a Boolean data type for proper injection. As shown in figure 3.2, con-
verters in the MicroProfile Config architecture convert properties from strings to
primitive data types, including Booleans.

NOTE There is also an API for creating converters for custom data types.

MicroProfile Config supports the Java Optional data type for working with undefined
properties while avoiding a DeploymentException. In the getMobileBanking() method,
mobileBanking returns the configured value if defined, or false if left undefined.

 To test the code, load the /bank/mobilebanking endpoint to see an HTTP
response of false, this time without the need for exception handling. The value of
app.mobileBanking in application.properties, either true or false, will be the returned
value at the endpoint.

3.6 Grouping properties with @ConfigProperties
An alternative approach to individually injecting each property is to inject a group
of related properties into fields of a single class. Annotating a class with @Config-
Properties, as shown in the next listing, makes every field in the class a property.
Every field will have its value injected from a property source.

@ConfigProperties(prefix="bank-support")
public class BankSupportConfig {
 private String phone;

Listing 3.16 Add mobileBanking support to BankResource

Listing 3.17 BankSupportConfig.java: defining @ConfigProperties

Injects the value of
app.mobileBanking into
the mobileBanking field

With Optional types, MicroProfile
Config will not throw an exception
if a property is not defined.

If the mobileBanking field
is undefined, returns false

Annotating a class with
@ConfigProperties makes every
field a configuration property.

A configuration class should
be a plain old Java object

(POJO) with no business logic.

63Grouping properties with @ConfigProperties

t

t

e
 public String email;

 public String getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }
}

The optional prefix parameter specifies the property prefix. For example, bank-
support.email and bank-support.phone are the property names in this code snip-
pet. The prefix applies to all properties in the class.

TIP Import org.eclipse.microprofile.config.inject.ConfigProperties
and not io.quarkus.arc.config.ConfigProperties, which is deprecated.

The next listing adds code to BankResource.java to inject the configuration and to
return the injected property values at a JAX-RS endpoint.

@ConfigProperties(prefix="bank-support")
BankSupportConfig supportConfig;

@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/support")
public HashMap<String, String> getSupport() {
 HashMap<String,String> map = new HashMap<>();

 map.put("email", supportConfig.email);
 map.put("phone", supportConfig.getPhone());

 return map;
}

supportConfig.email can be added directly because email is a public field, whereas
supportConfig.phone is accessed through the getPhone() accessor method because
phone is a private field. A best practice is to choose a consistent approach for better
readability.

 With the BankSupportConfig class and JAX-RS endpoint defined, the last step is
defining the properties themselves. The following code snippet specifies the field
property values.

bank-support.email=support@bankofquarkus.com
bank-support.phone=555-555-5555

Listing 3.18 BankResource.java: using @ConfigProperties

Listing 3.19 Defining support properties in application.properties

Fields become properties regardless
of access modifiers. For example,
BankSupportConfig contains both
private and public fields.

Injects BankSupportConfig into
supportConfig. Quarkus does no
require the @Inject annotation
as a developer convenience, bu
it can be used when application
portability to other MicroProfil
runtimes is desired.

The return value (map)
will be converted to a
JSON representation.

Adds the properties
to the map

Applies the prefix
defined in listing 3.18

64 CHAPTER 3 Configuring microservices
When accessing the http:/ /localhost:8080/bank/support REST endpoint, the result
should look the same as that shown next.

{"phone":"555-555-5555","email":"support@bankofquarkus.com"}

3.7 Quarkus-specific configuration features
The focus so far has been on features defined by the MicroProfile Config specifica-
tion. Quarkus goes beyond the specification by adding Quarkus-specific configuration
features.

3.7.1 Quarkus configuration profiles

With profiles, Quarkus enables us to use multiple configurations within a single config-
uration source. Quarkus defines the following three built-in profiles:

 dev—Activated when in developer mode (e.g., mvn quarkus:dev)
 test—Activated when running tests
 prod—Activated when not in development or test modes. In chapter 4, we use

profiles to differentiate between production and development database config-
uration properties.

As shown in the next listing, the syntax for specifying a profile is %profile.key=value,
so the application.properties file defines the bank.name property three times.

bank.name=Bank of Quarkus
%dev.bank.name=Bank of Development
%prod.bank.name=Bank of Production

When running Quarkus in development mode, like mvn quarkus:dev, the value of
bank.name will be Bank of Development. When running in production, like java -jar
target/quarkus-app/quarkus-run.jar, the value of bank.name will be Bank of
Production. bank.name, with no profile prefix, is a fallback value used when a profile
value is not defined. For example, when running mvn quarkus:test in this example,
the %dev and %prod properties don’t apply. A %test.bank.name property is not
defined. So, the fallback value of Bank of Quarkus is used.

 We can also define custom profiles. Earlier in the chapter, we covered four con-
texts: development, integration, staging, and production. Because Quarkus inherently
supports development and production profiles, let’s create a custom staging profile
and update application.properties, as shown next.

Listing 3.20 Support endpoint JSON output

Listing 3.21 Example application.properties with profiles

The default property definition This property definition is
used when running Quarkus
in developer mode.

This property definition is used when the
application is started with java -jar or when

running a natively compiled binary.

65Quarkus-specific configuration features
%staging.bank.name=Bank of Staging

We can activate custom profiles by either setting the name of the quarkus.profile
system property (e.g., java -Dquarkus.profile=staging -jar myapp.jar) or by set-
ting the QUARKUS_PROFILE environment variable.

 Start Quarkus in developer mode with mvn compile quarkus:dev and access the
endpoint at http:/ /localhost:8080/bank/name. The output is shown next.

Bank of Development

To see the production profile output, see the following two code listings.

mvn package
java -jar target/quarkus-app/quarkus-run.jar

Bank of Production

3.7.2 Property expressions

Quarkus supports property expressions in application.properties, where an expres-
sion follows the ${my-expression} format. Quarkus resolves properties as it reads
them. Let’s modify the next code to use property expressions.

support.email=support@bankofquarkus.com
bank-support.email=${support.email}
bank-support.phone=555-555-5555

Reload the /bank/support endpoint to validate that the support email address matches
the code shown next.

{"phone":"555-555-5555","email":"support@bankofquarkus.com"}

Although support.email and bank-support.${support-email} are in the same con-
figuration source in this example, they do not have to be. In chapter 4, we use prop-
erty expressions for database credentials. We define the databases credentials and the
property expression that refers to the credentials in different configuration sources.

Listing 3.22 Add a staging profile bank.name property value

Listing 3.23 Quarkus developer mode output

Listing 3.24 Running the application in production mode

Listing 3.25 Production mode output from http:/ /localhost:8080/bank/name

Listing 3.26 Property expression example

Listing 3.27 Support endpoint JSON output

Adds support.email property
for the support email address

Updates bank-support.email
to use a property expression

66 CHAPTER 3 Configuring microservices
3.7.3 Quarkus ConfigMapping

Quarkus offers a custom API, @ConfigMapping, that groups properties together like
MicroProfile @ConfigProperties but is more flexible and feature-rich. @ConfigMapping
is so feature-rich that it could be an entire chapter by itself! This section demonstrates
two features: nested groups and property validation. The remainder of the features is
documented in the Quarkus ConfigMapping Guide (https://quarkus.io/guides/config-
mappings).

 A @ConfigMapping is defined as a Java interface as shown in the following code.

@ConfigMapping(prefix = "bank-support-mapping")
interface BankSupportConfigMapping {
 @Size(min=12, max=12)
 String phone();

 String email();

 Business business();

 interface Business {
 @Size(min=12, max=12)
 String phone();
 String email();
 }
}

With the @ConfigMapping created, the next step is to add the relevant properties to
application.properties as shown here.

bank-support-mapping.email=support@bankofquarkus.com
bank-support-mapping.phone=555-555-5555
bank-support-mapping.business.email=business-support@bankofquarkus.com
bank-support-mapping.business.phone=555-555-1234

TIP Nested groups can contain nested groups.

Last, add a new JAX-RS resource to BankResource.java to access the @ConfigMapping.

@Inject
BankSupportConfigMapping configMapping;

Listing 3.28 BankSupportConfigMapping.java

Listing 3.29 application.properties

Listing 3.30 BankResource.java

Uses the @ConfigMapping
annotation, and specifies a prefix

BankSupportConfigMapping is a Java
interface. Properties are defined as
method names, like phone() and email().

Unlike MicroProfile Config @ConfigProperties,
@ConfigMapping properties can be validated
using Bean Validation constraints.

References the Business interface
to load business properties

The nested group business defines a Java
interface with properties relevant to the
bank’s business customers.

The prefix, specified in listing 3.28,
is bank-support-mapping.

To access the nested
properties, append
the interface name

to the prefix.

Injects BankSupportConfigMapping
into configMapping

https://quarkus.io/guides/config-mappings
https://quarkus.io/guides/config-mappings

67Quarkus-specific configuration features

.

@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/supportmapping")
public Map<String, String> getSupportMapping() {
 HashMap<String,String> map = getSupport();

 map.put("business.email", configMapping.business().email());
 map.put("business.phone", configMapping.business().phone());

 return map;
}

Load http:/ /localhost:8080/bank/supportmapping in the browser to verify the prop-
erties are displayed. With a successful @ConfigMapping endpoint up and running, in
the following section we change gears a bit by explaining why Quarkus categorizes
properties as either runtime or build-time properties.

3.7.4 Run-time vs. build-time properties

As a MicroProfile Config implementation, Quarkus optimizes configuration for con-
tainers in general and Kubernetes in particular. Kubernetes is considered an
immutable infrastructure, where it restarts pods with a new application configuration
instead of modifying an application’s configuration within a running pod.

 Let’s do a quick Quarkus and traditional Java runtime configuration comparison.
Most Java runtimes scan the classpath while an application is starting. The runtime
scanning creates a dynamic deployment capability at the cost of increased RAM utili-
zation and increased startup time. It can take a significant amount of resources to con-
duct a classpath scan to build an in-memory model (metamodel) of what it has found.
Also, the application pays this resource penalty every time it starts. In a highly dynamic
environment like Kubernetes that encourages frequent incremental application
updates, this is quite often!

 Quarkus, on the other hand, considers its primary target environment to be con-
tainers in general and Kubernetes in particular. Quarkus allows extensions to define
two types of properties: build time and run time.

 Quarkus prescans and compiles as much code as possible when the application is
compiled (built), so it is static in nature when loaded and run. Build-time properties
influence compilation and how the metamodel (like annotation processing) is pre-
wired. Changing build-time properties at run time has no effect, like when running
java -jar myapp.jar. Their values, or the effect of their values, are already compiled
into myapp.jar. An example is a JDBC driver because developers typically know ahead
of time which drivers will be required.

 Run-time properties do not impact how code is prescanned and generated, but
they do influence run-time execution. Examples include port numbers like quarkus
.http.port=80 and database connection strings like quarkus.datasource.jdbc
.url=jdbc:postgresql://localhost:5432/mydatabase.

Properties are accessible at the
/bank/supportmapping endpoint.
This method is a near copy of the
/bank/support endpoint, extended
with the business support properties

Access the nested group by invoking the interface name
as a method. Invoking the business() method returns the
values of the properties defined in the Business interface.

68 CHAPTER 3 Configuring microservices
 The result of prescanning at build-time is lower run-time memory utilization—
consuming only tens of MB of RAM and faster startup time in tens of milliseconds as a
native binary and hundreds of milliseconds on the JVM.

 Each Quarkus extension guide (https://quarkus.io/guides) lists its configurable
properties. The “Quarkus: All Configuration Options” guide (https://quarkus.io/
guides/all-config) lists all configuration properties for all Quarkus extensions. In both
cases, a lock icon identifies properties fixed at build time.

 Figure 3.5 shows a mix of fixed properties and run-time-configurable properties
from the “Quarkus: All Configuration Options” guide.

For example, the Agroal database connection pooling extension “fixes” the quarkus
.datasource.jdbc.driver property at build time, but allows the quarkus.datasource
.jdbc.url property to change after compilation.

Figure 3.5 Build-time properties identified by the lock icon

https://quarkus.io/guides
https://quarkus.io/guides/all-config
https://quarkus.io/guides/all-config
https://quarkus.io/guides/all-config

69Configuration on Kubernetes
3.8 Configuration on Kubernetes
We have been configuring the Bank service throughout the chapter, and application
configuration for a Kubernetes deployment is nearly the same. The primary differ-
ence is the available configuration sources and how to utilize them.

3.8.1 Common Kubernetes configuration sources

Table 3.1 covers the configuration sources we use in this chapter, but let’s look at how
they are most commonly used in Kubernetes:

 System properties—Container images often start a runtime with predefined parame-
ters. A good example is requiring the use of team or corporate standards. The
corporate standard in this case is using the JBoss LogManager, shown next:

java -Djava.util.logging.manager=org.jboss.logmanager.LogManager \
 -jar /deployment/app.jar

 Environment variables—A container is a self-contained runnable software pack-
age. Environment variables are a formalized and popular parameter-passing
technique to configure an application packaged in a container. For example,
the Postgres official container image uses environment variables like POSTGRES_
USER to define a database user (https://hub.docker.com/_/postgres). This
approach to container parameter passing is popular in Kubernetes as well.

 Kubernetes ConfigMap—A ConfigMap is a first-class externalized configuration
concept for Kubernetes. A ConfigMap stores nonconfidential data as key-value
pairs. Think of a ConfigMap as an interface for accessing key-value pairs, and
more than one interface implementation exists. The most common implemen-
tation is mounting a ConfigMap as a storage volume within a Pod and is, there-
fore, accessible to all containers within the Pod. Quarkus uses a different
ConfigMap implementation. Instead of mounting the configuration file within
the container, the Quarkus ConfigMap extension takes a simpler approach by
directly accessing the properties from etcd using the Kubernetes REST-based
API server. Figure 3.6 compares the two different approaches.

 application.properties—Quarkus applications can still include an application
.properties file for sensible default values.

 Third-party configuration sources—Quarkus supports popular third-party configu-
ration sources that can run in Kubernetes, like the Spring Cloud Config Server,
Vault, and Consul.

https://hub.docker.com/_/postgres

70 CHAPTER 3 Configuring microservices
3.8.2 Using a ConfigMap for Quarkus applications

Quarkus can recognize ConfigMap files created from application.properties, applica-
tion.yaml, and application.yml files. Let’s create a ConfigMap out of an applica-
tion.yaml file so as not confuse it with the existing application.properties file. Create
the application.yaml in the top-level project directory, as shown in the next listing.

bank:
 name: Bank of ConfigMap

TIP Make sure to use two spaces before the name property because YAML is
space sensitive.

Next, create the Kubernetes ConfigMap, as seen in the next code sample.

kubectl create configmap banking \
 --from-file=application.yaml

Listing 3.31 Creating application.yaml

Listing 3.32 Creating a Kubernetes ConfigMap

Direct API server accessMounting ConfigMaps

Kubernetes cluster

Pod Pod

Kubernetes cluster

API

server

API

server

etcd etcd

ConfigMap Volume

application.properties

Banking

microservice

Banking

microservice

1. Run .kubectl create configmap

2. Write properties to etcd.configmap

4. API server requests properties from etcd.
5. API server returns properties.

3. Banking microservice requests properties when
booted.

1. Run .kubectl create configmap

2. Write properties to etcd.configmap

5. Mount properties as application.properties.
6. Microservice reads properties.

3. Volume created when Pod created.
4. Read properties from .configmap etc

Figure 3.6 ConfigMaps: mounting vs. API server direct access

Creates a ConfigMap
named banking

Populates the ConfigMap with the
contents of the application.yaml file

71Configuration on Kubernetes
With the ConfigMap created in Kubernetes, the next step is to configure the banking
service to access it, as shown in the application.properties file in the next listing.

%prod.quarkus.kubernetes-config.enabled=true
%prod.quarkus.kubernetes-config.config-maps=banking

TIP A ConfigMap can be viewed with kubectl get cm/banking -oyaml, edited
with kubectl edit cm/banking, and deleted with kubectl delete cm/banking.

With the ConfigMap created and the banking service configured to use it, deploy the
banking service to Kubernetes as shown in the following code listing.

mvn clean package -Dquarkus.kubernetes.deploy=true

To verify the output, run minikube service list to obtain the base URL.

|-------------|-----------------|--------------|---------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	banking-service	http/80	http:/ /192.168.64.8:31763
default	kubernetes	No node port	
kube-system	kube-dns	No node port	
-------------	-----------------	--------------	---------------------------

Load the URL in the browser, appending /bank/name. The full URL in this example
would be http://192.168.64.8:31763/bank/name.

 The output should be the contents of bank.name defined in the ConfigMap as
shown next.

Bank of ConfigMap

3.8.3 Editing a ConfigMap

Changing a ConfigMap requires a Pod restart. This boots a new Bank Service
instance that reloads property values from its configuration sources. The first step, of
course, is to edit the ConfigMap. Type kubectl edit cm/banking. See the next listing
for editing the ConfigMap.

Listing 3.33 Configuring Quarkus to use the banking ConfigMap

Listing 3.34 Deploying the updated application to Kubernetes

Listing 3.35 Example output of minikube service list

Listing 3.36 Output obtained from ConfigMap

Enables Kubernetes ConfigMap support. %prod specifies
that it applies only when running in production. The comma-

separated list of
ConfigMaps to use

The base URL, although the IP address and
port will likely differ from what is shown

http://192.168.64.8:31763/bank/name

72 CHAPTER 3 Configuring microservices
apiVersion: v1
data:
 application.yaml: |-
 bank:
 name: Bank of Quarkus (ConfigMap)
kind: ConfigMap
metadata:
 creationTimestamp: "2020-08-04T06:08:56Z"
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:application.yaml: {}
 manager: kubectl
 operation: Update
 time: "2020-08-04T07:09:30Z"
 name: banking
 namespace: default
 resourceVersion: "863163"
 selfLink: /api/v1/namespaces/default/configmaps/banking
 uid: 3eba39df-336d-4a83-b50f-24ff8b767660

Kubernetes offers various ways to restart the Pod; however, the simplest is to redeploy
the application as shown in the following code sample.

mvn clean package -Dquarkus.kubernetes.deploy=true

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue (https://github.com/quarkusio/
quarkus/issues/19701) for updates on a resolution. The problem can be
worked around by removing the application first with kubectl delete -f
/target/kubernetes/minikube.yaml.

3.8.4 Kubernetes Secrets

ConfigMaps are ideal for general property storage and access. However, some cases,
like using usernames, passwords, and OAuth tokens, require working with confiden-
tial properties. The Kubernetes solution for storing sensitive information is the Kuber-
netes Secret. By default, Secrets store data in Base 64–encoded format. While this makes
sensitive data unreadable to the eye, it can be easily decoded. From an application
perspective, Secrets look and feel a lot like ConfigMaps.

WARNING Like ConfigMaps, Secrets are stored in etcd. Any administrator
with access to etcd can decode Base 64–encoded Secrets. Kubernetes can

Listing 3.37 ConfigMap contents while editing

Listing 3.38 Redeploying the updated application to Kubernetes

Contents of
application.yaml

Edit this line to
reflect new value
of bank.name.

Ignore all the other content that is
automatically added by Kubernetes
when creating the ConfigMap. Do not
modify the content outside of the
application.yaml because the results
will vary depending on the edits.

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

73Configuration on Kubernetes
encrypt secret data at rest as well (https://kubernetes.io/docs/tasks/adminis-
ter-cluster/encrypt-data/).

Up to this point, properties have been stored mostly in files including applica-
tion.properties and application.yaml. ConfigMaps and Secrets can also store literals,
meaning key-value pairs, without having to define them within a file. See the next list-
ing for the code to create a database username and password using Secrets.

kubectl create secret generic db-credentials \
 --from-literal=username=admin \
 --from-literal=password=secret \
 --from-literal=db.username=quarkus_banking \
 --from-literal=db.password=quarkus_banking

Next, run the command in the next listing, and view the output in listing 3.41 to check
it is encoded.

kubectl get secret db-credentials -oyaml

- apiVersion: v1
 data:
 db.password: cXVhcmt1c19iYW5raW5n
 db.username: cXVhcmt1c19iYW5raW5n
 password: c2VjcmV0
 username: YWRtaW4=
 kind: Secret
 metadata:
...

With a Kubernetes Secret containing username and password properties, the next
step is to verify that these properties can be injected and used within the application.
We will use the database username and password later. Extend BankResource as shown
the in next listing.

@ConfigProperty(name="username")
String username;

@ConfigProperty(name="password")
String password;

Listing 3.39 Creating Kubernetes Secrets from literals

Listing 3.40 Getting the Secret contents

Listing 3.41 kubectl output

Listing 3.42 Access Secret from BankResource.java

Creates a Kubernetes Secret
named db-credentials

Stores username=admin as a
Base 64–encoded property Stores password=secret

as a Base 64–encoded
property

Stores db.username=
quarkus_banking as a
Base 64–encoded
property

Stores db.password=quarkus_banking
as a Base 64–encoded property

Encoded
database password

Encoded database
username

Encoded password

Encoded username

Injects the username
and password into the
BankResource fields

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

74 CHAPTER 3 Configuring microservices
@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/secrets")
public Map<String, String> getSecrets() {
 HashMap<String,String> map = new HashMap<>();

 map.put("username", username);
 map.put("password", password);

 return map;
}

Like a ConfigMap, applications need two Quarkus properties defined to access a Secret.
See the next listing.

%prod.quarkus.kubernetes-config.secrets.enabled=true
%prod.quarkus.kubernetes-config.secrets=db-credentials

Redeploy the application and open the /bank/secrets endpoint. The output should
look like the next listing.

{"password":"secret","username":"admin"}

Summary
This chapter covered a lot of ground. It introduced externalized configuration, Micro-
Profile Config, Quarkus-specific configuration features, and Kubernetes Config-
Maps. The top two takeaways from this chapter are that externalized configuration
is a microservice deployment necessity, and Quarkus uses MicroProfile Config and
custom configuration features to make Kubernetes deployments both practical
and seamless.

 Here are the key detailed points:

 Quarkus uses the MicroProfile Config API for application configuration and to
configure itself.

 MicroProfile Config uses configuration sources to abstract where configuration
values are stored.

 There is an order of precedence when loading property values from configura-
tion sources.

 Properties can be loaded individually using @ConfigProperty or in bulk using
@ConfigProperties or @ConfigMapping.

Listing 3.43 Enabling Secret access in application.properties

Listing 3.44 Browser output

Inserts the username and
password into a HashMap
and returns as a JSON string

Enables access to Secrets. %prod specifies that
it applies only when running in production. The comma-

separated list of
Secrets to include
for property lookup

75Summary
 Quarkus supports configuration profiles for loading context-dependent config-
uration values, such as for development, test, and production.

 Not all Quarkus properties can be modified at run time.
 Quarkus supports ConfigMaps by reading ConfigMap key-value pairs using the

Kubernetes API server.
 Applications can store and access sensitive information in Kubernetes Secrets.

Database access
with Panache
In chapter 2, we created the Account service to show how to develop JAX-RS end-
points with Quarkus. In this chapter, we take that Account service and add database
storage for the account data, instead of the data being held only in memory.

 Because most microservices will need to store some type of data, or interact with
data stored by another microservice, being able to read and store data to a database
is a key feature to learn and understand. Though stateless microservices are “a
thing,” and certainly a goal, if appropriate, for a microservice, there are also times
when denying the need to store data leads to unnecessary mental gymnastics, lead-
ing to a significantly more complex distributed system.

 To simplify the development of microservices requiring storage, Quarkus cre-
ated Hibernate ORM with Panache (Panache), an opinionated means of storing and
retrieving state from a database, heavily inspired by the Play framework, Ruby
on Rails, and JPA experience. Panache offers two different paths, depending on

This chapter covers
 What Panache is

 Simplifying JPA development with Panache

 Database testing with Panache and
@QuarkusTest
76

77Data sources
developer preference: active record and data repository. The data repository approach
will be familiar to those with experience in Spring Data JPA.

 Before getting into how Panache can simplify database development in a microser-
vice, we will alter the Account service to store data with the known JPA approach.
Showing how to store data with JPA will make it easier to compare the approaches,
both in terms of the amount of code and the different coding styles they facilitate.

4.1 Data sources
Before delving into modeling objects for persistence, we need to define a data source
for JPA, or Panache, to communicate with the database.

 The Agroal extension from Quarkus handles data source configuration and setup.
However, adding a dependency for the extension is unnecessary when being used for
JPA or Panache, because they have a dependency on Agroal. At a minimum, the type
of data source and database URL must be specified in configuration, and usually a
username and password, as follows:

quarkus.datasource.db-kind=postgresql
quarkus.datasource.username=database-user
quarkus.datasource.password=database-pwd
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/my_database

NOTE The username and password values shown here are just examples.
What they need to be set to depends on the database being connected to.

In this particular example, the configuration tells Quarkus that the application will be
connecting to a PostgreSQL database. The JDBC configuration indicates the URL of
the database.

 With the previous configuration, no data source name is mentioned. That is because
the configuration is defining the default data source that should be used by anything
needing a JDBC data source. Multiple data sources are created by setting a specific
name in the configuration. For instance, the next configuration creates a data source
called orders:

quarkus.datasource.orders.db-kind=postgresql
quarkus.datasource.orders.username=order-user
quarkus.datasource.orders.password=order-pwd
quarkus.datasource.orders.jdbc.url=jdbc:postgresql://localhost:5432/orders_db

Data sources can be created for many kinds of databases, but the more popular ones
are h2 (mostly for testing), mysql, mariadb, and postgresql.

 In addition to defining the data source configuration, a JDBC driver must be pres-
ent for Quarkus to create the data source and to communicate with the database! For
that, use a dependency such as the following:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-jdbc-postgresql</artifactId>
</dependency>

78 CHAPTER 4 Database access with Panache
The previous dependency matches the configuration from earlier that specified the
database type as postgresql. If a different database is used, the application would
require a different dependency, where the artifact is prefixed with quarkus-jdbc- and
suffixed with the database type name.

 Although it is possible to use the regular JDBC driver dependencies directly with
Quarkus, using the Quarkus-provided JBDC driver extensions allows them to be auto-
matically configured with Quarkus but also means they are guaranteed to work as part
of a native executable. At present, most JDBC driver dependencies won’t work inside a
native executable.

 Quarkus has a fantastic feature to help with testing when using a database. Adding
@QuarkusTestResource(H2DatabaseTestResource.class) onto a test class will start
an H2 in-memory database as part of the test startup. Being an in-memory database,
H2 is convenient for testing without needing external databases running. It needs the
quarkus-test-h2 dependency, and a JDBC driver as well, as shown here:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-test-h2</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-jdbc-h2</artifactId>
 <scope>test</scope>
</dependency>

Most applications don’t need to interact with a data source directly: they use another
layer on top to simplify the code. Now it’s time to modify the Account service from
chapter 2 to use JPA to store its data instead of storing it in memory.

4.2 JPA
Before we delve into what a Quarkus microservice that uses JPA looks like, look at fig-
ure 4.1, which shows the components involved and their interaction.

Though JPA may not be the favored approach to database interactions by many devel-
opers, it provides an easy migration path for anyone familiar with Java EE and Jakarta
EE development with JPA. In addition, it provides a good basis for comparison with
the Panache approaches covered later in the chapter.

Database

Entity

manager

Account

resource

Figure 4.1 Account service: JPA

79JPA

 As seen in figure 4.1, the AccountResource uses an EntityManager to interact with
the database. Whether it’s finding entities, creating new ones, or updating existing
ones, it all happens through the EntityManager instance.

 Let’s begin converting the Account service from chapter 2 to use JPA for data stor-
age. To add JPA to the Account service, the following dependencies need to be added:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-orm</artifactId>
</dependency>
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-jdbc-postgresql</artifactId>
</dependency>

quarkus-hibernate-orm adds the Hibernate implementation of JPA to the project,
and quarkus-jdbc-postgresql adds the JDBC driver for PostgreSQL discussed in sec-
tion 4.1.

 The updated code for the Account service from chapter 2 can be found in the
chapter4/jpa/ directory of the book source.

 Next is to modify the Account class to be a JPA entity.

@Entity
@NamedQuery(name = "Accounts.findAll",
 query = "SELECT a FROM Account a ORDER BY a.accountNumber")
@NamedQuery(name = "Accounts.findByAccountNumber",
 query = "SELECT a FROM Account a WHERE a.accountNumber = :accountNumber

ORDER BY a.accountNumber")
public class Account {
 @Id
 @SequenceGenerator(name = "accountsSequence", sequenceName =

"accounts_id_seq",
 allocationSize = 1, initialValue = 10)
 @GeneratedValue(strategy = GenerationType.SEQUENCE,
 generator = "accountsSequence")
 private Long id;

 private Long accountNumber;
 private Long customerNumber;
 private String customerName;
 private BigDecimal balance;
 private AccountStatus accountStatus = AccountStatus.OPEN;

 ...
}

Listing 4.1 Account

Indicates
the POJO is
a JPA entity

Defines a named query
to retrieve all accounts,
and orders the result by
accountNumber

Another named query, this
one finding accounts that
match accountNumber

Tells JPA that the id field is the
primary key of the database table

Creates a sequence
generator for the id
field, starting with the
number 10. Starting at
10 provides space to
import some records
on startup for testing.

Uses the sequence
generator from the
previous line to specify
where the generated
value comes from for
the primary key

When using JPA, the fields can be marked private instead of public.

80 CHAPTER 4 Database access with Panache
NOTE Getter and setter methods, general object methods, and equals and
hashcode methods from chapter 2 are excluded from the listing for clarity.

All constructors were removed from the Account class, because constructing instances
directly is not needed when using JPA.

 With the JPA entity defined, it’s now possible to use an EntityManager to interact
with the database for that entity. The first change to AccountResource is to inject an
instance of the EntityManager:

@Inject
EntityManager entityManager;

Now the entityManager instance can be used for retrieving all the accounts, as shown
in the next listing.

@GET
public List<Account> allAccounts() {
 return entityManager
 .createNamedQuery("Accounts.findAll", Account.class)
 .getResultList();
}

There was another named query for finding accounts by their number on Account,
shown in the following listing.

public Account getAccount(@PathParam("acctNumber") Long accountNumber) {
 try {
 return entityManager
 .createNamedQuery("Accounts.findByAccountNumber", Account.class)
 .setParameter("accountNumber", accountNumber)
 .getSingleResult();
 } catch (NoResultException nre) {
 throw new WebApplicationException("Account with " + accountNumber

+ " does not exist.", 404);
 }
}

Now for a look at how to add a record to the database with an EntityManager, see the
next listing.

Listing 4.2 AccountResource

Listing 4.3 AccountResource

Tells the entityManager to use the named
query "Accounts.findAll" defined on Account
in listing 4.1 and that the expected results

will be of the Account type

Converts the results from the database
into a List of Account instances

Uses the "Accounts.findBy-
AccountNumber"

named query

Passes the parameter into the query,
setting the name of the parameter in
the query and passing the value

For a given accountNumber, there should
only be one account, so requests the
return of a single Account instance.

To retain the exception handling added in chapter 2,
catches any NoResultException thrown when there is no
account and converts it to a WebApplicationException

81JPA

ing
ion
,
@Transactional
public Response createAccount(Account account) {
 ...
 entityManager.persist(account);
 return Response.status(201).entity(account).build();
}

Now that we’ve shown how to use named queries and persist a new entity instance,
how do we update an entity that already exists? Calling entityManager.persist()
throws an exception if it’s already persisted, so instead we use the following code.

@Transactional
public Account withdrawal(@PathParam("accountNumber") Long accountNumber,

String amount) {
 Account entity = getAccount(accountNumber);
 entity.withdrawFunds(new BigDecimal(amount));
 return entity;
}

For those that noticed, in listing 4.5, entityManager was not used. It wasn’t necessary
to call any methods on entityManager because retrieving the account instance had
already happened. Retrieving the account puts the instance into the persistence con-
text as a managed object. Managed objects can be updated at will and persisted in the
database when the transaction commits.

 If the method had a parameter of Account, instead of accountNumber and amount,
the instance would be unmanaged because it does not exist in the current persistence
context. Updating the balance would require the next code:

@Transactional
public Account updateBalance(Account account) {
 entityManager.merge(account);
 return account;
}

IMPORTANT When using unmanaged instances to update the state in a data-
base, it’s necessary to ensure that the state hasn’t been updated in the mean-
time. For example, the earlier method updating the balance requires the
account to have been retrieved previously. An update to the balance could
have occurred in another request between retrieval of the account and a
call to update the balance. We have means to mitigate this problem, such as

Listing 4.4 AccountResource

Listing 4.5 AccountResource

Tells Quarkus that a transaction should be created for this operation
A transaction is necessary here because any exception from within
the method needs to result in a “rollback” of any proposed database
changes before they’re committed. In this case it’s a new Account.

Calls persist with the Account
instance, adding it to the
persistent context for committ
to the database at the complet
of the transaction, in this case
createAccount()

Requires a transaction
during method execution

Retrieves an Account instance
using accountNumber

Withdraws the funds from
the account, modifying the
state of the entity

Merges the unmanaged
instance into the persistence
context, making it managed

82 CHAPTER 4 Database access with Panache
versioning JPA entities, but the use of entityManager.merge() needs to be
carefully considered.

With only the code changes done so far, it’s possible to run the application with Dev
Services from Quarkus. With Docker running, run mvn quarkus:dev. The application
will start a PostgreSQL database first. Dev Services are a recent addition to Quarkus
for extensions enabling the automatic creation of necessary containers when configu-
ration is not present for an external service. Details on how it works for data sources
can be found at https://quarkus.io/guides/datasource#dev-services.

 It’s time to write some tests! To be able to test with an H2 database but use Postgre-
SQL in a production deployment, we need to use configuration profiles. Here’s a snip-
pet of the needed application.properties:

quarkus.datasource.db-kind=postgresql
quarkus.datasource.username=quarkus_banking
quarkus.datasource.password=quarkus_banking
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost/quarkus_banking

%test.quarkus.datasource.db-kind=h2
%test.quarkus.datasource.username=username-default
%test.quarkus.datasource.password=
%test.quarkus.datasource.jdbc.url=jdbc:h2:tcp://localhost/mem:default

quarkus.hibernate-orm.database.generation=drop-and-create
quarkus.hibernate-orm.sql-load-script=import.sql

%test. is one of the configuration profiles introduced in chapter 3. Using the test
profile for H2 configuration enables a separate configuration for production and Live
Coding modes.

 The next code listing contains a test using the H2 database described in section 4.1.

@QuarkusTest
@QuarkusTestResource(H2DatabaseTestResource.class)
@TestMethodOrder(OrderAnnotation.class)
public class AccountResourceTest {
 @Test
 @Order(1)
 void testRetrieveAll() {
 Response result =
 given()
 .when().get("/accounts")
 .then()
 .statusCode(200)

Listing 4.6 AccountResourceTest

Defines the data source
configuration for production,
when building the application,
and for Live Coding

Defines the data source
configuration for tests

Overrides the password to empty,
because H2 does not require a password

Lets Quarkus know to drop any existing
tables, based on the defined entities, and
recreate them on startup

Indicates the SQL script
to import data into the
tables upon creation

Tells Quarkus to start an
H2 database prior to the
tests being executed

https://quarkus.io/guides/datasource#dev-services

83JPA
 .body(
 containsString("Debbie Hall"),
 containsString("David Tennant"),
 containsString("Alex Kingston")
)
 .extract()
 .response();

 List<Account> accounts = result.jsonPath().getList("$");
 assertThat(accounts, not(empty()));
 assertThat(accounts, hasSize(8));
 }
}

This test may look familiar from chapter 2. The only difference between the similar
test in chapter 2 and this one is that @QuarkusTestResource was added to the test
class. Another change is in verifying the customer names. Why are they different? In
chapter 2, all the data was in memory only, but now it’s within a database.

 To add records for testing, define an import.sql in the chapter4/jpa/src/main/-
resources directory, as shown here:

INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
 customerNumber) VALUES (1, 123456789, 0, 550.78, 'Debbie Hall', 12345);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (2, 111222333, 0, 2389.32, 'David Tennant', 112211);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (3, 444666, 0, 3499.12, 'Billie Piper', 332233);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (4, 87878787, 0, 890.54, 'Matt Smith', 444434);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (5, 990880221, 0, 1298.34, 'Alex Kingston', 778877);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (6, 987654321, 0, 781.82, 'Tom Baker', 908990);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (7, 5465, 0, 239.33, 'Alex Trebek', 776868);
INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (8, 78790, 0, 439.01, 'Vanna White', 444222);

Then inform Quarkus to use it by adding the following code to application.properties:

quarkus.hibernate-orm.sql-load-script=import.sql

With all that in place, from the chapter4/jpa/ directory, run the following:

mvn clean install

The test will execute using the H2 database, and if everything went well, the test passes!
 In developing the Account service to use JPA, we made no mention of a

persistence.xml file. Why is that? Everyone familiar with developing JPA code in Java
EE and Jakarta EE knows about creating a persistence.xml file to configure the driver,
data source name, and other JPA configuration elements.

84 CHAPTER 4 Database access with Panache
 With Quarkus, there’s no need for a persistence.xml. What is present in that file
either is performed automatically based on dependencies, has sensible defaults, or
can be customized with application.properties instead. Though it is possible to use a
persistence.xml file with Quarkus, we won’t demonstrate it.

 As an exercise for the reader, add additional test methods for the following:

 Creating an account
 Closing an account
 Withdrawing funds from an account
 Depositing funds into an account

By no means were all aspects of how to use JPA covered in this section—that was not
the intention. Although using JPA with Quarkus is an option, the purpose of this sec-
tion is to outline some key usages of JPA to provide a means of comparing how data
access with Panache differs.

4.3 Simplifying database development
Using JPA for accessing a database is only one approach of many. Quarkus also
includes the ability to choose the active record or data repository approaches to man-
aging state. Both of these approaches are part of the Panache extensions to Quarkus.
Panache seeks to make writing entities trivial and fun with Quarkus.

 Though we talk about data in the following sections, Panache is emerging as a
mini brand within Quarkus for simplification. In addition to simplifying entity devel-
opment, Panache also has experimental functionality for generating RESTful CRUD
endpoints, saving the time it takes to churn out the boilerplate JAX-RS definitions.
See https://quarkus.io/guides/rest-data-panache for all the details.

4.3.1 Active record approach

Let’s take a look at how the active record pattern differs from JPA. As seen in figure 4.2,
all interactions occur through the entity itself. As objects usually hold data that needs
to be stored, the active record approach puts the data access logic into the domain
object directly. The active record approach rose to popularity with Ruby on Rails and
the Play framework.

Database

Database

Entity

manager

Active record

JPA

Account

resource

Account

resource

Account Figure 4.2 Account
service: active record

https://quarkus.io/guides/rest-data-panache

85Simplifying database development
In 2002, Martin Fowler outlined the approach in his book Patterns of Enterprise Applica-
tion Architecture (https://www.martinfowler.com/books/eaa.html). His definition can
be found on his site, https://www.martinfowler.com/eaaCatalog/activeRecord.html.

 Now to work on the implementation! All the code for this section can be found in
the /chapter4/active-record/ directory of the book source code.

 Dependencies need to be different, because we need the Panache version, not the
regular Hibernate version. For that, add the following dependency:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-orm-panache</artifactId>
</dependency>

Because a JDBC driver is needed, the same PostgreSQL dependency used with JPA
can be added.

 For the entity, that’s different because Panache is used, as shown in the next
code listing.

@Entity
public class Account extends PanacheEntity {
 public Long accountNumber;
 public Long customerNumber;
 public String customerName;
 public BigDecimal balance;
 public AccountStatus accountStatus = AccountStatus.OPEN;

 public static long totalAccountsForCustomer(Long customerNumber) {
 return find("customerNumber", customerNumber).count();
 }

 public static Account findByAccountNumber(Long accountNumber) {
 return find("accountNumber", accountNumber).firstResult();
 }
 ...
}

NOTE equals() and hashCode() methods are excluded for brevity. The full
code can be viewed in the chapter 4 book source code.

Note the following key points in listing 4.7:

 @Entity is still used to indicate the class is a JPA entity.
 Getter and setter methods for the fields are not required. During build time,

Panache generates the necessary getter and setter methods, replacing field
access in code to use the generated getter and setter methods.

 Definition of id, the primary key, is handled by PanacheEntity. If there was a need
to customize the id configuration, we could do it with the usual JPA annotations.

Listing 4.7 Account

Account extends PanacheEntity,
which provides the data access
helper methods like persist().

The fields on
Account need
to be public.

Custom static methods can be added to
enhance those provided with PanacheEntity.

https://www.martinfowler.com/books/eaa.html
https://www.martinfowler.com/eaaCatalog/activeRecord.html

86 CHAPTER 4 Database access with Panache

e
.

Given the data access methods are present on Account, interacting with it must be
quite different, as shown next.

public class AccountResource {

 @GET
 public List<Account> allAccounts() {
 return Account.listAll();
 }

 @GET
 @Path("/{acctNumber}")
 public Account getAccount(@PathParam("acctNumber") Long accountNumber) {
 return Account.findByAccountNumber(accountNumber);
 }

 @POST
 @Transactional
 public Response createAccount(Account account) {
 account.persist();
 return Response.status(201).entity(account).build();
 }

 @PUT
 @Path("{accountNumber}/withdrawal")
 @Transactional
 public Account withdrawal(@PathParam("accountNumber") Long accountNumber,

String amount) {
 Account entity = Account.findByAccountNumber(accountNumber);
 entity.withdrawFunds(new BigDecimal(amount));
 return entity;
 }
}

For testing, AccountResourceTest from the JPA example earlier can be copied for use
with the active record approach. Because Account no longer has methods for retriev-
ing or setting values, the only necessary changes are to provide it direct field usage.

 As before, the tests use an in-memory H2 database, and import the data on startup
from import.sql. The application-properties doesn’t need to change compared with
the JPA version.

 In the /chapter4/active-record/ directory, run the next code:

mvn clean install

If all went well, all the tests pass.
 To briefly recap, the active record approach with Panache integrates all data access

into the JPA entity, while taking care of boilerplate tasks such as defining the primary
key. PanacheEntity provides simplified methods that don’t require deep SQL knowl-
edge to construct queries, enabling developers to focus on the necessary business logic.

Listing 4.8 AccountResource

Uses the static listAll() from the
PanacheEntity superclass of Account
to retrieve all the accounts

Calls the custom static
method from listing
4.7, retrieving an
Account instance by
the accountNumber

Adds a new Account instanc
into the persistence context
On transaction commit, the
record will be added to the
database.

When modifying an existing instance, it will
be persisted on transaction completion.

87Simplifying database development
4.3.2 Data repository approach

Now on to the last approach, data repository.
 Figure 4.3 uses AccountRepository as the intermediary for data access methods.

There are some similarities with EntityManager from JPA, but also key differences.
The Spring Framework popularized the data repository approach over the last
decade or more.

Martin Fowler also outlined this approach, with active record, in Patterns of Enterprise
Application Architecture (https://www.martinfowler.com/books/eaa.html). On his website,
Fowler explains the approach: https://martinfowler.com/eaaCatalog/repository.html.

 So what’s needed to implement the data repository approach? Exactly what was
needed for the active record approach, as shown here:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-orm-panache</artifactId>
</dependency>

One benefit of both approaches being in the same dependency is it’s quick to switch
between them, or even use each approach in different situations in the same application.

 The Account entity for the data repository approach is shown in the following
listing.

@Entity
public class Account {
 @Id
 @GeneratedValue
 private Long id;

 private Long accountNumber;
 private Long customerNumber;

Listing 4.9 Account

Database

Database

Database

Entity

manager

Account

repository

Data repository

Active record

JPA

Account

resource

Account

resource

Account

resource

Account

Figure 4.3 Account
service: data repository

https://martinfowler.com/eaaCatalog/repository.html
https://www.martinfowler.com/books/eaa.html

88 CHAPTER 4 Database access with Panache

a
data

m

 private String customerName;
 private BigDecimal balance;
 private AccountStatus accountStatus = AccountStatus.OPEN;

 ...
}

NOTE Getter and setter methods, general object methods, and equals and
hashcode methods are excluded from the listing for brevity.

Listing 4.9 is very similar to listing 4.1 for JPA. The main difference is there are no
@NamedQuery annotations, and the default ID-generation process for the primary key
is not the same.

 Take a look at the repository class, shown in the following code listing.

@ApplicationScoped
public class AccountRepository implements PanacheRepository<Account> {
 public Account findByAccountNumber(Long accountNumber) {
 return find("accountNumber = ?1", accountNumber).firstResult();
 }
}

As with the active record approach, a parent class includes the convenience methods
for finding and retrieving instances.

 But how different is the JAX-RS resource? See the next example.

public class AccountResource {

 @Inject
 AccountRepository accountRepository;

 @GET
 public List<Account> allAccounts() {
 return accountRepository.listAll();
 }

 @GET
 @Path("/{acctNumber}")
 public Account getAccount(@PathParam("acctNumber") Long accountNumber) {
 Account account = accountRepository.findByAccountNumber(accountNumber);
 return account;
 }

 @POST
 @Transactional
 public Response createAccount(Account account) {
 accountRepository.persist(account);

Listing 4.10 AccountRepository

Listing 4.11 AccountResource

@ApplicationScoped tells the container
that only one instance should exist.

Implements PanacheRepository
for all the data access methods

Defines
custom
 access
ethod

Injects an
AccountRepository instance
for data access operations

Retrieves all the
accounts with listAll()

Uses the custom data access
method on AccountRepository

Persists a new
Account instance
into the database

89Simplifying database development
 return Response.status(201).entity(account).build();
 }

 @PUT
 @Path("{accountNumber}/withdrawal")
 @Transactional
 public Account withdrawal(@PathParam("accountNumber") Long accountNumber,

String amount) {
 Account entity = accountRepository.findByAccountNumber(accountNumber);
 entity.withdrawFunds(new BigDecimal(amount));
 return entity;
 }
}

The AccountResourceTest class can be copied from the JPA example, because both
approaches use entities that have getters and setters.

 The tests can be run from the /chapter4/data-repository/ directory with the fol-
lowing line:

mvn clean install

4.3.3 Which approach to use?

Through the previous sections, we have outlined different approaches for JPA, active
record, and data repository. Which one is the best?

 As with most things dealing with software, it depends. The key points of each
approach follow:

 JPA
– Easy migration for existing Java EE and Jakarta EE applications.
– Requires creation of primary key field; not provided by default.
– @NamedQuery annotations must be placed on an entity or super class.
– Queries require actual SQL, as opposed to shortcut versions that are used in

active record or data repository.
– Non-primary key search requires SQL or @NamedQuery.

 Active record
– Doesn’t require getters and setters for all fields.
– Coupling the data access layer into an object makes testing it without a data-

base difficult. The flip side is that testing with a database is a lot easier than
in the past.

– Another aspect of coupling, it breaks the single responsibility principle and sepa-
ration of concerns.

 Data repository
– Requires creation of a primary key field; not provided by default.
– Clearly separates data access and business logic, enabling them to be tested

independently.
– Without custom methods, it’s an empty class. For some, this can seem unusual.

Updates the balance on the account without
needing to call accountRepository.persist(); it’s

done automatically when the transaction completes.

90 CHAPTER 4 Database access with Panache
These are some key differences shown through the previous sections; there are likely
many more. When it comes down to it, the chosen approach will depend on the
requirements of an application and personal choice of the developer, based on their
previous experience.

 It’s worth noting that no one approach is wrong, or right—it all depends on per-
sonal perspective and preference.

4.4 Deployment to Kubernetes
Now that the Account service has a database, it’s time to deploy it to Kubernetes to see
it in action. First, though, we must deploy a PostgreSQL instance that can be used by it.

4.4.1 Deploying PostgreSQL

We need to deploy the following pieces to Kubernetes for setting up a PostgreSQL
database:

1 A Kubernetes Secret with encoded username and password. This secret will be
used in creating the PostgreSQL database and in the data source configura-
tion in Quarkus.

2 PostgreSQL database deployment.

First, verify Minikube is already running, and if it isn’t, run the following:

minikube start

IMPORTANT As mentioned in previous chapters, ensure that eval $(mini-
kube -p minikube docker-env) is run in each terminal window that will be
pushing a deployment to Minikube, because it uses Docker inside Minikube
for building the image.

Once Minikube is running, create the Secret as shown next:

kubectl create secret generic db-credentials \
--from-literal=username=quarkus_banking \
--from-literal=password=quarkus_banking

NOTE If the Minikube instance being used is the same as in chapter 3, you willl
need to execute kubectl delete secret generic db-credentials first.

With the Secret created, the PostgreSQL database instance can be started. Doing that
requires a Kubernetes Deployment and Service.

 Change to the directory /chapter4/ and run the next code:

kubectl apply -f postgresql_kubernetes.yml

Creates a new Secret with
the name db-credentials

Adds username with the plain
text value of quarkus_banking.
The value will be encoded as
part of creating the Secret.

Also sets a password
in the Secret

91Deployment to Kubernetes
If successful, the terminal contains messages stating the Deployment and Service were
created. With a PostgreSQL database running, it’s time to package and deploy a ser-
vice to use it.

4.4.2 Package and deploy

Any of the examples from the chapter could be used to show it working in Kuberne-
tes, but in this instance, we use the active record example.

 Before packaging the application, we need to make a few changes because it will
be reading Kubernetes Secrets for database configuration. Add a new dependency in
pom.xml as follows:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-kubernetes-config</artifactId>
</dependency>

This dependency enables an application to read Kubernetes ConfigMaps and Secrets.
For it to know where the information is to read, the following additional properties
are needed:

%prod.quarkus.kubernetes-config.enabled=true
%prod.quarkus.kubernetes-config.secrets.enabled=true
%prod.quarkus.kubernetes-config.secrets=db-credentials

NOTE The %prod. prefix ensures the settings are not used during develop-
ment and testing.

As well as the previous additions to application.properties, we need to modify the
datasource information for Kubernetes, as shown here:

%prod.quarkus.datasource.username=${username}
%prod.quarkus.datasource.password=${password}
%prod.quarkus.datasource.jdbc.url=jdbc:postgresql://postgres.default:5432/

quarkus_banking

These are the only changes needed to have the database credentials read from a
Secret and the PostgreSQL database used within Kubernetes. With the changes made,
it’s time to build the image and deploy it to Kubernetes as follows:

mvn clean package -Dquarkus.kubernetes.deploy=true

Enables the extension

Tells the extension that
Secrets will be read

Lists the Secrets to be read; in
this case it’s just db-credentials.

Uses variables for the username
and password because they will
be retrieved from the Secret

Updates the URL to be in the format of
"<servicename>.<namespace>:<port>/<database>".
In this example, postgres is the service name, and the
namespace is default.

92 CHAPTER 4 Database access with Panache
With the Account service deployed, run minikube service list to see the details of
all services, as shown here:

|-------------|------------------|--------------|---------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	account-service	http/80	http://192.168.64.2:30704
default	kubernetes	No node port	
default	postgres	http/5432	http://192.168.64.2:31615
kube-system	kube-dns	No node port	
-------------	------------------	--------------	---------------------------

Accessing http://192.168.64.2:30704/accounts in a browser will now retrieve all the
accounts in the PostgreSQL database running in Kubernetes.

 Throughout the chapter, each example has shown the different approaches we can
take for writing database code with Quarkus, beginning with JPA for easy migration to
Quarkus, before progressing to cover the enhancements to Hibernate ORM that
Panache brings through use of active record or data repository approaches.

Summary
 By adding the data source properties for db-kind, username, password, and

jdbc.url, along with the quarkus-jdbc-postgresql dependency, a Quarkus
application can connect with a PostgreSQL database.

 Use @NamedQuery on a JPA entity class to define custom queries for use with the
EntityManager.

 Hibernate ORM with Panache offers simplified approaches to JPA with either
the active record or data repository approaches.

 Add the quarkus-hibernate-orm-panache dependency, and use Panache-
Entity as a super class for JPA entity classes to use the active record approach.
The active record approach provides common methods for use when interact-
ing with a database, simplifying the data access layer in an application.

 When using the data repository approach, create a repository class that imple-
ments PanacheRepository to hold custom data access methods, such as queries
equivalent to @NamedQuery on JPA entities.

 Define a PostgreSQL deployment and service in Kubernetes, and create the
resources in a Kubernetes environment using Minikube.

http://192.168.64.2:30704/accounts

Clients for consuming
other microservices
Although many microservices require only a database or alternative data services,
or process a request within their own process, sometimes a microservice needs to
communicate with other microservices to fulfill a request. When shifting from mono-
liths to microservices, the tendency is toward smaller and leaner microservices,
which necessitates more of them. More importantly, many of those smaller micro-
services will need to communicate with each other to complete a task previously
achieved with a single method calling other services inside a monolith. All those
previously “in-process” method calls are now external microservice invocations.

 This chapter introduces the MicroProfile REST Client and describes how
Quarkus implements the specification to provide a type-safe means of interacting
with external services. Many possible approaches exist, including Java’s networking
library or third-party libraries like OkHttp and Apache HttpClient. Quarkus

This chapter covers
 MicroProfile REST Client specification

 Using type-safe interfaces to consume external
microservices

 Customizing the content of headers on the
request
93

94 CHAPTER 5 Clients for consuming other microservices
abstracts away the underlying HTTP transport construction from the developer,
enabling them to focus on the task of defining the external service and interacting
with the service as if it were a local method invocation.

 Figure 5.1 represents a microservice calling another microservice, but it is also the
basis for the examples used throughout the chapter. The examples for this chapter
follow from the previous banking domain examples. The Transaction service calls the
Account service to retrieve the current balance to ensure the requested transaction
doesn’t result in an overdrawn account.

The Account service in this chapter is not the same as the version seen in earlier chap-
ters. Because this chapter’s focus is on the calling microservice, and not the called
microservice, the Account service API will expose methods only to retrieve the current
balance and update it.

NOTE We won’t show the Account service for this chapter because it’s a
derivative of that in earlier chapters. Take a look at the code for chapter 5, in
the /chapter5/account-service/ directory, to see how it was implemented.

5.1 What is MicroProfile REST Client?
MicroProfile REST Client is one of the specifications from Eclipse MicroProfile
(https://microprofile.io/). The specification defines how a representation of an exter-
nal service with Java interfaces ensures interactions with that service occur in a type-safe
manner. What that means is we use the Java language and compilation process to ensure
the code that interacts with an external service is free from obvious errors.

 When interacting with services utilizing one of the many HTTP libraries or the
JAX-RS client library, it’s necessary to perform a lot of casting between objects, trans-
formations from JSON to POJOs, and many other steps that don’t rely on the Java lan-
guage to ensure correctness. Though workable, this leaves code susceptible to failures
due to problems being discovered not during compilation but only through testing or
even production usage. Using a type-safe approach with MicroProfile REST Client
enables us to discover these types of problems during compilation and not much later
during execution.

Transactions

microservice

Accounts

microservice

Data

Data

Figure 5.1 Banking microservice consumption

https://microprofile.io/

95Service interface definition
 For many years the RESTEasy project (https://resteasy.github.io/) had a custom
means of defining external services with Java interfaces. However, because it was included
within only one JAX-RS implementation, other JAX-RS implementations didn’t have
such a feature. Building on the RESTEasy project’s work, the Thorntail project (https://
thorntail.io/) added a CDI layer on top of the programmatic builder from RESTEasy.

 MicroProfile REST Client defines a specification to combine the ideas from
RESTEasy and Thorntail for the Eclipse MicroProfile platform. Many aspects within
the specification align it with how JAX-RS defines RESTful endpoints.

 Some of the more important features of the specification include the following:

 Including additional client headers onto any external request
 Following responses redirecting to another URL
 Calling external services through an HTTP proxy
 Registering custom providers for filtering, message body manipulation, inter-

ceptors, and exception mappers
 Automatic registration of JSON-P and JSON-B providers
 Configuring SSL for REST client endpoints

Having covered the origins of the specification and its purpose, it’s now time to begin
using it with Quarkus.

5.2 Service interface definition
For the Transaction service to be able to communicate with the Account service, it
needs to know what methods are available, their parameters, and their return types.
Without that information, the Transaction service doesn’t know the API contract of
the Account service.

 Many libraries are available that support communicating with other services via
HTTP and other protocols, including classes within the JDK itself. However, taking such
an approach requires more complex code to handle setting the appropriate content
type, setting any headers, and handling response codes for different situations. Let’s
take a look at a service definition for AccountService in the next code listing.

@Path("/accounts")
@RegisterRestClient
@Produces(MediaType.APPLICATION_JSON)
public interface AccountService {
 @GET
 @Path("/{acctNumber}/balance")
 BigDecimal getBalance(@PathParam("acctNumber") Long accountNumber);

 @POST
 @Path("{accountNumber}/transaction")

Listing 5.1 AccountService

Defines the path of the service,
excluding the base URL portion Indicates that the interface

should have a CDI bean created
that can be injected into classes

Sets all methods of the
service to return JSON

Method for retrieving the
account balance, with HTTP

method and Path annotations

https://resteasy.github.io/
https://thorntail.io/
https://thorntail.io/
https://thorntail.io/

96 CHAPTER 5 Clients for consuming other microservices
 void transact(@PathParam("accountNumber") Long accountNumber,
BigDecimal amount);

}

Looking at the interface definition, it likely seems very familiar, and there’s a good
reason for that. The way in which a Java interface defines the service deliberately
uses the well-known JAX-RS annotations for a class and its methods. Using the same
JAX-RS annotations on a Java interface to define a remote service as is used for creat-
ing a JAX-RS resource class means developers are already familiar with all the annota-
tions used. If defining a service with a Java interface used completely different
annotations, or an entirely different way to define the service, developers would find it
much more difficult to learn and use.

 The only difference in the Java interface compared to what a JAX-RS resource
would contain is the @RegisterRestClient annotation. This annotation tells Quarkus
that a CDI bean that contains the methods on the interface needs to be created.
Quarkus wires up the CDI bean such that calls to the interface methods result in
HTTP calls to the external service.

 Listing 5.1 utilizes synchronous response types. Asynchronous types such as
CompletionStage, Future, and CompletableFuture will be discussed in 5.3.

 Let’s take a look at how the execution flow works. In figure 5.2, the dotted boxes
represent separate process boundaries. It doesn’t matter whether it is a physical
machine or Kubernetes Pod.

The flow of execution when calling the Account service in figure 5.2 follows:

 The JAX-RS resource calls a method on the AccountService interface, which
executes the call on the CDI bean that implements the interface.

 The CDI bean, representing the AccountService interface, configures the
HTTP client with the URL, HTTP method type, content types, headers, or any-
thing else needing to be set on the HTTP request.

 The HTTP client issues the HTTP request to the external Account service and
handles the response that’s returned.

Method for transacting on an account,
with HTTP method and Path annotations

1. Call method on REST
interface.

2. HTTP client is
configured and invoked.

3. HTTP request sent
to external service.

Account

interface

Resource

Transactions microservice

HTTP

client

Accounts

microservice

Figure 5.2 Account transaction service: REST client call

97Service interface definition
One thing that has not been mentioned so far is how to define the URL where the
external service exists. As with many things, we can do this in several ways.

 When @RegisterRestClient is present, we can set the URL directly on the annota-
tion with the baseUri parameter. Though this is not a great way to set it for production,
because URLs can change, it’s an easy way to configure it to get started. With the baseUri
parameter set on the annotation, it’s still possible to override the value with configura-
tion. The configuration key for setting the URL is {packageName}.{interfaceName}/
mp-rest/url, which can be added to the application.properties file with the URL of
the external service.

 For listing 5.1, the configuration key is io.quarkus.transactions.Account-
Service/mp-rest/url. Such a long key can be difficult to remember and is open to mis-
takes. To simplify the configuration key, set the configKey parameter of @Register-
RestClient. For instance, define the configKey on the interface as follows:

@RegisterRestClient(configKey = "account-service")
public interface AccountService {
}

This method makes the configuration key account-service/mp-rest/url, making it
less prone to errors.

 Having covered how to create a service definition for any external service, let’s
actually use it in the Transaction service.

5.2.1 CDI REST client

The previous section discussed how Quarkus automatically creates a CDI bean from
the Java interface when @RegisterRestClient is present. See the next listing to see
how it’s used.

public class TransactionResource {
 @Inject
 @RestClient
 AccountService accountService;

 @POST
 @Path("/{acctNumber}")
 public Response newTransaction(@PathParam("acctNumber") Long accountNumber,
 BigDecimal amount) {
 accountService.transact(accountNumber, amount);
 return Response.ok().build();
 }
}

Listing 5.2 TransactionResource

To inject the CDI bean for the interface, it is necessary to
explicitly use @Inject. Though it’s not required for other
situations, it is when injecting a REST client interface.

CDI qualifier telling Quarkus to inject a type-safe
REST client bean matching the interface

The REST client
interface representing
the external service

Calls the external
service method

98 CHAPTER 5 Clients for consuming other microservices
Being able to call an external service with a single method call, as if it was a local ser-
vice, is extremely powerful and simplifies making HTTP calls in the code. For devel-
opers familiar with Java EE, this looks very similar to remote EJBs. In many respects, it
is very similar, except that instead of communicating with Remote Method Invocation
(RMI), it uses HTTP.

 With the interface defined, and a JAX-RS resource method that uses it, now it’s
time to test the REST Client.

MOCKING THE EXTERNAL SERVICE

When unit testing, setting up and running the service to be called is far from ideal. To
verify some basic operation of the Transaction service, it’s necessary to use a server to
mock the responses that would be received from the Account service. One option is to
create a server that handles a request and provides an appropriate response, but
thankfully there’s a handy library that offers that exact functionality, WireMock.

 The first step is to add the required dependency, as follows:

<dependency>
 <groupId>com.github.tomakehurst</groupId>
 <artifactId>wiremock-jre8</artifactId>
 <scope>test</scope>
</dependency>

To assist in setting up an environment for testing, Quarkus provides Quarkus-
TestResourceLifecycleManager. Implementing QuarkusTestResourceLifecycle-

Manager enables us to customize what happens during start() and stop() during
the life cycle of a test. Any implementation is applied to a test with @Quarkus-
TestResource. One is needed to interact with the WireMock server, as shown in the
next listing.

public class WiremockAccountService implements
QuarkusTestResourceLifecycleManager {

 private WireMockServer wireMockServer;

 @Override
 public Map<String, String> start() {
 wireMockServer = new WireMockServer();
 wireMockServer.start();

 stubFor(get(urlEqualTo("/accounts/121212/balance"))
 .willReturn(aResponse()
 .withHeader("Content-Type", "application/json")
 .withBody("435.76")
));

Listing 5.3 WiremockAccountService

Implements QuarkusTestResourceLifecycleManager
to respond to the start and stop events of the test

Stores the WireMockServer
instance to enable stopping
it during test shutdown

Creates the WireMockServer,
and starts it

Provides a stub for responding to the HTTP GET method for
retrieving an account balance. Because it’s a mock server, the account number

the server responds to needs to be hardcoded and used in the request from a test.

99Service interface definition
 stubFor(post(urlEqualTo("/accounts/121212/transaction"))
 .willReturn(noContent())
);

 return Collections.singletonMap(
 "io.quarkus.transactions.AccountService/mp-rest/url",
 wireMockServer.baseUrl());
 }

 @Override
 public void stop() {
 if (null != wireMockServer) {
 wireMockServer.stop();
 }
 }
}

Lastly, we need to write the test shown in the following code sample to use the Trans-
action service, which will call the mock server.

@QuarkusTest
@QuarkusTestResource(WiremockAccountService.class)
public class TransactionServiceTest {
 @Test
 void testTransaction() {
 given()
 .body("142.12")
 .contentType(ContentType.JSON)
 .when().post("/transactions/{accountNumber}", 121212)
 .then()
 .statusCode(200);
 }
}

With the test written, open the /chapter5/transaction-service/ directory and run the
following:

mvn clean install

NOTE Be sure to have Docker running for the database.

The test should pass without issue.
 Running the test using a mock server doesn’t provide much confidence it’s cor-

rect, so let’s deploy all the services to Kubernetes to verify that the code works with a
real service.

DEPLOYING TO KUBERNETES

If Minikube is already running, great. If it isn’t, run the next line of code:

minikube start

Listing 5.4 TransactionServiceTest

Creates another stub for
responding to the HTTP POST

method to create a transaction

Sets an environment variable named
io.quarkus.transactions.AccountService/
mp-rest/url to the URL of the WireMock server.
The variable name matches the expected name
of the configuration key for defining the URL.

Stops the WireMock
server during test-
shutdown processing

Adds the life cycle manager
for WireMock to the test

Issues an HTTP POST request
using the account number

defined in the WireMock stub

Verifies a response code
of 200 is returned

100 CHAPTER 5 Clients for consuming other microservices
With Minikube running, we can start the PostgreSQL database instance. To do that,
install the Kubernetes Deployment and Service for PostgreSQL.

 Change into the /chapter5/ directory and run the following:

kubectl apply -f postgresql_kubernetes.yml

WARNING This PostgreSQL instance doesn’t use Secrets for the username
and password, unlike in chapter 4. For this reason, this setup is not recom-
mended for production usage.

Change into the /chapter5/account-service/ directory to build and deploy the
Account service to Kubernetes, as shown here:

mvn clean package -Dquarkus.kubernetes.deploy=true

NOTE Run eval $(minikube -p minikube docker-env) before this command
to ensure the container image build uses Docker inside Minikube.

Verify the service has started properly by running kubectl get pods as follows:

NAME READY STATUS RESTARTS AGE
account-service-6d6d7655cf-ktmhv 1/1 Running 0 6m55s
postgres-775d4d9dd5-b9v42 1/1 Running 0 13m

If there are errors, indicated by the STATUS column containing Error, run kubectl
logs account-service-6d6d7655cf-ktmhv, using the actual Pod name, to show the
logs of the container for diagnosing the error.

 Find the URL of the Account service by running minikube service list, and then
verify it’s working by running the next code:

curl http://192.168.64.4:30704/accounts/444666/balance

The terminal will show the balance returned, which should be 3499.12 if everything
worked.

 With the Account service deployed and working, it’s time to do the same for the
Transaction service. Remember, the URL needs to be set so that the Account service can
be found. Do that by modifying application.properties to include the next code:

%prod.io.quarkus.transactions.AccountService/mp-rest/url=
http://account-service:80

It uses the production profile (%prod) as the URL, which applies only when deployed
to Kubernetes, and it’s using the Kubernetes service name for the Account service that
is returned from minikube service list.

 Change to the /chapter5/transaction-service/ directory and deploy the next service:

mvn clean package -Dquarkus.kubernetes.deploy=true

101Service interface definition
Verify the service has started without error and issue a request to withdraw funds from
an account as follows:

curl -H "Content-Type: application/json" -X POST -d "-143.43"
http://192.168.64.4:31692/transactions/444666

If it completes with no errors and messages, run the curl command from earlier to
check the account balance. If everything worked as intended, the balance returned
should now be 3355.69! Have some fun exploring by depositing and withdrawing dif-
ferent amounts from various accounts, and see how the balance changes after each
request.

 Though we haven’t used them so far, many other configuration options are avail-
able when using a REST client with CDI. With listing 5.1 as an interface, here is a list
of different configurations that could be used:

io.quarkus.transactions.AccountService/mp-rest/url=http://localhost:8080
io.quarkus.transactions.AccountService/mp-rest/scope=javax.inject.Singleton
io.quarkus.transactions.AccountService/mp-rest/providers=

io.quarkus.transactions.MyProvider
io.quarkus.transactions.AccountService/mp-rest/connectTimeout=400
io.quarkus.transactions.AccountService/mp-rest/readTimeout=1000
io.quarkus.transactions.AccountService/mp-rest/followRedirects=true
io.quarkus.transactions.AccountService/mp-rest/proxyAddress=http://myproxy:9100

This configuration can also be achieved with the programmatic API, which we cover
in the next section. If configKey on @RegisterRestClient had been used, all the pre-
vious configuration keys could replace io.quarkus.transactions.AccountService/
mp-rest/ with account-service/mp-rest/.

 Using CDI isn’t the only way to use a REST client for connecting to external ser-
vices. Let’s take a look at doing the same as earlier with the programmatic API.

5.2.2 Programmatic REST client

In addition to utilizing CDI for injecting and calling REST client beans for external
interfaces, we can use a programmatic builder API instead. This API provides more
control over the various settings of the REST client without needing to manipulate
configuration values. See the next code listing.

The URL where the external service is
available, as seen in examples earlier

By default, the scope of a CDI bean for a
REST client is @Dependent. This would

change it to be @Singleton instead.

Comma-separated list of JAX-RS providers
that should be used with the client

Timeout for connecting to the
remote endpoint in milliseconds

How long to wait for a response from
a remote endpoint in milliseconds

Determines if HTTP redirect responses
are followed or an error is returned

HTTP proxy to be used
for all HTTP requests

from the client

102 CHAPTER 5 Clients for consuming other microservices

t

n

tic
@Path("/accounts")
@Produces(MediaType.APPLICATION_JSON)
public interface AccountServiceProgrammatic {
 @GET
 @Path("/{acctNumber}/balance")
 BigDecimal getBalance(@PathParam("acctNumber") Long accountNumber);

 @POST
 @Path("{accountNumber}/transaction")
 void transact(@PathParam("accountNumber") Long accountNumber,

BigDecimal amount);
}

The only difference between this interface and listing 5.1 is the removal of @Register-
RestClient. Though the same interface can be used for CDI and programmatic API
usage, it’s important to show that @RegisterRestClient is not required for program-
matic API usage, as shown next.

@Path("/transactions")
public class TransactionResource {
 @ConfigProperty(name = "account.service", defaultValue =

"http://localhost:8080")
 String accountServiceUrl;

 ...

 @POST
 @Path("/api/{acctNumber}")
 public Response newTransactionWithApi(@PathParam("acctNumber") Long
 accountNumber, BigDecimal amount) throws MalformedURLException {
 AccountServiceProgrammatic acctService =
 RestClientBuilder.newBuilder()
 .baseUrl(new URL(accountServiceUrl))
 .connectTimeout(500, TimeUnit.MILLISECONDS)
 .readTimeout(1200, TimeUnit.MILLISECONDS)
 .build(AccountServiceProgrammatic.class);

 acctService.transact(accountNumber, amount);
 return Response.ok().build();
 }
}

Add the following configuration into application.properties:

%prod.account.service=http://account-service:80

Listing 5.5 AccountService

Listing 5.6 TransactionResource

Injects a value for the configuration
key account.service, defaulting it to
http://localhost:8080 if it’s not found

Adds the new programmatic API
to the /transactions/api/ URL path

Uses RestClientBuilder to create a builder
instance for setting features programmatically

Sets the URL for any requests with the
REST client, which is equivalent to baseUrl

on @RegisterRestClient. Uses the configuration
value of account.service to create a new URL.

The maximum amoun
of wait time allowed
when connecting to a
external service

How long to wait
for a response

before triggering
an exception

Builds a proxy of the
AccountServiceProgramma
interface for calling the
external service

Calls the service in the same way
as done previously with a CDI bean

103Service interface definition
Now build the Transaction service, and redeploy it to Kubernetes as shown next:

mvn clean package -Dquarkus.kubernetes.deploy=true

Verify the service has started without error, and issue a request to deposit funds into
an account as follows:

curl -H "Content-Type: application/json" -X POST -d "2.03"
http://192.168.64.4:31692/transactions/api/444666

Running curl http://192.168.64.4:30704/accounts/444666/balance will return
a balance that should be $2.03 more than it was previously. Try out different combi-
nations of depositing and withdrawing funds from accounts with the programmatic
API. Both the CDI bean and programmatic API endpoints shouldn’t result in any
different outcomes.

 Using the programmatic API with RestClientBuilder provides greater control
over the configuration of the client. Whether specifying the URL of the external ser-
vice, registering JAX-RS providers, setting connection and read timeouts, or any other
setting, we can do it all with the RestClientBuilder.

5.2.3 Choosing between CDI and a programmatic API

There is no right or wrong answer here—it all comes down to preference.
 Some developers are more comfortable dealing with CDI beans, whereas others pre-

fer using programmatic APIs to fully control the process. There is one caveat when
using CDI beans for a REST client—it does require more configuration in application
.properties compared to the programmatic API approach. However, whether that is a
problem very much depends on what aspects the developer wants control over. If they
require more control, then it’s likely easier to do that with the programmatic API and
not configuration properties.

 Whichever approach we choose, it doesn’t impact the type-safe guarantees of the
REST client. It impacts only the interaction with the interface.

 In addition, both approaches provide a thread-safe means of communicating with
external resources. In listing 5.6, the acctService could be stored in a variable on the
class. In this case, it wasn’t, to simplify the code.

5.2.4 Asynchronous response types

In recent years, there’s more desire to write reactive code, ideally not blocking threads
while waiting. Because calling an external service could be a slow operation, depend-
ing on network latency, network load, and many other factors, it would be a good idea
to utilize asynchronous types when using the REST client.

 The first thing to do is to update the AccountService and AccountService-
Programmatic interfaces with the following method:

104 CHAPTER 5 Clients for consuming other microservices

-
f
e
e

 @POST
 @Path("{accountNumber}/transaction")
 CompletionStage<Void> transactAsync(@PathParam("accountNumber") Long

accountNumber, BigDecimal amount);

The only change from the original transact() method on the interface is the return
type. Instead of returning void, the method now returns CompletionStage<Void>. In
essence, the method is still returning a void response, but wrapping it in a Comple-
tionStage allows the method to complete, and handling the response from the HTTP
request will happen later once received. Although the response has not been
received, the method execution completes and processing of the response waits.
Doing so frees up the thread that was processing the request to handle other requests
while waiting for an asynchronous response.

 With the interfaces updated, how different are the JAX-RS resource methods? See
the next code listing.

 @POST
 @Path("/async/{acctNumber}")
 public CompletionStage<Void> newTransactionAsync(@PathParam("acctNumber")
 Long accountNumber, BigDecimal amount) {
 return accountService.transactAsync(accountNumber, amount);
 }

 @POST
 @Path("/api/async/{acctNumber}")
 public CompletionStage<Void>
 newTransactionWithApiAsync(@PathParam("acctNumber") Long accountNumber,
 BigDecimal amount) throws MalformedURLException {
 AccountServiceProgrammatic acctService =
 RestClientBuilder.newBuilder()
 .baseUrl(new URL(accountServiceUrl))
 .build(AccountServiceProgrammatic.class);

 return acctService.transactAsync(accountNumber, amount);
 }

With the Transaction service updated, redeploy the changes with the following:

mvn clean package -Dquarkus.kubernetes.deploy=true

After verifying that the service started successfully with kubectl get pods, retrieve
an account balance and then deposit an amount using the new asynchronous API
URL as follows:

curl http://192.168.64.4:30704/accounts/444666/balance
curl -H "Content-Type: application/json" -X POST -d "5.63"

http://192.168.64.4:31692/transactions/async/444666

Listing 5.7 TransactionResource

Uses a different URL path for the
asynchronous version. Return type is now
CompletionStage<Void> instead of Response.

Method body modified
to return the result

of REST client call

 As with the newTransaction
Async method, instead o

returning a Response to indicat
everything is OK, returns th

CompletionStage returned from
the REST client call instead

105Customizing REST clients
Though the new methods use asynchronous return types, they achieve the same out-
come as the synchronous ones. Take some time to experiment with the asynchronous
methods—see what the upper limit of the number of parallel requests might be.

5.3 Customizing REST clients
So far, the examples have focused on normal usage: defining an interface and then
executing methods on that interface to execute HTTP requests. REST clients offer
many other features, some of which will be covered in the following sections.

5.3.1 Client request headers

All requests that are received or sent from applications contain many headers within
them—some that everyone is familiar with, such as Content-Type and Authorization,
but many headers are passed down a call chain. With REST client, it’s possible to add
custom request headers into the outgoing client request or ensure that headers from
an incoming JAX-RS request propagate to a subsequent client request.

 To see the headers received in the Account service, modify AccountResource to
return them from the request. Another option is to print the header contents to the
console with log statements inside the service, as shown next.

public class AccountResource {
 @POST
 @Path("{accountNumber}/transaction")
 @Transactional
 public Map<String, List<String>> transact(@Context HttpHeaders headers,
 @PathParam("accountNumber") Long accountNumber, BigDecimal amount) {
 ...

 return headers.getRequestHeaders();
 }
}

With the Account service modified, it’s also necessary to modify the AccountService
interface the Transaction service uses, as shown in the following listing.

@Path("/accounts")
@RegisterRestClient
@ClientHeaderParam(name = "class-level-param", value = "AccountService

interface")
@RegisterClientHeaders

Listing 5.8 AccountResource

Listing 5.9 AccountService

Injects the HttpHeaders of the HTTP
request into the method. @Context is
specific to JAX-RS but acts in a manner

similar to @Inject with CDI.

Returns the Map containing
the HTTP request headers

Adds class-level-param to
the outgoing HTTP request

header. Adding it on the
interface means all

methods will have the
header added.

Indicates the default ClientHeadersFactory should be used. The
default factory will propagate any headers from an inbound JAX-RS
request onto the outbound client request, where the headers are
added as a comma-separated list into the configuration key named
org.eclipse.microprofile.rest.client.propagateHeaders.

106 CHAPTER 5 Clients for consuming other microservices
@Produces(MediaType.APPLICATION_JSON)
public interface AccountService {
 ...

 @POST
 @Path("{accountNumber}/transaction")
 Map<String, List<String>> transact(@PathParam("accountNumber") Long

accountNumber, BigDecimal amount);

 @POST
 @Path("{accountNumber}/transaction")
 @ClientHeaderParam(name = "method-level-param", value = "{generateValue}")
 CompletionStage<Map<String, List<String>>>

transactAsync(@PathParam("accountNumber") Long accountNumber,
 BigDecimal amount);
 default String generateValue() {
 return "Value generated in method for async call";
 }
}

There are new features included in listing 5.9 to cover in detail.
 @ClientHeaderParam is a convenient way to add request headers onto the HTTP

request that is sent to the external service. As seen previously, the annotation can
define a value that is a constant string, or it can use a method, either on the interface
itself or in another class, by using curly braces to surround the name of the method.
Calling a method to add a header is useful for setting an authentication token on the
request, which would be necessary to call secured services, and a token isn’t present
on the incoming request.

 Is there an advantage to using @ClientHeaderParam? Another option is adding
header parameters using @HeaderParam on a method parameter. The problem with
the @HeaderParam approach is it requires additional parameters on any interface
method. Maybe when adding one or two parameters, it’s not too bad, but what about
three, four, or even six parameters! Not only does it clutter up the method definition
in the interface, whenever making a call to the method, we need to pass all those
parameters as well. This is where @ClientHeaderParam is helpful, keeping the inter-
face methods uncluttered and simplifying the method invocation.

 @RegisterClientHeaders is similar to @ClientHeaderParam, but for propagating
headers and not adding new ones. The default behavior when there’s an incoming
JAX-RS request is for no headers to be passed onto any subsequent REST client call.
Using @RegisterClientHeaders allows specific headers to be propagated from an
incoming JAX-RS request.

 Which headers should be propagated is specified in the configuration with the
org.eclipse.microprofile.rest.client.propagateHeaders key, where the value is
a comma-separated list of header names to propagate. This feature is especially useful

Modifies the return type to
be a Map of the headers

Similar to the usage of @ClientHeaderParam
on the type, it adds the method-level-param
header to the outbound HTTP request.

As with the transact
method, returns a
CompletionStage of
the Map of headersDefault method on the

interface used to create
a value for the header

on transactAsync

107Customizing REST clients
for propagating authentication headers from incoming requests onto REST client
calls, but do make sure it makes sense for them to be passed. Sometimes passing
authentication headers from incoming to outgoing can have unintended conse-
quences, such as performing operations on a service with an unexpected user identity.

 If the default header propagation isn’t sufficient—maybe it’s needed to modify the
content of a particular header—@RegisterClientHeaders allows the use of a custom
implementation. For example, @RegisterClientHeaders(MyHeaderClass.class)
says to use a custom implementation, where MyHeaderClass extends ClientHeaders-
Factory. The only method on ClientHeadersFactory to implement is update(),
which has method arguments for the MultiMap containing the headers from the
incoming JAX-RS request and a MultiMap with the headers to be used on the outgoing
REST client call. Updating the headers on the outgoing headers will alter what is set
on the HTTP request to the external service.

 The change to be made in the TransactionResource is modifying the return types
of newTransaction and newTransactionAsync to use a Map for the headers.

 The last thing needed is to specify which headers need to be automatically propa-
gated. Without doing that, @RegisterClientHeaders will not propagate anything.
Add the following to application.properties of the Transaction service:

org.eclipse.microprofile.rest.client.propagateHeaders=SpecialHeader

With all those changes made, deploy the updated Account service and Transaction
service to Kubernetes as shown here:

/chapter5/account-service > mvn clean package
-Dquarkus.kubernetes.deploy=true

/chapter5/transaction-service > mvn clean package
-Dquarkus.kubernetes.deploy=true

With both services updated, it’s time to see the headers being passed. Let’s run the
synchronous transaction method first, which should have only the class-level header
added, as follows:

curl -H "Content-Type: application/json" -X POST -d "7.89"
http://192.168.64.4:31692/transactions/444666

The terminal output should contain the next code:

{
 "class-level-param":["AccountService-interface"],
 "Accept":["application/json"],
 "Connection":["Keep-Alive"],
 "User-Agent":["Apache-HttpClient/4.5.12 (Java/11.0.5)"],
 "Host":["account-service:80"],

The header name to be
propagated is SpecialHeader.

Header passed via
@ClientHeaderParam
on AccountService

108 CHAPTER 5 Clients for consuming other microservices
 "Content-Length":["4"],
 "Content-Type":["application/json"]
}

Now let’s do the same with the asynchronous transaction. This time both the class
level and method level headers should be present, as shown next:

curl -H "Content-Type: application/json" -X POST -d "6.12"
http://192.168.64.4:31692/transactions/async/444666

The output should now include the following:

{
 "class-level-param":["AccountService-interface"],
 "method-level-param":["Value generated in method for async call"],
 "Accept":["application/json"],
 "Connection":["Keep-Alive"],
 "User-Agent":["Apache-HttpClient/4.5.12 (Java/11.0.5)"],
 "Host":["account-service:80"],
 "Content-Length":["4"],
 "Content-Type":["application/json"]
}

How about the propagation of headers? For that, it’s necessary to pass a header with
curl as follows:

curl -H "Special-Header: specialValue" -H "Content-Type: application/json" -X
POST -d "10.32" http://192.168.64.4:31692/transactions/444666

curl -H "Special-Header: specialValue" -H "Content-Type: application/json" -X
POST -d "9.21" http://192.168.64.4:31692/transactions/async/444666

If it works as expected, the terminal output will contain the headers for each of the
previous examples, in addition to the Special-Header that was passed into the ini-
tial call.

In this section, we covered the different approaches to including additional headers
on the client request. @ClientHeaderParam can be added to a REST client interface
for applying to all methods, or added to specific methods only. @ClientHeaderParam
allows setting a static value as the header, or calling a method to retrieve a necessary
value for the header.

Exercise for the reader
Modify the programmatic API versions in AccountServiceProgrammatic and
TransactionResource, and try out the /api endpoints to see the headers.

Class-level header
from AccountService

Header passed via @ClientHeaderParam
on the transactAsync method of

AccountService

109Customizing REST clients
5.3.2 Declaring providers

Many JAX-RS providers can be written to adjust a request or response, such as Client-
RequestFilter, ClientResponseFilter, MessageBodyReader, MessageBodyWriter,
ParamConverter, ReaderInterceptor, and WriterInterceptor. Each provider type
enables developers to customize an aspect of the HTTP request or response process-
ing. Because the providers are part of JAX-RS, example usage will cover only some of
them. There is also the ResponseExceptionMapper from the REST client.

 Figure 5.3 highlights the sequence of JAX-RS and REST client provider execution
in preparing the HTTP request and handling the HTTP response.

Any provider classes that implement the previous interfaces can register them for use
in the following ways:

 Add @Provider onto the class itself. This is the least flexible method because it
means any JAX-RS interaction will include the provider, irrespective of whether
it’s an incoming JAX-RS request or an outgoing REST client call.

 Associate a provider class with a specific REST client interface by adding
@RegisterProvider(MyProvider.class) to the interface.

 When using the programmatic API, call builder.register(MyProvider.class)
to use the provider with a particular REST client call.

 Implement either RestClientBuilderListener or RestClientListener, and
register the provider directly onto the RestClientBuilder.

The following sections cover in detail how to use client filters and exception mappers.

CLIENT REQUEST FILTER

This section shows how to write and apply a ClientRequestFilter to REST client
calls. A ClientRequestFilter can be used to modify the HTTP request before it is
sent. Modifications can include anything from modifying header attributes and their

External

service

Message body

writer

Writer

interceptor

Client request

filter

REST client proxy internals

Param

converter

Client response

filter

Response

exception mapper

Reader

interceptor

Message body

reader

REST client

interface

HTTP
er sponse

HTTP request

Figure 5.3 Provider processing sequence of REST client proxy

110 CHAPTER 5 Clients for consuming other microservices

values, to modifying the content of the HTTP request. There’s not much to writing a
request filter, so let’s write one to add a new header onto the request containing the
name of the invoked method, as shown in the next code listing.

public class AccountRequestFilter implements ClientRequestFilter {
 @Override
 public void filter(ClientRequestContext requestContext) throws IOException {
 String invokedMethod =
 (String) requestContext.getProperty("
 org.eclipse.microprofile.rest.client.invokedMethod");
 requestContext.getHeaders().add("Invoked-Client-Method", invokedMethod);
 }
}

For the previous filter to be used during invocation of a client request, register it as a
provider onto AccountService as follows:

@RegisterProvider(AccountRequestFilter.class)
public interface AccountService { ... }

Time to redeploy the updated Transaction service to Kubernetes, like so:

mvn clean package -Dquarkus.kubernetes.deploy=true

With the service updated, let’s see the additional header added to the request by the
filter, as shown in the following code. Verification can be done with either the syn-
chronous or asynchronous version of the method. Because it’s applied directly on the
interface, it works on both executions.

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/444666

With the returned headers, the following code should be present in the terminal:

{
 "class-level-param":["AccountService-interface"],
 "method-level-param":["Value generated in method for async call"],
 "Accept":["application/json"],
 "Invoked-Client-Method":["transact"],
 "Connection":["Keep-Alive"],
 "User-Agent":["Apache-HttpClient/4.5.12 (Java/11.0.5)"],
 "Host":["account-service:80"],

Listing 5.10 AccountRequestFilter

The class needs
to implement

ClientRequestFilter.

Overrides the filter method to perform whatever filtering is
needed. The method has access to the ClientRequestContext
to amend what is sent in the request.

The REST client adds a property named
org.eclipse.microprofile.rest.client.invokedMethod

with the value of the interface method that is
being invoked. In this case it is retrieved.

Adds a new request header named
Invoked-Client-Method with the
value from the previous line

Header added by the
AccountRequestFilter
showing the transact
method of AccountService
was called

111Customizing REST clients
 "Content-Length":["4"],
 "Content-Type":["application/json"]
}

The returned results should be the same as the CDI bean version seen earlier.

This section covered how to register a ClientRequestFilter, or ClientResponse-
Filter, for a REST client by adding @RegisterProvider with the name of the class.

MAPPING EXCEPTIONS

Another JAX-RS provider type that can be implemented is the ResponseException-
Mapper. This provider is specific to the REST client and will not work with JAX-RS end-
points. The purpose of the mapper is to convert the Response that is received from an
external service into a Throwable that can be more easily handled.

IMPORTANT The exception type of the mapper must be present on the
throws clause of the method on the interface for it to work.

As with other JAX-RS providers, we can set a specific @Priority to indicate the prece-
dence of an exception mapper compared to others. The lower a priority number, the
higher, or earlier, in the ordering it is executed.

 Implementations of the REST client provide a default exception mapper designed
to handle any Response where the status code is greater than or equal to 400. With
such a response, the default mapper returns a WebApplicationException. The prior-
ity of the default exception mapper is the maximum value for an Integer, so it can be
bypassed with a lower priority.

 If the default exception mapper isn’t wanted at all, it can be disabled by setting the
microprofile.rest.client.disable.default.mapper configuration property to true.

 Let’s write the following exception mapper to handle any errors related to an account
not being found. For that, there needs to be an exception thrown from the mapper.

public class AccountNotFoundException extends Exception {
 public AccountNotFoundException(String message) {
 super(message);
 }
}

There’s nothing special about the exception, because the string parameter construc-
tor is sufficient.

 Now to write the mapper, as shown in the next listing.

Exercise for the reader
Modify the methods on TransactionResource that use the REST client program-
matic APIs to register the filter and run the tests on the URLs that use them.

112 CHAPTER 5 Clients for consuming other microservices

H
R

on
th

cod

public class AccountExceptionMapper implements
ResponseExceptionMapper<AccountNotFoundException> {

 @Override
 public AccountNotFoundException toThrowable(Response response) {
 return new AccountNotFoundException("Failed to retrieve account");
 }

 @Override
 public boolean handles(int status, MultivaluedMap<String, Object> headers)

{
 return status == 404;
 }
}

Without adding @Priority onto AccountExceptionMapper, the default priority of
5000 is used.

 To see the effect of the exception mapper, modify TransactionResource to cap-
ture the exception from the REST client call as shown next.

public class TransactionResource {
 ...
 @POST
 @Path("/{acctNumber}")
 public Map<String, List<String>> newTransaction(@PathParam("acctNumber")
 Long accountNumber, BigDecimal amount) {
 try {
 return accountService.transact(accountNumber, amount);
 } catch (Throwable t) {
 t.printStackTrace();
 Map<String, List<String>> response = new HashMap<>();
 response.put("EXCEPTION - " + t.getClass(),
 Collections.singletonList(t.getMessage()));
 return response;
 }
 }
}

Rebuild and deploy the Transaction service to Kubernetes as follows:

mvn clean package -Dquarkus.kubernetes.deploy=true

Now call the service with an account number that doesn’t exist, as shown here:

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/11

Listing 5.11 AccountRequestFilter

Listing 5.12 TransactionResource

Implements ResponseExceptionMapper
for the AccountNotFoundException type

toThrowable takes the Response and
converts it the appropriate exception type,

in this case, AccountNotFoundException.

Creates an instance of
AccountNotFoundException

The handles method provides a way to say
whether the mapper is responsible for
producing a Throwable based on the Response,
or whether it shouldn’t be called for it.

andles a
esponse
ly when
e status
e is 404

Wraps the REST
client call in a
try-catch

Creates a Map with information about the received
exception to return as the response. This is to show the

captured exception only; a production service should
handle the exception in a more appropriate manner.

113Customizing REST clients
The headers returned should provide details of the exception, as follows:

{
 "EXCEPTION - class javax.ws.rs.WebApplicationException":["Unknown error,

status code 404"]
}

Let’s modify AccountService to register the custom exception mapper, as shown in
the next listing.

@RegisterProvider(AccountExceptionMapper.class)
public interface AccountService {
 ...

 @POST
 @Path("{accountNumber}/transaction")
 Map<String, List<String>> transact(@PathParam("accountNumber")

Long accountNumber,
 BigDecimal amount) throws AccountNotFoundException;
}

Time to see how the exception changes with the mapper registered. Redeploy the
Transaction service like so:

mvn clean package -Dquarkus.kubernetes.deploy=true

Now run the same request again as follows:

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/11

The terminal should contain the following response:

{
 "EXCEPTION - class

io.quarkus.transactions.AccountNotFoundException":["Failed to retrieve
account"]

}

Listing 5.13 AccountService

Exercise for the reader
Try out the different methods on TransactionResource to see when the exception
mapper is, and is not, applied. Another exercise is to store the transactions into a
local database for auditing.

By default, the exception type received from the
REST client call is WebApplicationException. This is a
result of the default exception mapper being active.

Registers the
AccountExceptionMapper
for handling exceptions

transact indicates it can return an
AccountNotFoundException, enabling

the exception mapper to work.

The exception type received is
now AccountNotFoundException.

114 CHAPTER 5 Clients for consuming other microservices
Summary
 By adding @RegisterRestClient onto an interface that defines an external

service, a CDI bean representing the interface is available for injection with
@RestClient to execute REST client calls.

 Customization of interface behavior can be achieved with configuration keys
that start with [packageName].[className]/mp-rest/. The URL of the exter-
nal service, which CDI bean scope to use, what JAX-RS providers to register, and
the connection or read timeouts are all items available for customization.

 When executing REST client calls with services that may require time to exe-
cute, it is worth switching the return types to CompletionStage to enable asyn-
chronous execution.

 Adding @RegisterProvider, with a JAX-RS provider class name as the value,
onto an interface of an external service indicates the provider should be used
with any REST client calls that involve the interface.

 Implementing ResponseExceptionMapper to handle specific HTTP status codes
and return a custom exception makes executing REST client calls more like
local method execution.

Application health
The combination of Kubernetes and the microservices architecture have caused a
fundamental shift in how developers create applications. What used to be dozens of
large monolithic applications are now becoming hundreds (or thousands) of smaller,
more nimble microservice instances. The more application instances running, the
larger the odds of an individual application instance failing. The increased odds of
failure could be a significant challenge in production if application health is not a
first-class concern in Kubernetes.

 Let’s begin with a quick review of how monolithic applications running in appli-
cation servers react to unhealthy applications.

This chapter covers
 Application health, or lack thereof, in a traditional,

three-tier, Java monolithic application architecture

 MicroProfile Health and exposing application
health

 Exposing Account service and Transaction service
application health

 Using Kubernetes probes to address application
health issues
115

116 CHAPTER 6 Application health
6.1 The growing role of developers in application health
Many enterprise Java developers have experience with Java application servers, dating
back to the late 1990s. During most of that time, developers created monolithic,
three-tier applications with little awareness of exposing an application’s health. From
a developer’s perspective, monitoring an application’s health was the responsibility of
system administrators whose job descriptions are to keep applications up and running
in production.

 Figure 6.1 shows the typical high-availability architecture of monolithic applica-
tions running in a traditional, horizontally scaled application server configuration.

There are some notable points to make about this architecture:

 Load balancer—The load balancer’s primary role is to balance load across
multiple application instances for application scalability and availability. The
load balancer redirects traffic from a failing instance to a properly running
instance. It is the responsibility of an administrator to ensure proper load
balancer configuration.

 Handling failed applications—Addressing failed applications is commonly dealt
with manually. Because dealing with a failing application is a manual process,
administrators prefer to conduct a root cause analysis to find the cause and
address it, so they do not have to spend time on it again at a later date.

Load-balancing monolithic applications

GET /greeting

HTTP 500 (Erro
r)

HTTP 200 (OK)

GET /greeting

GET /greeting

Load balancer

(LB)
App 1

App 1

App 2

A
p

p
li

c
a
ti

o
n

 s
e
rv

e
r

A

(A
S

A
)

A
p

p
li

c
a
ti

o
n

 s
e
rv

e
r

B

(A
S

 B
)

App 2

HTTP 200 (OK)

1 1. Incoming request for app .
2. Forward request to AS B, app .1

3. AS B, app failing: HTTP 500 response—1

internal server error.
4. LB redirects to AS A, app .1

5. AS , app —successful request and response.A 1

6. 200 response (OK) to client.
7. AS B, app remains in failed state until admin1

restarts.

Figure 6.1 Traditional application server, high availability architecture

117MicroProfile Health
Regardless, it is the administrator’s responsibility to restart the failed applica-
tion, which takes time and resources.

 Roles and responsibilities—In this scenario, developers have little to no direct role
in application health in production. The developer’s role is typically limited to
helping diagnose issues to determine whether the application is the root cause.

 Minimal automation—The only automation in this process is the load balancer
recognizing the HTTP 500 error and pausing HTTP traffic to the failing appli-
cation. Load balancers also recover by occasionally sending traffic to detect a
recovered server and resume traffic. Because there is no formal “health” con-
tract among the application, the load balancer, and the application server, no
automated way exists to determine if an application is failing.

Given the scale of microservice deployments, with hundreds to thousands of applica-
tion instances, administrators cannot manually manage individual application instances
at this scale. Developers can play a key role in significantly improving the overall
health and efficiency of a production environment by reducing the need for manual
intervention. More specifically, developers can proactively expose application health
to Kubernetes. Kubernetes uses probes to check the exposed health and take corrective
action if necessary. In the next section, we cover MicroProfile Health as an API to
expose application heath and follow that by covering how Kubernetes liveness and
readiness probes can take corrective action.

6.2 MicroProfile Health
The MicroProfile community recognizes that modern Java microservices run on single-
application stacks, which in turn often run in containers. There is also recognition
that modern container platforms have defined a formal health contract between the
containerized application and the platform. With a formal contract in place, the plat-
form can restart failing application containers and pause traffic to an containerized
application that is not ready to accept traffic. The MicroProfile Health specification
supports such a contract by defining the following:

 Health endpoints—Application health is accessible at the MicroProfile-specified
/health/live and /health/ready endpoints. Quarkus will redirect these to
/q/health/live and /q/health/ready endpoints, respectively.

 HTTP status code—The HTTP status code reflects the health status.
 HTTP response payload—The JSON payload also provides status, along with addi-

tional health metadata and context.
 Application liveness—Specifies whether an application is up and running properly.
 Application readiness—Specifies whether an application is ready to accept traffic.
 Application health API—Exposes application readiness and liveness based on cus-

tom application logic.

118 CHAPTER 6 Application health
6.2.1 Liveness vs. readiness

Although it may not be apparent, a clear separation of concerns exists between live-
ness and readiness. The underlying platform makes an HTTP request to the
/q/health/live endpoint to determine whether it should restart the application con-
tainer. For example, an application running out of memory can cause unpredictable
behavior that may require a restart.

 The underlying platform makes an HTTP request to the /q/health/ready end-
point to determine whether an application instance is ready to accept traffic. If it is
not ready, then the underlying platform will not send traffic to the application
instance. An application can be “live” but not be “ready.” For example, it may take
time to prepopulate an in-memory cache or connect to an external service. During
this time, the application is live and running properly but may not be ready to receive
external traffic because a service it depends on may not be running properly.

NOTE Sending an HTTP request to the /health endpoint returns the com-
bined liveness and readiness status. MicroProfile Health has deprecated this
endpoint in favor of separate /health/live and /health/ready endpoints.
Quarkus prefers using /q/health/live and /q/health/ready endpoints
directly to avoid an HTTP redirect.

6.2.2 Determining liveness and readiness status

The underlying platform has two means to determine status: it can check the HTTP
status code or parse the JSON payload to obtain the status (UP, DOWN). Table 6.1 shows
the correlation between the HTTP status code and JSON payload.

Figure 6.2 shows the flow of probe traffic on the left-hand side and the flow of appli-
cation traffic on the right-hand side, in time sequence from top to bottom. The
figure shows that after a period of unsuccessful attempts, the container will be
restarted, and normal application traffic will resume until the probe detects the
next health issue.

Table 6.1 Health endpoints, status codes, and JSON payload status

Health check endpoints HTTP status JSON payload status

/q/health/live and /q/health/ready 200 UP

/q/health/live and /q/health/ready 503 DOWN

/q/health/live and /q/health/ready 500 Undetermined *

* Request processing failed.

119Getting started with MicroProfile Health
Figure 6.3 shows a flow similar to figure 6.2, but instead represents a readiness health
check. The figure shows that when a database connection is lost, the readiness check
fails. The failure causes Kubernetes to redirect flow to another application instance
until the database connection resumes.

 A couple of notes about these figures: First, we will address these use cases shortly
in code examples. Second, the probes are configurable, and we will also cover them
shortly.

 In fact, let’s start coding now!

6.3 Getting started with MicroProfile Health
This chapter extends the Account service and Transaction service with application
health logic. This logic provides Kubernetes enough metadata to take corrective
action if necessary.

HTTP liveness check

HTTP GET /accounts

HTTP GET

/health/live

200 OK (UP)
[{“id”:1, ...}]

200 OK (UP)

[{“id”:1, ...}]

HTTP GET

/health/live

HTTP GET

/health/live

HTTP GET

/health/live

HTTP GET

/health/live

HTTP GET /accounts

A
p

p
li

c
a
ti

o
n

 t
ra

ffi
c

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

 l
iv

e
n

e
s
s
 p

ro
b

e

(K
u

b
e
rn

e
te

s
,

D
o

c
k
e
r,

 .
..

)

Account service

(container)

Pod

Restart

container

HTTP GET /accounts

Unknown

Unknown

Unknown

503 Unavailable

(DOWN)

503 Unavailable

(DOWN)

503 Unavailable

(DOWN)

HTTP GET /accounts

HTTP GET /accounts

1. The liveness check and application
traffic are executing normally.

2. The application liveness check
fails.

3. The Account service is down; the
HTTP response depends on the
error.

4. After three unsuccessful attempts,
the container is restarted. Traffic
is redirected to another instance
during restart.

5. The liveness check and application
traffic are executing normally.

Figure 6.2 Liveness check and application traffic flow

120 CHAPTER 6 Application health
The Account service uses a PostgreSQL database, which must be up and ready to
accept requests. We can do this using the following steps:

1 Check if PostgreSQL is running in the Kubernetes cluster by running kubectl
get pods. If the output does not contain text similar to postgres-58db5b6954-
27796, then the database is not running.

2 If the database is not running, deploy the database by running kubectl deploy
-f postgresql_kubernetes.yml from the top-level chapter06 directory.

3 Once the database is running, forward local database traffic to the PostgreSQL
Pod in the Kubernetes cluster. To do this, run the command in the next code
listing.

This will forward traffic until CTRL-C is pressed
kubectl port-forward service/postgres 5432:5432

Listing 6.1 PostgreSQL port forwarding

HTTP readiness check

1. The readiness check and application
traffic executing normally.

2. The database connection is lost;
the application health check fails.

3. The Account service is down;
the underlying platform directs
application traffic to another
instance.

4. The database connection is restored;
the application health check
succeeds.

5. The readiness check and application
traffic executing normally.

200 OK (UP)

HTTP GET
A

p
p

li
c
a
ti

o
n

 t
ra

ffi
c

U
n

d
e
rl

y
in

g
 p

la
tf

o
rm

 r
e
a
d

in
e
s
s
 p

ro
b

e

(K
u

b
e
rn

e
te

s
,

D
o

c
k
e
r,

 .
..
)

Account service

(container)

Pod

HTTP GET

/health/ready

HTTP GET

/health/ready

HTTP GET

/health/ready

503 Unavailable

(DOWN)

503 Unavailable

(DOWN)

503 Unavailable

(DOWN)

Database

connection

lost

Database

connection

resumed

HTTP GET

/health/ready

200 OK (UP)

HTTP GET /accounts

[{“id”:1, ...}]

[{“id”:1, ...}]

HTTP GET /accounts

Figure 6.3 Readiness check and application traffic flow

Forwards traffic on localhost port 5432 to the Kubernetes Pod port 5432. During development,
the Account service uses localhost port 5432, which forwards traffic to the PostgreSQL Pod.

121Getting started with MicroProfile Health
With the database running, the next step is to start the Account service. Install the par-
ent pom.xml, and then start the Account service.

mvn clean install -DskipTests
cd account-service
mvn quarkus:dev

Check the health endpoint to determine the Account service health status using the
command shown next.

curl -i localhost:8080/q/health/live

The resulting output in listing 6.4 shows that Quarkus does not include a liveness
health check endpoint by default.

HTTP/1.1 404 Not Found
Content-Length: 0
Content-Type: application/json

Account service requires an additional Quarkus extension for MicroProfile Health
support. Using the code in the following snippet, add the quarkus-smallrye-health
extension.

mvn quarkus:add-extension -Dextensions="quarkus-smallrye-health"

Because Quarkus is running in developer mode, the extension will be loaded
automatically.

6.3.1 Account service MicroProfile Health liveness

With MicroProfile Health support loaded, check the endpoint again with curl -i
localhost:8080/q/health/live. This time, as seen in the next code listing, the result
is very different.

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 46

{
 "status": "UP",

Listing 6.2 Installing parent pom and build artifacts

Listing 6.3 Checking health endpoint availability

Listing 6.4 Quarkus health endpoint unavailable

Listing 6.5 Add MicroProfile Health support using the smallrye-health extension

Listing 6.6 Liveness health check output

Installs the
parent pom.xml

Starts the account-service
in developer mode

An HTTP response code of
2XX means the service is up
and running as expected.

The HTTP response is a
JSON-formatted payload.

The overall status of the service is
UP. An HTTP response code of 2XX
will always result in an UP status.

122 CHAPTER 6 Application health
 "checks": [
]
}

Although the output is relatively simple, we do have some useful context to cover.
First, without writing a custom health check, MicroProfile Health requires a default
status of UP.

 Second, the HTTP status maps to the JSON payload status. A 200 HTTP status
maps to UP, and a 5XX HTTP status maps to DOWN. The underlying platform has the
option of considering the remainder of the JSON payload for additional context
before taking corrective action.

 Last, the MicroProfile Health specification requires that the JSON payload returns
two items. First, it must return a status of UP or DOWN. Second, it must return an array
of checks that aggregate all liveness health checks. If one or more liveness health
checks are DOWN, then the overall status for the health check is DOWN.

 Having seen a liveness health check, it’s time to create a custom liveness health
check.

6.3.2 Creating an Account service liveness health check

To learn the API, let’s start by creating a liveness health check that always returns UP,
as seen in the following code.

@ApplicationScoped
@Liveness
public class AlwaysHealthyLivenessCheck implements HealthCheck {
 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse
 .named("Always live")
 .withData("time", String.valueOf(new Date()))
 .up()
 .build();
 }
}

To test the liveness health check, run curl localhost:8080/q/health/live. The
results should match the next listing.

Listing 6.7 AlwaysHealthyLivenessCheck.java

The checks JSON array contains named health checks
and their status. The array is empty, meaning there
are currently no custom liveness health checks.

A HealthCheck must be a CDI
bean. It is annotated with

@ApplicationScoped, so a single
CDI bean instance is created. This is a

liveness
health check.

Health checks must
implement the

HealthCheck interface,
which requires the call()

method be implemented.

The call() method is invoked whenever the
/q/health/live endpoint is invoked and must
return a HealthCheckResponse object.

A HealthCheckResponse object is
created using a builder pattern.

Each health check has a name that should
reflect the intent of the health check.

Contextual data can be added to the health
check in the form of key-value pairs. In this

health check, a time/date stamp is returned.

The state returned
is always UP.

123Getting started with MicroProfile Health

Th
the JS
values

HealthC
HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 220

{
 "status": "UP",
 "checks": [
 {
 "name": "Always live",
 "status": "UP",
 "data": {
 "time": "Mon Sep 28 23:56:38 PDT 2020"
 }
 }
]
}

Next, let’s get a firmer understanding of application readiness.

6.3.3 Account service MicroProfile Health readiness

With a sound understanding of application liveness, the next step is to check applica-
tion readiness using curl -i http:/ /localhost:8080/q/health/ready. Interestingly,
the output shown next may be a bit unexpected.

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 150

{
 "status": "UP",
 "checks": [
 {
 "name": "Database connections health check",
 "status": "UP"
 }
]
}

The output includes a preconfigured database readiness health check. If the database
becomes unavailable, then the Account service will return an HTTP 503 status code,
and Kubernetes will not forward traffic to the service. What is providing the database
readiness health check? The Hibernate ORM with Panache extension automatically
adds the Agroal data source extension as an application dependency. The Agroal data-
source extension provides the readiness health check. All relational databases sup-
ported by Quarkus will benefit from a readiness check.

Listing 6.8 Liveness health check output

Listing 6.9 Account service is ready to accept traffic

The HTTP status returns
OK because the application
status is UP.

The JSON health status
UP matches the HTTP
response status.

e remainder of
ON reflects the
 defined in the
heckResponse

object.

The AlwaysHealthyLivenessCheck status is UP.
Therefore, the overall status is also UP. If any
individual health check status is DOWN, then
the overall status is DOWN.

The database
connection is
operating properly.

124 CHAPTER 6 Application health
NOTE As a general rule of thumb, Quarkus extensions that provide client
connectivity to backend services have built-in readiness health checks, includ-
ing relational and nonrelational databases, messaging systems like Kafka and
JMS, Amazon services like S3 and DynamoDB, and more.

6.3.4 Disabling vendor readiness health checks

Sometimes it is preferable to disable vendor readiness health checks like the Agroal
readiness health check. For example, instead of pausing traffic to an application, the
application can continue with fallback logic if the backend service is unreachable. We
can disable vendor readiness health checks in two ways.

 First, by setting the MicroProfile Health mp.health.disable-default-procedures
to true, all vendor health checks are disabled. Disabling all vendor readiness health
checks is a coarse-grained approach.

 Second, Quarkus readiness health checks can be disabled on an extension-by-
extension basis. To disable a Quarkus extension’s readiness health check, use
quarkus.<client>.health.enabled=false, where <client> is the extension to dis-
able. For example, to disable the data source health check provided by the Agroal
extension, use quarkus.datasource.health.enabled=false. The Quarkus extension
guides document the relevant property name.

6.3.5 Creating a readiness health check

Creating a readiness health check is nearly identical to creating the liveness health
check. The only differences are using the @Readiness annotation instead of the
@Liveness annotation and the business logic to determine readiness. Because the
Account service already has a built-in database readiness health check, let’s create a
readiness health check on the Transaction service that checks the Account service
readiness. If it is not ready, then the Transaction service will return DOWN as well. First,
we’ll need to add the health extension to the Transaction service as shown in the fol-
lowing listing.

cd transaction-service
mvn quarkus:add-extension -Dextensions="quarkus-smallrye-health"

With the health extension added, create the AccountHealthReadinessCheck class
shown in the next code listing.

@Readiness

public class AccountHealthReadinessCheck implements HealthCheck {
 @Inject

Listing 6.10 Adding the health extension to the Transaction service

Listing 6.11 AccountHealthReadinessCheck.java

A readiness
health check Quarkus automatically makes this a @Singleton CDI bean when no

scope is provided. Although not a portable feature, this does tidy
up the code a bit and delivers some Quarkus developer joy.

125Getting started with MicroProfile Health

sta

ser

se
 @RestClient
 AccountService accountService;

 BigDecimal balance;

 @Override
 public HealthCheckResponse call() {
 try {
 balance = accountService.getBalance(999999999L);
 } catch (WebApplicationException ex) {
 // This class is a singleton, so clear last request's balance
 balance = new BigDecimal(Integer.MIN_VALUE);

 if (ex.getResponse().getStatus() >= 500) {
 return HealthCheckResponse
 .named("AccountServiceCheck")
 .withData("exception", ex.toString())
 .down()
 .build();
 }
 }

 return HealthCheckResponse
 .named("AccountServiceCheck")
 .withData("balance", balance.toString())
 .up()
 .build();
 }
}

Add a readiness health check account to the accounts table as shown next.

INSERT INTO account(id, accountNumber, accountStatus, balance, customerName,

➥ customerNumber) VALUES (9, 999999999, 0, 999999999.01, 'Readiness
HealthCheck', 99999999999);

Update application.properties with the properties in the following listing.

%dev.quarkus.http.port=8088
%dev.io.quarkus.transactions.AccountService/mp-rest/url=http:/ /localhost:8080

Listing 6.12 Adding test account to src/main/resources/import.sql

Listing 6.13 Additional Transaction service properties

Injects an instance of the
AccountService REST client, which will
be used to invoke the Account service

Tests Account service availability by invoking
an endpoint and getting the balance of a

special "Health Check" account

Returns a DOWN
tus only if there is
a 5XX HTTP status
code, meaning the
vice was unable to
respond to a valid
HTTP request. All

other status codes
imply that the

rvice is responding
to requests. Returns an UP

status along with
the balance

The account service is already listening on port 8080, so
the Transaction service will listen on port 8088 to avoid
a port conflict when running in developer mode.

Because the Account service is also running locally on port 8080,
the REST client must access the Account service on localhost
when running in developer mode.

126 CHAPTER 6 Application health
Within a new terminal window, start the Transaction service as shown next.

mvn compile quarkus:dev \
 -Ddebug=5006

To test AccountHealthReadinessCheck, run curl -i localhost:8088/q/health/
ready to see the output shown here.

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 234

{
 "status": "UP",
 "checks": [
 {
 "name": "AccountServiceCheck",
 "status": "UP",
 "data": {
 "balance": "999999999.01"
 }
 }
]
}

Currently, three services are up and running: PostgreSQL, the Account service, and the
Transaction service. Figure 6.4 shows the service health readiness status of these services.

Listing 6.14 Starting the Transaction service

Listing 6.15 ReadinessCheck is accepting traffic

Quarkus defaults the debug port to 5005, which is the
debug port for the Account service that is already running.
Set the Transaction service debug port to 5006.

The overall HTTP status is
200, meaning the service is
ready to accept traffic.

The Account
service is ready
to accept traffic.

Transaction service

curl localhost:8088/health/ready

1. Readiness endpoint status: UP.
2. Check account service readiness.
3. Get balance from database.
4. Quarkus data source readiness check: UP.

Health check UP

Health check DOWN

Account service

getBalance

/health/ready/health/ready

Quarkus data source checkAccountReadinessHealthCheck

SQL: SELECT ...

PostgreSQL

Legend

Figure 6.4 Service readiness health check status

127Getting started with MicroProfile Health
Next, stop the port forwarding started in 6.1 by pressing CTRL-C in the terminal run-
ning the kubectl port-forward … command. Check the readiness endpoint again by
running curl -i localhost:8088/q/health/ready. The result, shown next, illustrates
that the transaction service is DOWN and not ready.

HTTP/1.1 503 Service Unavailable
content-type: application/json; charset=UTF-8
content-length: 276

{
 "status": "DOWN",
 "checks": [
 {
 "name": "AccountServiceCheck",
 "status": "DOWN",
 "data": {
 "exception": "javax.ws.rs.WebApplicationException: Unknown

error, status code 500"
 }
 }
]
}

As a result of the database being down, there is a cascading failure of the Account ser-
vice not being ready, followed by the Transaction service not being ready. This is out-
lined in figure 6.5.

Listing 6.16 AccountHealthReadinessCheck is DOWN and not ready

The Transaction
service is not
ready.

Invoking the Account service results in
an exception, causing the Transaction
service to be down.

Transaction service

curl localhost:8088/health/ready

1. The data source check fails because the database is down.
2. HTTP 500 error—JDBCConnectionException.
3. HTTP 500 error—WebApplicationException;

the readiness check fails.
4. HTTP 503—AccountReadinessHealthCheck: DOWN.

Health check UP

Health check DOWN

Account service

getBalance

/health/ready/health/ready

Quarkus data source checkAccountReadinessHealthCheck

SQL: SELECT ...

DOWN

PostgreSQL

Legend

Figure 6.5 Service readiness cascading failure

128 CHAPTER 6 Application health
NOTE In the next chapter, section 7.3 discusses how to avoid cascading
failures.

The next couple of sections will cover Quarkus-specific health features, and then we
deploy the services to Kubernetes.

6.3.6 Quarkus health groups

Quarkus extends the MicroProfile Health feature set by adding health groups. A health
group allows for custom grouping of health checks. Health groups are useful for mon-
itoring health checks that do not impact container access (readiness) and container
life cycle (liveness) because they exist at separate REST endpoints. These endpoints
are likely not monitored directly by Kubernetes liveness or readiness probes but
instead by third-party or custom tooling. For example, external tooling can probe a
health group’s endpoint to monitor informational, noncritical health checks.

 To create a health group, use @HealthGroup("group-name"). The next code listing
shows an example of a health check group.

@ApplicationScoped
@HealthGroup("custom")
public class CustomGroupLivenessCheck implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse.up("custom liveness");
 }
}

All health groups can be accessed at /q/health/group, and a specific health check
group can be accessed at /q/health/group/<group>, where group is the health group
name. See the following code listing for example output when running curl -i
http:/ /localhost:8088/q/health/group/custom to access the custom health group.

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 132

{
 "status": "UP",
 "checks": [
 {
 "name": "custom liveness",
 "status": "UP"
 }
]
}

Listing 6.17 CustomGroupLivenessCheckHealth.java health check group example

Listing 6.18 Health check group output

Specifies the custom
health group

Similar to the AlwaysHealthyReadinessCheck, the CustomGroupLivenessCheck
always returns UP. In a real-world scenario, this health group check

would use business logic to determine the health status.

129Kubernetes liveness and readiness probes
Having just covered a Quarkus-specific feature, let’s cover one more Quarkus-specific
application health feature, the Quarkus health UI, before moving on to Kubernetes
deployments.

6.3.7 Displaying the Quarkus Health UI

As an option to viewing the JSON output, Quarkus includes a helpful Health UI for
viewing health status while developing an application, though it is not intended to be
a production tool. To enable the UI, as seen in figure 6.6, add quarkus.smallrye-
health.ui.enable=true to the application.properties file. The Health UI can also
be autorefreshed at regular intervals by clicking the gear icon in the Health UI title
bar and setting the refresh interval. This example shows the Health UI (available at
http:/ /localhost:8080/q/health-ui) enabled on the Account service without
access to the PostgreSQL database.

The UI can also be included in production builds, like native binaries and JAR deploy-
ments, by adding the property quarkus.smallrye-health.ui.always-include=true
to application.properties.

 It is time to put all of this newfound health check knowledge to work by adding
Kubernetes health check probes and deploying to Kubernetes.

6.4 Kubernetes liveness and readiness probes
Kubernetes is one of the underlying platforms that offer liveness and readiness health
check probes as a built-in capability. However, they need to be enabled and config-
ured. Table 6.2 describes Kubernetes health check probe configuration parameters.
The parameters are configured with Quarkus properties in application.properties.

Figure 6.6 Health UI enabled on Account service

130 CHAPTER 6 Application health
NOTE See the Quarkus Kubernetes and OpenShift Extension documenta-
tion (https://quarkus.io/guides) for additional liveness and readiness probe
properties.

The Quarkus health extension generates the Kubernetes probe YAML automatically.
A snippet of the liveness probe YAML that was generated automatically in target/
kubernetes/minikube.yaml follows.

...
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /q/health/live
 port: 80
 scheme: HTTP
 initialDelaySeconds: 0
 periodSeconds: 30
 successThreshold: 1
 timeoutSeconds: 10
...

Table 6.2 Kubernetes health check probe configuration parameters

Kubernetes probe parameter Quarkus property Description and Quarkus defaults

initialDelaySeconds  quarkus.kubernetes.liveness-
probe.initial-delay

 quarkus.kubernetes.readiness-
probe.initial-delay

The amount of time to wait before
starting to probe. Defaults to
0 seconds.

periodSeconds  quarkus.kubernetes.liveness-
probe.period

 quarkus.kubernetes.readiness-
probe.period

Probe interval. Defaults to
30 seconds.

timeout  quarkus.kubernetes.liveness-
probe.timeout

 quarkus.kubernetes.readiness-
probe.timeout

Amount of time to wait for probe to
complete. Defaults to 10 seconds.

successThreshold  quarkus.kubernetes.liveness-
probe.success-threshold

 quarkus.kubernetes.readiness-
probe.success-threshold

Minimum consecutive successful
probes to be considered successful
after having failed. Defaults to 1.
Must be 1 for liveness.

failureThreshold  quarkus.kubernetes.liveness-
probe.failure-threshold

 quarkus.kubernetes.readiness-
probe.failure-threshold

Retry failureThreshold times
before giving up. Giving up on a
liveness probe will restart con-
tainer. Giving up on a readiness
probe will pause traffic to container.
Defaults to 3.

Listing 6.19 Generated liveness probe YAML

Probe health endpoint
using HTTP GET

Health path
to probe

Port to probe

Probe using HTTP
(vs. HTTPS)

https://quarkus.io/guides

131Kubernetes liveness and readiness probes
NOTE Pods can have more than one container. Liveness and readiness
probes are defined per container. Therefore probes restart and pause traffic
to individual containers within the Pod and not the Pod as a whole.

6.4.1 Customizing health check properties

The probe parameters listed in table 6.2 specify reasonable defaults. Health check probes
can be customized to reflect the specific needs of the business and the application. For
example, from a business perspective, probes can check business-critical applications at a
more frequent interval to more rapidly detect and resolve potential issues. On the other
hand, some applications take longer to start and should have a higher initialDelay-
Seconds setting. Determining proper probe settings may take a bit of trial-and-error test-
ing, but accepting the default probe property values is a good place to start.

 To make developing probes easier, add the properties shown in the next code list-
ing to application.properties of both the Account service and the Transaction service.
The intent is to encounter liveness and readiness issues sooner to make the round-trip
coding faster. Do not use these values in production if they do not meet the needs of
the application.

Health Probe configuration
quarkus.kubernetes.liveness-probe.initial-delay=10
quarkus.kubernetes.liveness-probe.period=2
quarkus.kubernetes.liveness-probe.timeout=5

quarkus.kubernetes.readiness-probe.initial-delay=10
quarkus.kubernetes.readiness-probe.period=2
quarkus.kubernetes.readiness-probe.timeout=5

With updated health check properties in place, the next step is to deploy the updated
services to Kubernetes and see liveness probes (container restarts) and readiness
probes (traffic pauses) in action.

6.4.2 Deploying to Kubernetes

Before deploying to Kubernetes, set the Docker registry to the instance running in
Minikube. Generated container images will now be pushed directly into the Kuberne-
tes Docker registry. With the Docker registry set, deploy to Kubernetes and then track
the deployment. See the following listing for the steps.

eval $(minikube -p minikube docker-env)

Run this command in the chapter top-level directory
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

Listing 6.20 Overriding probe defaults for quicker round-trip development and testing

Listing 6.21 Deploying the Account service to Kubernetes

The properties generate
YAML files similar to those
in listing 6.19 but with the
specified values.

Uses the Docker registry running in Minikube. Alternatively, run
minikube docker-env, and set the environment variables manually. Deploys the

Account service and
Transaction service

to Kubernetes

132 CHAPTER 6 Application health

d
.
n
s.

d
.

Run next command in a separate terminal window, and leave running
kubectl get pods -w

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow https://github.com/quarkusio/quarkus/issues/
19701 for updates on a resolution. The problem can be worked around by
removing the application first with kubectl delete -f /target/kubernetes/
minikube.yaml.

See the following listing for the output of the kubectl get pods -w command.

NAME READY STATUS RESTARTS AGE
...
account-service-68f7c4779c-jpggz 0/1 Pending 0 0s
account-service-68f7c4779c-jpggz 0/1 ContainerCreating 0 0s
account-service-68f7c4779c-jpggz 0/1 Running 0 3s
transaction-service-5fb7f69496-d86sg 0/1 Pending 0 0s
transaction-service-5fb7f69496-d86sg 0/1 ContainerCreating 0 0s
transaction-service-5fb7f69496-d86sg 0/1 Running 0 2s
account-service-68f7c4779c-jpggz 1/1 Running 0 13s
transaction-service-5fb7f69496-d86sg 1/1 Running 0 15s

IMPORTANT There may be container restarts during the deployment. Deploy-
ing multiple services with minimal CPU cores allocated Minikube may result
in a service starting to surpass the initial-delay setting. One or two restarts
are possible until the deployment assumes a steady state. If the number of
restarts for a Pod surpasses four or five, then it will be time to troubleshoot
with commands like kubectl logs <POD_NAME>.

To simplify accessing the Transaction service URL, store the service URL in an envi-
ronment variable using the command shown in the next code listing.

export TRANSACTION_URL=$(minikube service --url transaction-service)

Listing 6.22 Pod status terminal window output

Listing 6.23 Getting the transaction service URL

Follows the deployment by
watching Pod life cycles

The READY column identifies the number of containers in the Po
ready to accept traffic. 0/1 means zero of one container is ready
1/1 means one of one container is ready. The RESTARTS colum

is incremented each time a container restart

The Pod and its containers are
scheduled to be created on a
node in the cluster.

Kubernetes is creating the Pod and its containers.
This includes downloading the container image
from an image registry like Docker Hub.

The container has been created, is starting,
but is not yet ready to accept traffic.

The container is running an
ready to accept traffic

There are equivalent steps for the
Transaction service. Both services

should start successfully.

Stores the transaction-service URL in the
TRANSACTION_URL environment variable

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

133Kubernetes liveness and readiness probes
Next, verify the Transaction service is healthy by running curl -i $TRANSACTION_
URL/q/health/live, with the resulting HTTP status shown here.

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 411
...

Last, test that the Transaction service is ready with curl -i $TRANSACTION_URL/
q/health/ready. The output should be identical to listing 6.15, returning an HTTP
status of 200 and a JSON payload status of UP. Figure 6.7 shows the flow of readiness
checks between services.

6.4.3 Testing the readiness health check in Kubernetes

With the healthy services up and running, let’s introduce a readiness failure. An easy
way of doing this is to scale down the number of PostgreSQL instances to zero, so the
data source health check fails. It is helpful to have the Pod status terminal window cre-
ated in listing 6.21 easily viewable when running the commands in this chapter to
track the Pod life cycle.

 Run the command in the next code listing to scale down the number of Post-
greSQL instances to zero.

Listing 6.24 Output of curl -i $TRANSACTION_URL/q/health/live

Only the HTTP status
code is shown in this
listing.

Transaction service

1. Kubernetes checks readiness endpoint(s).
2. Check account service readiness.
3. Get balance from database.
4. Quarkus data source readiness check: UP.

Health check UP

Health check DOWN

Account service

getBalance

/health/ready/health/ready

Quarkus data source checkAccountReadinessHealthCheck

SQL: SELECT ...

Kubernetes probes

PostgreSQL

Legend

Figure 6.7 Service readiness health check status in Kubernetes

134 CHAPTER 6 Application health
kubectl scale --replicas=0 deployment/postgres

The pod status terminal window, shown next, will update to show the Pods terminating.

NAME READY STATUS RESTARTS AGE
...
postgres-58db5b6954-2pg7x 1/1 Terminating 0 13m
postgres-58db5b6954-2pg7x 0/1 Terminating 0 13m
account-service-68f7c4779c-jpggz 0/1 Running 0 7m59s
transaction-service-5fb7f69496-d86sg 0/1 Running 0 7m50s

Access the Transaction service readiness endpoint with curl -i $TRANSACTION_URL/q/
health/ready, and notice there is a Connection Refused message. By scaling down the
number of PostgreSQL instances to zero, the probe causes a pause to the Account ser-
vice container traffic, which paused traffic to the Transaction service, including its /q/
health/ready endpoint. Figure 6.8 shows the cascading service failure in Kubernetes.

Listing 6.25 Scaling the database to zero instances (replicas)

Listing 6.26 Output of kubectl get pods -w when scaling to zero Pods

The postgres Pod is ready
but is terminating.

The postgres Pod is no longer ready and
is terminating or has been terminated.

The Account service Pod is no longer ready
(0/1). Its readiness health check status is
DOWN because the database is DOWN. The
Pod is still running but is not accepting traffic.

The Transaction service Pod is no longer ready (0/1).
Its readiness health check status is DOWN because

the Account service is not accepting traffic. The Pod
is still running but is not accepting traffic.

Transaction service

1. Quarkus data source readiness check: DOWN.
2. HTTP 500 error; AccountReadinessHealthCheck

fails.
3. getBalance() fails; cannot connect to database.
4. Kubernetes checks both readiness endpoints.

Checks fail. Kubernetes pauses traffic to containers.

Health check UP

Health check DOWN

Account service

getBalance

/health/ready/health/ready

Quarkus data source checkAccountReadinessHealthCheck

SQL: SELECT ...

Kubernetes probes

PostgreSQL

Legend

DOWN

Figure 6.8 Service readiness health check cascading failure in Kubernetes

135Summary
To resume back to a healthy status, restart the database by running the command
shown in the following listing.

kubectl scale --replicas=1 deployment/postgres

By scaling the database down to zero instances and then scaling it back up to one
instance, the database contents are lost because the database schemas and data are
ephemeral in the current configuration. The easiest way to correct this is to create a
new account-service instance to regenerate the tables and repopulate the database.
Real-world production deployments would not regenerate tables and repopulate data-
bases every time a Pod is created. However, it is helpful as a learning aid in this case.
To add another account-service instance, run the following command. Note the
output in the Pod status terminal window in the following code listing.

kubectl scale --replicas=2 deployment/account-service

NAME READY STATUS RESTARTS AGE
...
account-service-68f7c4779c-bf458 0/1 Pending 0 1s
account-service-68f7c4779c-bf458 0/1 ContainerCreating 0 1s
account-service-68f7c4779c-bf458 0/1 Running 0 2s
account-service-68f7c4779c-bf458 1/1 Running 0 12s
transaction-service-5fb7f69496-d86sg 1/1 Running 0 23m

Of course, a real production scenario would include a database with persistent config-
uration and data, so this step to create two instances would typically be unnecessary.

 Verify the UP status by running curl -i $TRANSACTION_URL/q/health/ready.

Summary
 Traditional application servers require manual intervention to react to failure.

Manual intervention does not scale well in an environment with hundreds to
thousands of containers.

 Combining the automation of Kubernetes health check probes with developer
health checks can provide a more responsive and efficient Kubernetes cluster
and microservices architecture.

Listing 6.27 Scaling the database to one instance

Listing 6.28 Scaling the account-service to two instances

Listing 6.29 Pod status output when scaling to two instances

Kubernetes is scheduling
the Pod creation.The Pod is being created.

The Pod container is running
but is not yet ready.

The Pod is ready
to service traffic.

The new account-service instance connects to the database and inserts
the special “Health Check” account. This results in the Transaction service

readiness health check state changing to UP and ready to accept traffic.

136 CHAPTER 6 Application health
 Kubernetes can pause traffic to a container that is unable or not yet ready to
accept traffic and resume traffic when ready, based on developer guidance
through health checks.

 Kubernetes can restart a failing or failed container, based on developer guid-
ance through health checks.

 Developers can create readiness and liveness health checks to provide more
accurate application-specific health status reports.

Resilience strategies
Application robustness is critically important in a microservices architecture, which
can have many service interdependencies. A service susceptible to failure can nega-
tively impact other services. This chapter covers using resilience patterns to improve
application robustness to maintain overall health.

7.1 Resilience strategies overview
Services eventually experience downtime, whether planned or unplanned. A ser-
vice can reduce its downtime using resilience strategies when the services it depends
on are unreliable or unavailable.

 Quarkus offers its resilience strategies using the MicroProfile Fault Tolerance
APIs. These annotation-based APIs are applied to classes or methods, standalone or
in combination. Table 7.1 lists the available Fault Tolerance annotations.

This chapter covers
 The importance of building resilient applications

 MicroProfile Fault Tolerance strategies

 When and how to apply each fault tolerance
strategy

 How to configure and disable fault tolerance
annotations using properties
137

138 CHAPTER 7 Resilience strategies
7.2 Executing a method under a separate thread
with @Asynchronous
A service may have to call a slow-responding remote service. Instead of blocking a
worker thread by waiting for a response, the @Asynchronous annotation uses a sepa-
rate thread to invoke the remote service to increase concurrency and throughput. See
the next code listing for an example.

@Asynchronous
public String invokeLongRunningOperation() {
 callLongRunningRemoteService();
}

This book does not advocate using the @Asynchronous annotation with Quarkus and
will not cover the annotation in detail. The @Asynchronous annotation is for runtimes
that make heavy use of threads and thread pools to achieve higher concurrency and
throughput, like Jakarta EE runtimes. Quarkus uses a nonblocking network stack and
event loop execution model based on Netty and Eclipse Vert.x. It can achieve higher
concurrency and throughput using its inherent asynchronous and reactive APIs while
using less RAM and CPU overhead.

 For example, the Quarkus RESTEasy Reactive extension enables the use of JAX-RS
annotations and handles requests directly on the IO thread. Developers can use the
APIs they already know while benefiting from the throughput typically reserved for
asynchronous runtimes like Vert.x.

7.3 Constraining concurrency with bulkheads
The bulkhead concept comes from shipbuilding, which constrains a compromised
section of a ship’s hull by closing bulkhead doors to isolate the incoming water.
The bulkhead architectural pattern applies this concept to prevent a failure in one

Table 7.1 MicroProfile Fault Tolerance annotations

Annotation Description

@Asynchronous Executes a method using a separate thread

@Bulkhead Limits the number of concurrent requests

@CircuitBreaker Avoids repeated failures

@Fallback Uses alternative logic when a method completes exceptionally (throws an
exception)

@Retry Retries a method call when the method completes exceptionally

@Timeout Prevents a method from executing for longer than a specified amount of time

Listing 7.1 @Asynchronous example

Uses a thread from a
separate thread pool to
execute a blocking operation

139Constraining concurrency with bulkheads
service from cascading to another service by limiting the number of concurrent
method invocations.

 For example, a service may make remote calls to a slow-executing backend ser-
vice. In thread-per-request runtimes like traditional Java EE and Spring, each remote
invocation to a slow service consumes memory resources and threads from a thread
pool in the calling service, eventually overcoming available resources. As with the
@Asynchronous annotation, this is less of an issue with Quarkus RESTEasy Reactive
due to its efficient threading model.

 Bulkheads are also useful when a remote service is memory- or CPU-constrained,
and too many concurrent requests will overload it and cause it to fail. For example, a
microservice may invoke a business-critical legacy system that is too costly or difficult
to upgrade its software or hardware. The legacy system can benefit from a high-traffic
microservice using a bulkhead to limit concurrent access.

 MicroProfile Fault Tolerance specifies bulkheads using the @Bulkhead annota-
tion, which can be applied to either a method or a class. See the next listing for an
example.

@Bulkhead(10)
public String invokeLegacySystem() {
...
}

The @Bulkhead annotation accepts the parameters defined in table 7.2.

value uses a semaphore, allowing only the specified number of concurrent invoca-
tions. When annotating the same method with @Bulkhead and @Asynchronous, value
defines the number of concurrent threads allowed to invoke a method concurrently.

 The @Bulkhead annotation can be used together with @Asynchronous, @Circuit-
Breaker, @Fallback, @Retry, and @Timeout.

 Figure 7.1 demonstrates a bulkhead limiting the number of concurrent invoca-
tions to two. Now that we have a firm understanding of bulkheads, the next step is to
apply the @Bulkhead annotation using a service.

Listing 7.2 Bulkhead example

Table 7.2 @Bulkhead parameters

Parameter Default Description

value 10 The maximum number of concurrent invocations.

waitingTaskQueue 10 When @Bulkhead is used with @Asynchronous, this param-
eter specifies the size of the request thread queue.

invokeLegacySystem() is limited to 10
concurrent invocations. Attempting to exceed
10 will result in a BulkheadException.

140 CHAPTER 7 Resilience strategies
7.4 Updating a TransactionService with a bulkhead
To use MicroProfile Fault Tolerance APIs with Quarkus, install the quarkus-smallrye-
fault-tolerance extension as shown next.

cd transaction-service
mvn quarkus:add-extension -Dextensions="quarkus-smallrye-fault-tolerance"

Update the newTransactionWithApi() method to use a bulkhead. To keep testing
simple, the bulkhead will allow one concurrent invocation.

@POST
@Path("/api/{acctNumber}")
@Bulkhead(1)
public Response newTransactionWithApi(
 @PathParam("acctNumber") Long accountNumber,
 BigDecimal amount)

Listing 7.3 Install Quarkus MicroProfile Fault Tolerance extension

Listing 7.4 Add @Bulkhead to the newTransactionWithAPI() method

4. TransactionService receives request 3. Semaphore count already at limit of 2. BulkheadException
is thrown.

3. TransactionService receives request 3, invokes , and is waitingAccountService.getBalance()

for a response. Semaphore count: 2.

2. TransactionService receives request 2 and invokes .AccountService.getBalance()

Semaphore count (during request): 2. Semaphore count (af .ter response): 1

1 1. TransactionService receives request , invokes , and is waitingAccountService.getBalance()

for a response. Semaphore count: .1

Request 4 BulkheadException

Request 3

Response 2

Request 2

Request 1

Transaction

service

Account

service

Request 3

Response 2

Request 2

Request 1

@Bulkhead(2)
getBalance() {
...
}

getBalance() {
...

}

Figure 7.1 Bulkhead sequence diagram

If more than one concurrent
operation is attempted, a
BulkheadException will be thrown.

141Updating a TransactionService with a bulkhead
throws MalformedURLException {
 ...
}

As with prior chapters, start the PostgreSQL database and start port forwarding using
the commands shown here.

From chapter7 top-level directory
kubectl apply -f ./postgresql_kubernetes.yml

It may take some time for PostgreSQL to start
kubectl port-forward service/postgres 5432:5432

Start the AccountService in terminal 1 using mvn quarkus:dev. In terminal 2, start
TransactionService using mvn quarkus:dev -Ddebug=5006. This instance of Quarkus
has to specify a debug port that does not conflict with the default debug port (5005)
used by AccountService.

 Open two more terminals, terminal 3 and terminal 4. Each terminal will run sim-
ple curl commands to avoid installing any special tools. Run the code from the next
listing in both terminals at the same time.

count=0
while ((count++ <= 100)); do
 curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d "2.03" \
 http://localhost:8088/transactions/api/444666
 echo
done

In each terminal, the output should show a random mix of HTTP/1.0 200 OK responses
and BulkheadException output as shown next.

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 500 Internal Server Error
content-type: text/html; charset=utf-8
content-length: 13993
...
...
org.eclipse.microprofile.faulttolerance.exceptions.BulkheadException
...

Listing 7.5 Starting PostgreSQL and port forwarding

Listing 7.6 Terminal 3 and terminal 4

Listing 7.7 Sample terminal 3 and terminal 4 output

142 CHAPTER 7 Resilience strategies

kes
n a
ny

 be
...

HTTP/1.1 200 OK
Content-Length: 0

The bulkhead is successfully limiting the method to a single concurrent invocation.
However, a 500 Internal Server Error is not an ideal HTTP response to return to the
caller!

 The next section introduces the @Fallback annotation to execute alternative logic
to handle a bulkhead exception properly.

7.5 Exception handling with fallbacks
The @Fallback annotation facilitates exception handling by specifying a fallback
method containing alternative logic when the annotated method completes excep-
tionally. @Fallback can be triggered by any Java exception, including those thrown by
other Fault Tolerance resilience strategies.

 @Fallback accepts the parameters defined in table 7.3.

This example uses a fallbackMethod to replace the 500 Internal Server Error_ HTTP
status code caused by the BulkheadException with a meaningful HTTP status code.
Add the @Fallback annotation to newTransactionWithApi() and a fallbackMethod
as shown in the following code sample.

@POST
@Path("/api/{acctNumber}")
@Bulkhead(1)
@Fallback(fallbackMethod = "bulkheadFallbackGetBalance",
 applyOn = { BulkheadException.class })
public Response newTransactionWithApi(
 @PathParam("acctNumber") Long accountNumber,
 BigDecimal amount)

Table 7.3 @Fallback parameters

Parameter Description

applyOn List of exceptions that trigger a fallback

fallbackMethod Method to invoke when the annotated method throws an exception.
fallbackMethod must have the same method signature (parameter types
and return type) as the annotated method. Use either this parameter or the
value parameter.

skipOn List of exceptions that should not trigger fallbackMethod. This list takes
precedence over the types listed in the applyOn parameter.

value FallbackHandler class. Use either this parameter or the
fallbackMethod parameter.

Listing 7.8 Adding @Fallback to the newTransactionWithAPI() method

Invokes the
bulkheadFallbackGetBalance()

method on an exception More specifically, invo
the fallbackMethod o
BulkheadException. A
other exceptions will
handled in a default
manner.

143Defining execution timeouts
throws MalformedURLException {
 ...
}

public Response bulkheadFallbackGetBalance(Long accountNumber,
 BigDecimal amount) {
 return Response.status(Response.Status.TOO_MANY_REQUESTS).build();
}

Rerun the shell script outlined in listing 7.6 in terminal 3 and terminal 4 at the same
time. The output should look similar to the following code listing.

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 429 Too Many Requests
Content-Length: 0

HTTP/1.1 200 OK
Content-Length: 0

A fallback can be combined with other MicroProfile Fault Tolerance annotations. In
the next section, we will use @Fallback with the @Timeout annotation.

7.6 Defining execution timeouts
Method invocations intermittently take a long time to execute. When a thread is
blocked, waiting for method completion, it is not handling other incoming requests.
Additionally, the service may also have response time requirements to meet business
objectives impacted by latency. Use @Timeout to limit the amount of time a thread can
use to execute a method.

 @Timeout accepts the parameters defined in table 7.4.

The @Timeout annotation can be used together with @Asynchronous, @Bulkhead,
@CircuitBreaker, @Fallback, and @Retry.

Listing 7.9 Output after adding a fallbackMethod

Table 7.4 @Timeout parameters

Parameter Default Description

value 1000 A TimeoutException will be thrown if method execution
time exceeds this value.

unit ChronoUnit.MILLIS Time unit of the value parameter.

The fallback method has the same method
signature (parameter types and return

type) as newTransactionWithApi().

Returns a more context-appropriate
429 TOO_MANY_REQUESTS HTTP

status code

The 500 Internal Server Exception
HTTP status code and Java exception
output is now a 429 Too Many
Requests HTTP status code with
an empty response body.

144 CHAPTER 7 Resilience strategies
 Add a method to the TransactionService to get the account balance from the
AccountService. It has a timeout of 100 ms and will call a fallback method on a Time-
outException. Add the code as shown in the next listing.

@GET
@Path("/{acctnumber}/balance")
@Timeout(100)
@Fallback(fallbackMethod = "timeoutFallbackGetBalance")
@Produces(MediaType.APPLICATION_JSON)
public Response getBalance(
 @PathParam("acctnumber") Long accountNumber) {
 String balance = accountService.getBalance(accountNumber).toString();

 return Response.ok(balance).build();
}

public Response timeoutFallbackGetBalance(Long accountNumber) {
 return Response.status(Response.Status.GATEWAY_TIMEOUT).build();
}

The @Timeout annotation will be tested using WireMock and JUnit tests.
 Update the WireMock AccountService to include calls to the new getBalance()

method as shown in the next listing. This class will also include a small amount of
refactoring.

public class WiremockAccountService implements
QuarkusTestResourceLifecycleManager {

 private WireMockServer wireMockServer;

 @Override
 public Map<String, String> start() {
 wireMockServer = new WireMockServer();
 wireMockServer.start();

 mockAccountService();
 mockTimeout();

 return
Collections.singletonMap("io.quarkus.transactions.AccountService/mp-
rest/url", wireMockServer.baseUrl());

 }

 protected void mockAccountService() {
 stubFor(get(urlEqualTo("/accounts/121212/balance"))
 .willReturn(aResponse().withHeader("Content-Type",

"application/json").withBody("435.76")));

Listing 7.10 Adding a getBalance() method to TransactionResource.java

Listing 7.11 Updating WireMockAccountService to test @Timeout

Throws a TimeoutException
if getBalance() takes longer
than 100 ms to execute Calls

timeoutFallback-
GetBalance() if any
exception is thrown

Invokes accountService.getBalance() and returns the account
balance. AccountService.getBalance() will need to complete in
less than 100 ms or a TimeoutException will be thrown.

Returns a reasonably
context-appropriate HTTP

GATEWAY_TIMEOUT status code.

Refactors mockAccountService()
into its own method

Refactored
mockAccountService()
method

145Defining execution timeouts

e

n

e
ns

TP
 stubFor(post(urlEqualTo("/accounts/121212/transaction")).willReturn(
aResponse()

 // noContent() needed to be changed once the external service
returned a Map

 .withHeader("Content-Type",
"application/json").withStatus(200).withBody("{}")));

 }

 protected void mockTimeout() {
 stubFor(get(urlEqualTo("/accounts/123456/balance"))
 .willReturn(aResponse()
 .withHeader("Content-Type","application/json")
 .withStatus(200)
 .withFixedDelay(200)
 .withBody("435.76")));

 stubFor(get(urlEqualTo("/accounts/456789/balance"))
 .willReturn(aResponse()
 .withHeader("Content-Type", "application/json")
 .withStatus(200) .withBody("435.76")));
 .withBody("435.76")));
 }

 @Override
 public void stop() {
 if (null != wireMockServer) {
 wireMockServer.stop();
 }
 }
}

With the AccountService endpoint mocked, create the JUnit test to test the @Timeout
annotation, as shown in the next code listing.

@QuarkusTest
@QuarkusTestResource(WiremockAccountService.class)
public class FaultyAccountServiceTest {
 @Test
 void testTimeout() {
 given()
 .contentType(ContentType.JSON)
 .get("/transactions/123456/balance").then().statusCode(504);

 given()
 .contentType(ContentType.JSON)
 .get("/transactions/456789/balance").then().statusCode(200);
 }
}

Listing 7.12 Creating a FaultyAccountServiceTest class

Any invocation of the
/accounts/123456/balanc
endpoint will invoke
this stub.

Returns a
200 HTTP
OK status

code

Adds a 200 ms delay, which
will force a TimeoutExceptio
on any remote call with a
timeout less than 200 ms

Any invocation of the
/accounts/456789/balance
endpoint will invoke this
stub, which will not force
a TimeoutException.

Binds the
WiremockAccountService
to the life cycle of
QuarkusTest

The mocked /transactions/1234546/balance endpoint defines a 200 ms
delay. The getBalance() method defines a 100 ms timeout, forcing a
TimeoutException. The timeout results in a call to the fallback method
with a return of a 504 GATEWAY TIMEOUT HTTP status code.

The mocked
/transactions/
456789/balanc
endpoint retur
a 200 (OK) HT
status code.

146 CHAPTER 7 Resilience strategies
Before running the test, stop the AccountService to avoid port conflicts between the
AccountService and the WireMock server. Test the application using mvn test, with
the sample output shown here.

[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

The next section introduces the @Retry resilience strategy and how it can be com-
bined with other resilience strategies like @Timeout to improve the overall resilience
of TransactionService.

7.7 Recovering from temporary failure with @Retry
In cases where failure is rare, for example, where a remote system has an occasional
unstable connection, it may be appropriate to retry a method call a few times before
handling the failure in this context.

 The @Retry annotation retries method invocations a configurable number of
times if the method completes exceptionally. The annotation accepts the parameters
defined in table 7.5.

WARNING Use the @Retry resilience strategy with caution. Retrying a remote call
on an overloaded backend service with a small delay exacerbates the problem.

Listing 7.13 Sample mvn test output

Table 7.5 @Retry parameters

Parameter Default Description

abortOn None A list of exceptions that do not trigger a retry.

delay 0 A delay between each retry.

delayUnit ChronoUnit.MILLIS The time unit of the delay parameter.

jitter 0 Adds or subtracts a random amount of time between
each retry. For example, a delay of 100 ms with a jit-
ter of 20 ms results in a delay between 80 ms and
120 ms.

jitterDelayUnit ChronoUnit.MILLIS The time unit of the value parameter.

maxDuration 1800000 The maximum duration for all retries.

durationUnit ChronoUnit.MILLIS The time unit of the maxDuration parameter.

maxRetries 3 The maximum number of retry attempts.

retryOn Any exception A list of exceptions that trigger a retry.

147Avoiding repeated failure with circuit breakers
The @Retry annotation can be used together with @Asynchronous, @Bulkhead,
@CircuitBreaker, @Fallback, and @Timeout.

 Add the following @Retry code to transactionService.getBalance().

@GET
@Path("/{acctnumber}/balance")
@Timeout(100)
@Retry(delay = 100,
 jitter = 25,
 maxRetries = 3,
 retryOn = TimeoutException.class)
@Fallback(fallbackMethod = "timeoutFallbackGetBalance")
@Produces(MediaType.APPLICATION_JSON)
public Response getBalance(
 @PathParam("acctnumber") Long accountNumber) {
 String balance = accountService.getBalance(accountNumber).toString();

 return Response.ok(balance).build();
}

Test the @Retry annotation by running mvn test. The output will not change from list-
ing 7.13. The mock always returns a 504 GATEWAY TIMEOUT. As a result, the @Retry
annotation consumes three timeout exceptions, and the final result remains a 504
GATEWAY TIMEOUT.

 The @Retry resilience strategy attempts to recover from a failure. The next section
discusses the @CircuitBreaker resilience strategy as another popular approach to
handling a failure.

7.8 Avoiding repeated failure with circuit breakers
A circuit breaker avoids operations that are likely to fail. It is a resilience pattern pop-
ularized by the Netflix Hystrix framework and is also the most complex resilience pat-
tern to understand. A circuit breaker consists of the following three steps:

1 Detect repeated failure, typically of expensive operations like a remote service
invocation.

2 “Fail fast” by immediately throwing an exception instead of conducting an
expensive operation.

3 Attempt to recover by occasionally allowing the expensive operation. If success-
ful, resume normal operations.

All three steps are configurable to meet contextual needs.

Listing 7.14 Adding the @Retry annotation

Waits 100 ms
between retries

Adds or subtract 25 ms from the
retry delay. The delay between
retries will be a random value
between 75 ms and 125 ms.

Retries up
to 3 times

Retries on a
TimeoutException only.
Other exceptions will be
handled normally.

148 CHAPTER 7 Resilience strategies
7.8.1 MicroProfile Fault Tolerance: @CircuitBreaker

The MicroProfile Fault Tolerance specification defines the @CircuitBreaker annota-
tion and its behavior. The annotation accepts the parameters defined in table 7.6.

The @CircuitBreaker annotation can be used together with @Timeout, @Fallback,
@Asynchronous, @Bulkhead, and @Retry.

7.8.2 How a circuit breaker works

Figure 7.2 shows a visual time sequence of a circuit breaker, followed by a description
of each labeled step:

1 Successful request—The requestVolumeThreshold is 3. The last three requests
have been successful, identified by the three checkmarks.

2 Unsuccessful request—AccountService is down. The MicroProfile REST Client
throws an HttpHostConnectException. One third (33%) of the requests have
failed, identified by the X and two checkmarks.

3 Unsuccessful request—AccountService is down. An HttpHostConnectException
is thrown. The failure rate is two-thirds (66%), as shown by two Xs. Two-thirds
meets the failureRatio, and the next failure will result in a CircuitBreaker-
Exception. All requests for the next delay seconds (set to 5 seconds) will auto-
matically result in a CircuitBreakerOpenException.

Table 7.6 @CircuitBreaker parameters

Parameter Default Description

requestVolumeThreshold 20 The size of the rolling window (number of
requests) used to calculate the opening of
a circuit.

failureRatio .5 Opens the circuit if the ratio of failed
requests within the requestVolume-
Threshold window exceeds this number.
For example, if the requestVolume-
Threshold is 4, then two failed requests
of the last four will open the circuit.

delay 5000 The amount of time the circuit remains open
before allowing a request.

delayUnit ChronoUnit.MILLIS The time unit of the delay parameter.

successThreshold 1 The number of successful trial requests to
close the circuit.

failOn Any exception The list of exceptions that should be consid-
ered failures.

skipOn None The list of exceptions that should not open
the circuit. This list takes precedence over
the types listed in the failOn parameter.

149Avoiding repeated failure with circuit breakers
4 Unsuccessful request—The last three requests have failed. Note, the circuit opens
at the end of the step 3 circuit. This step represents all requests that occur
during the 5-second delay.

5 Unsuccessful request—Although AccountService is back up and running, the cir-
cuit breaker will not allow any requests until 5 seconds have passed.

6 Successful request—After a 5-second delay, the circuit is in a half-open state until
successThreshold requests (set at 2) have successfully completed. This is the
first successful request with the circuit in the half-open state.

Request 1

CircuitBreaker

Transaction service

Request 2

Request 3

Request 4

Request 5

Request 6

Request 7

Request 8

Request volume threshold

Account

service

Up

Account
service
Down

Legend Settings

Circuit breaker closed

Circuit breaker open

Circuit breaker half-open

requestVolumeThreshold

8. Successful request

7. Successful request

6. Successful request

1. Successful request

5. Unsuccessful
request

Five-second

delay

Account

service

4. Unsuccessful
request

3. Unsuccessful
request

2. Unsuccessful
request

failureRatio

successThreshold

delay

3

.66

2

5 seconds

Figure 7.2 A circuit breaker in action

150 CHAPTER 7 Resilience strategies
7 Successful request—The second successful request. After the request, the success-
Threshold increments to 2, and the circuit will close.

8 Successful request—Normal request processing resumes.

7.8.3 Updating the TransactionService to use @CircuitBreaker

Instead of creating another fallback method to handle a CircuitBreakerException,
all fallback handling is moved into a separate FallbackHandler class with convenient
console output. Add the code shown next.

public
 class TransactionServiceFallbackHandler
 implements FallbackHandler<Response> {

 Logger LOG = Logger.getLogger(TransactionServiceFallbackHandler.class);

 @Override
 public Response handle(ExecutionContext context) {
 Response response;
 String name;

 if (context.getFailure().getCause() == null) {
 name = context.getFailure() .getClass().getSimpleName();
 } else {
 name =

context.getFailure().getCause().getClass().getSimpleName();
 }

 switch (name) {
 case "BulkheadException":
 response = Response
 .status(Response.Status.TOO_MANY_REQUESTS)
 .build();
 break;

 case "TimeoutException":
 response = Response
 .status(Response.Status.GATEWAY_TIMEOUT)
 .build();
 break;

 case "CircuitBreakerOpenException":
 response = Response
 .status(Response.Status.SERVICE_UNAVAILABLE)
 .build();
 break;

Listing 7.15 TransactionServiceFallbackHandler class

A FallbackHandler
class must implement the
FallbackHandler interface.

The FallbackHandler must implement the handle() method.
The ExecutionContext parameter gives contextual information
such as the annotated method that generated the fallback
and the exception that generated.

The fallback handler
logic keys on the
exception name.

A BulkheadException will return
a TOO_MANY_REQUESTS HTTP

status code with an empty body.

A TimeoutException will return a
GATEWAY_TIMEOUT HTTP status

code with an empty body.

A CircuitBreakerException will return
a SERVICE_UNAVAILABLE HTTP status

code with an empty body.

151Avoiding repeated failure with circuit breakers

Sets
of 5

Sets th
time
 case "WebApplicationException":
 case "HttpHostConnectException":
 response = Response
 .status(Response.Status.BAD_GATEWAY)
 .build();
 break;

 default:
 response = Response
 .status(Response.Status.NOT_IMPLEMENTED)
 .build();

 }

 LOG.info("******** "
 + context.getMethod().getName()
 + ": " + name
 + " ********");

 return response;
 }
}

The @Fallback annotations need the fallbackMethod replaced with the Fallback-
Handler. Add the @CircuitBreaker annotation to the newTransactionWithApi()
method as shown in the next code listing.

@POST
@Path("/api/{acctNumber}")
@Bulkhead(1)
@CircuitBreaker(
 requestVolumeThreshold=3,
 failureRatio=.66,
 delay = 5,
 delayUnit = ChronoUnit.SECONDS,
 successThreshold=2
)
@Fallback(value = TransactionServiceFallbackHandler.class)
 public Response newTransactionWithApi(
 @PathParam("acctNumber") Long accountNumber, BigDecimal amount) {
 ...
}

...

@GET
@Path("/bulkhead/{acctnumber}/balance")
@Timeout(100)
@Fallback(value = TransactionServiceFallbackHandler.class)
@Produces(MediaType.APPLICATION_JSON)

Listing 7.16 Add @CircuitBreaker to newTransactionWithApi()

The MicroProfile REST Client generates an
HttpHostConnectException when it cannot

connect to the backend REST service, and the
circuit breaker circuit is in the open state.

To make testing the circuit
breaker simpler, sets the
requestVolumeThreshold
to the low value of 3

Sets a failure ratio of .66
(two-thirds). If two of
the most recent three
requests fail, the circuit
breaker will open. a delay

seconds

e delay
 unit to
seconds

A circuit breaker in the half-open
state will close with 2 continuous
successful requests.

Updates newTransactionWithAPI to invoke
the TransactionServiceFallbackHandler

instead of the fallbackMethod

Updates getbalance() to invoke the
TransactionServiceFallbackHandler

instead of the fallbackMethod

152 CHAPTER 7 Resilience strategies

for

o.”

l

public Response getBalance(
 @PathParam("acctnumber") Long accountNumber) {
 ...
}

7.8.4 Testing the circuit breaker

To test the circuit breaker, extend the WiremockAccountService with the following:

public class WiremockAccountService implements
QuarkusTestResourceLifecycleManager {

 private WireMockServer wireMockServer;

 private static final String SERVER_ERROR_1 = "CB Fail 1";
 private static final String SERVER_ERROR_2 = "CB Fail 2";
 private static final String CB_OPEN_1 = "CB Open 1";
 private static final String CB_OPEN_2 = "CB Open 2";
 private static final String CB_OPEN_3 = "CB Open 3";
 private static final String CB_SUCCESS_1 = "CB Success 1";
 private static final String CB_SUCCESS_2 = "CB Success 2";

 ...

 @Override
 public Map<String, String> start() {
 wireMockServer = new WireMockServer();
 wireMockServer.start();

 mockAccountService();
 mockTimeout();
 mockCircuitBreaker();

 ..
 }

 void mockCircuitBreaker() {
 // Define wiremock scenario to support the required by a circuitbreaker

state machine

 createCircuitBreakerStub(Scenario.STARTED, SERVER_ERROR_1, "100.00", 200);
 createCircuitBreakerStub(SERVER_ERROR_1, SERVER_ERROR_2, "200.00", 502);
 createCircuitBreakerStub(SERVER_ERROR_2, CB_OPEN_1, "300.00", 502);
 createCircuitBreakerStub(CB_OPEN_1, CB_OPEN_2, "400.00", 200);
 createCircuitBreakerStub(CB_OPEN_2, CB_OPEN_3, "400.00", 200);
 createCircuitBreakerStub(CB_OPEN_3, CB_SUCCESS_1, "500.00", 200);
 createCircuitBreakerStub(CB_SUCCESS_1, CB_SUCCESS_2, "600.00", 200);
 }

The states defined
the circuitbreaker
WireMock “scenari
Each field defines a
circuit breaker
state in order.

Creates the circuit
breaker mock

Creates a WireMock circuit breaker stub for each
scenario state transition. This first stub defines the
initial request in the requestVolumeThreshold.

Returns a 502, the first error
the circuit breaker receives

Returns a 502, the second error the
circuit breaker receives. This second

error will open the circuit breaker.

The circuit breaker is open. Even
though the request returns 200,

simulating service availability,
the circuit breaker is in its

delay period.

The first successful cal
after the delay period

The second successful
call closes the circuit.

153Avoiding repeated failure with circuit breakers

T
su

call a
delay
 void createCircuitBreakerStub(String currentState, String nextState,
 String response, int status) {

stubFor(post(urlEqualTo("/accounts/444666/transaction")).inScenario("cir
cuitbreaker")

.whenScenarioStateIs(currentState).willSetStateTo(nextState).willRetur
n(

 aResponse().withStatus(status).withHeader("Content-Type",
MediaType.TEXT_PLAIN).withBody(response)));

 }

 ...

With the WiremockAccountService updated to support a circuit breaker, the next step
is to update FaultyAccountService to test the circuit breaker, as follows.

@Test
void testCircuitBreaker() {
 RequestSpecification request =
 given()
 .body("142.12")
 .contentType(ContentType.JSON);

 request.post("/transactions/api/444666").then().statusCode(200);
 request.post("/transactions/api/444666").then().statusCode(502);
 request.post("/transactions/api/444666").then().statusCode(502);
 request.post("/transactions/api/444666").then().statusCode(503);
 request.post("/transactions/api/444666").then().statusCode(503);

 try {
 TimeUnit.MILLISECONDS.sleep(1000);
 } catch (InterruptedException e) {
 }

 request.post("/transactions/api/444666").then().statusCode(200);
 request.post("/transactions/api/444666").then().statusCode(200);
}

NOTE Early Quarkus releases used the Hystrix framework as the underlying
implementation. Hystrix has been deprecated, so later Quarkus releases use a
custom implementation. Because developers develop to the MicroProfile
Fault Tolerance specification, their application source code did not change.
This demonstrates the real-world value of developing to specifications instead
of implementations.

Listing 7.17 Circuit breaker JUnit test

Any call to the /accounts/444666/transaction endpoint invokes a stub.
Each call to the endpoint will advance the state in the circuitbreaker

scenario. The body of the response is the account balance.

This successful request defines the initial
request in the requestVolumeThreshold window.

Expects a 502, the first error
the circuit breaker receives

Expects a 502, the second error the
circuit breaker receives. This request

will open the circuit breaker.

The circuit breaker is open.

The circuit breaker is still open.

Sleeps long enough
to get past the
circuitbreaker delay

he first
ccessful
fter the
 period

The second successful call closes the
circuit. The circuit is now closed, and

further invocations will continue normally.

154 CHAPTER 7 Resilience strategies
7.9 Overriding annotation parameter values using
properties
MicroProfile Fault Tolerance can globally enable or disable fault tolerance annota-
tions or modify annotation parameters at runtime using properties. This feature rec-
ognizes that operational needs change as the deployment environment changes. By
overriding annotation parameters using properties, non-Java developers responsible
for a reliable production environment can adjust fault tolerance parameters to
address production needs.

 Service meshes, which give the operations team more control and visibility into a
microservices deployment, are becoming more common. A service mesh can shape
network traffic and apply its own fault tolerance features to maintain a more reliable
Kubernetes cluster. By externalizing fault tolerance annotation parameters using
properties, the operations team can ensure that application @Timeout or @Retry
annotations do not conflict with the equivalent service mesh settings.

 Four ways to enable/disable fault tolerance annotations using properties follow:

1 MP_Fault_Tolerance_NonFallback_Enabled=true—Disables all fault tolerance
annotations, except for @Fallback annotations.

2 <annotation>/enabled=false—Disables all fault tolerance annotations of a
specific type used within the application. For example, Bulkhead/enabled=false
disables all bulkheads in the application.

3 <class>/<annotation>/enabled=false—Disables the specified annotation on
the specified class. For example, io.quarkus.transactions.Transaction-
Resource/Timeout/enabled=false disables all @Timeout annotations defined
on the TransactionResource class and any of its methods.

4 <class>/<method>/<annotation>/enabled=false—Disables the specified anno-
tation on a specified method in the specified class. For example, io.quarkus
.transactions.TransactionResource/getBalance/Timeout/enabled=false

disables the @Timeout annotation on the TransactionResource.getBalance()
method, and all other @Timeout annotations in TransactionResource are
unaffected.

As shown in the next listing, add the following to application.properties to disable all
timeouts in the TransactionResource class.

Modify the MicroProfile Fault Tolerance settings
io.quarkus.transactions.TransactionResource/Timeout/enabled=false

Run mvn test. As shown in the following listing, the test fails because the expected
timeout no longer occurs. Although failing a test is not ideal, this does show that the
@Timeout annotation has been disabled.

Listing 7.18 application.properties

155Deploying to Kubernetes
[INFO]
[INFO] Results:
[INFO]
[ERROR] Failures:
[ERROR] FaultyAccountServiceTest.testTimeout:21 1 expectation failed.
Expected status code <504> but was <502>.

[INFO]
[ERROR] Tests run: 3, Failures: 1, Errors: 0, Skipped: 0

To change an annotation parameter, the property format is <class>/<method>/
<annotation>/<parameter>=value. Define the following property as shown next.

io.quarkus.transactions.TransactionResource/Timeout/enabled=false
io.quarkus.transactions.TransactionResource/getBalance/Timeout/value=150

Run mvn test. All tests should pass. With everything working locally, the next step is to
deploy the services to Kubernetes.

7.10 Deploying to Kubernetes
Deploy the updated TransactionService to Kubernetes as shown in the following list-
ing. Run the same commands for the AccountService to ensure they are both up and
running.

Use the Minikube Docker daemon to build the image
eval $(/usr/local/bin/minikube docker-env)

Deploy to Kubernetes. Run this for both the AccountService
and the TransactionService
mvn package -Dquarkus.kubernetes.deploy=true

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true results in an
error in Quarkus 2.x. Follow https://github.com/quarkusio/quarkus/issues/
19701 for updates on a resolution. The problem can be worked around by
removing the application first with kubectl delete -f /target/kubernetes/
minikube.yaml.

Listing 7.19 mvn test failure: expected timeout does not occur

Listing 7.20 application.properties

Listing 7.21 Terminal 2

Comments out the property
disabling timeouts

Changes the timeout value from 100 to 150.
This remains under the WireMock stub delay of

200 ms, which will force a TimeoutException.

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

156 CHAPTER 7 Resilience strategies
Test the bulkhead logic while running in Kubernetes. The approach and code are
nearly identical to that of listing 7.6. In terminal 1 and terminal 2, simultaneously run
the code shown in the next listing.

TRANSACTION_URL=`minikube service transaction-service --url`
count=0
while ((count++ <= 100)); do
 curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d "2.03" \
 $TRANSACTION_URL/transactions/api/444666
 echo
done

Next, run the command in each terminal simultaneously. The output will look similar
to the following listing.

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 503 Service Unavailable
Content-Length: 0

HTTP/1.1 503 Service Unavailable
Content-Length: 0

NOTE To test the bulkhead and receive the 429 TOO_MANY_REQUESTS HTTP
status code, the circuit breaker must skip BulkheadExceptions. Either set the
@CircuitBreakerskipOn parameter to BulkheadException.class, or set it
using application.properties with io.quarkus.transactions.Transaction-
Resource/newTransactionWithApi/CircuitBreaker/skipOn=org.eclipse
.mic-roprofile.faulttolerance.exceptions.BulkheadException. We leave
this as an exercise for the reader.

Summary
 Resilience strategies improve application robustness.
 MicroProfile Fault Tolerance supports six resilience strategies: @Asynchronous,

@Bulkhead, @CircuitBreaker, @Fallback, @Retry, and @Timeout.
 @Asynchronous executes threads on a separate thread.
 @Bulkhead limits the number of concurrent requests to avoid cascading failures.

Listing 7.22 Terminal 1

Listing 7.23 Terminal 1 output

Successful request

Successful request

The response returned when a
CircuitBreakerException is thrown.
Between terminal 1 and terminal 2
requests, at least two of the most
recent three requests resulted in a
BulkheadException.

The circuit breaker remains open. The
circuit breaker will likely not close until the
script is run from one terminal at a time.

157Summary
 @CircuitBreaker prevents repeated failures by recognizing a failure and avoids
executing logic for a period of time.

 @Fallback executes alternative logic when an exception is thrown.
 @Retry retries a method call when an exception is thrown.
 @Timeout prevents a method from waiting longer than a specified amount of time.
 The Quarkus RESTEasy Reactive extension eliminates the need for the

@Asynchronous annotation.
 MicroProfile Fault Tolerance annotations can be enabled, disabled, and cus-

tomized using properties.

Reactive in an
imperative world
A Microservice being responsive refers to its ability to complete the task required of
it within a given time. The complexity of the task will impact the time a micro-
service takes to complete its work. Different microservices performing their tasks
can require different amounts of time to complete them, yet both be considered
responsive. Developing responsive microservices is key in a modern age where
users—the customers—are expecting near instantaneous loading of web pages and
answers to their queries. Microservices that are not responsive enough will fail
when subjected to intensive high load. In an age of “going viral,” it is critical that an
application remain responsive while sustaining high load.

 Although being reactive represents different aspects, in this chapter we focus on
using Reactive Streams to create an execution pipeline within an application and
between applications. After covering Reactive Streams, we introduce the MicroProfile
Reactive Messaging specification and how it’s used to build responsive microservices,

This chapter covers
 Importance of responsive microservices

 The MicroProfile Reactive Messaging
specification

 Sending and receiving messages with Apache
Kafka
158

159Reactive example
including how to interact with Apache Kafka or other messaging systems. In the last
section of the chapter, we explain how developers can bridge their imperative and
reactive code within a single application or microservice.

8.1 Reactive example
Figure 8.1 details how each of the banking microservices interact with a messaging sys-
tem, Apache Kafka, to implement message passing between them. Two separate mes-
sage flows are created between the various services.

 The first flow send an event from the Account service when overdrawn. The event
will be added to a Kafka topic and then consumed by the Overdraft service. The

a. Admin user adjusts the account

overdraft limit.

b. Emit a message to a Kafka topic.

c. Process the message from Kafka.

d. Update the account in the database

with the new overdraft limit.

Flow 2: Overdraft limit adjustment

1. Request to withdraw funds.

2. If account is now overdrawn, emit

a message to a Kafka topic.

3. Process the message from Kafka.

4. Put the message onto the internal

memory channel.

5. Emit a message to a Kafka topic

with overdraft fee details.

6. Process the message from Kafka.

7. Write the transaction for the

overdraft fee to the database.

Flow 1: Account overdrawn event

Overdraft

microservice

b

c

d

a

Update overdraft

topic

Data Data

Apache Kafka

Transactions

microservice

Accounts

microservice

Overdraft fee

topic
Overdraft

topic

Figure 8.1 Microservices utilizing Reactive Messaging

160 CHAPTER 8 Reactive in an imperative world
Overdraft service determines the appropriate fee for being overdrawn and sends a
new event to a different Kafka topic to process the fee as an account transaction.

The second flow enables an admin user to adjust the overdraft limit for specific
accounts, based on high-value customers, for instance. An event containing the new
overdraft limit is sent to a Kafka topic for processing by the Account service.

NOTE Throughout the chapter, the terms event and message are used inter-
changeably. In the worlds of reactive messaging and event-driven architec-
tures, the two terms are synonymous. Which is preferred can often depend on
the community using it, or whether it’s being used in reference to a related
term, such as reactive messaging or event-driven architecture.

8.2 What is Reactive Streams?
Reactive Streams is an asynchronous streaming specification for interactions between
different libraries and/or technologies. In JDK 9, it’s implemented as java.util
.concurrent.Flow. However, Reactive Streams is not intended for direct usage by
developers. It needs to underpin the libraries and technologies that developers use,
and which they need to be aware about, but they are not concerned with its usage.

 Reactive streams are necessary for the construction of reactive systems; see https://
www.reactivemanifesto.org/ for further details. Reactive systems are an architectural
style for designing responsive systems. The key characteristics of reactive systems are
resiliency, elasticity, and asynchronous message passing.

 A developer does need to understand the following fundamental building blocks of
Reactive Streams: Publisher, Subscriber, and Processor (see figure 8.2).

What is a Kafka topic?
Topics contain events, or messages, durably stored for retrieval. Every topic can
receive events from zero, one, or many producers and have zero, one, or many con-
sumers subscribing to those events. Unlike traditional messaging systems, events in
a topic are not deleted after they’re consumed. For better performance while scaling
with load, a topic is partitioned between many broker instances. Any event written to
a topic is only appended, ensuring the entire series of events can be replayed from
the beginning, if desired, to reach the same end state of the data.

Publisher

Subscriber

Processor Figure 8.2 Reactive Streams
building blocks

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/

161What is Reactive Streams?
8.2.1 Publisher, Subscriber, and Processor

A Publisher is the first stage of a Reactive Stream, or pipeline; there is nothing before it.
Any pipeline of data always consists of a single Publisher to begin the stream.

 A Subscriber is the final stage of a Reactive Stream. The stream completes with a
Subscriber; no further processing on that particular stream can occur.

 A Processor combines Subscriber and Publisher to create a stage in the pipeline that
continues the stream. It will manipulate and act on the data in the stream in any way,
but it will not create or end the stream it’s acting on.

 In its simplest form, a stream consists of a Publisher and a Subscriber. Complex
streams can consist of many Processors between a Publisher and a Subscriber, as shown
in figure 8.3. There is no limit to the number of Processors that a stream can contain.

Understanding these fundamental building blocks of a Reactive Stream is one part,
but it’s not the only part. Back pressure is a key aspect to Reactive Streams and their per-
formance.

8.2.2 The importance of back pressure

What is back pressure exactly? Let’s start by looking at a stream where service A is a
publisher and service B is a subscriber. Figure 8.4 is an example of a situation where
there is no restriction on the number of messages that service A can send to service B.
Is that a problem? Maybe it isn’t, which would be very lucky—usually it would be a
big problem.

 When service B is unable to process the messages it’s receiving in a timely manner,
the following problems can occur:

 The response time for service B can increase, because it’s under heavy load.
 Service B can become unresponsive and fail. Depending on the deployment

environment, it might mean there are no service B instances available for use. If
there are no instances available, there can be a cascade of failures from service
B to service A, and on to whatever called service A.

 Congestion on the network between services A and B will increase the latency of
any communication on the same network path. This will lead to response time
impacts on other services unrelated to service B.

SubscriberProcessorProcessor

Processor ProcessorPublisher

Figure 8.3 A complex Reactive Stream

162 CHAPTER 8 Reactive in an imperative world
Overall, it’s a bad situation. One service becoming unavailable is bad, but the impact
on other unrelated services makes it even worse.

 What should the flow of messages to a service look like? In figure 8.5, service B is
still receiving a stream of messages from service A, but in such a way that service B
never becomes overwhelmed with too many messages, enabling service B to remain in
service and be more responsive to requests. It may appear service B is not being very
responsive because it’s handling fewer messages than in figure 8.4, but it’s more
responsive than being unavailable because it was unable to handle the load.

This is how back pressure can help to limit the possibility of the problems men-
tioned previously from occurring. Figure 8.6 outlines the process of implementing
back pressure.

 When service B subscribes to receive messages from service A, service A asks
how many messages it would like. In this example, service B would like five messages.

Service A

[publisher]

Service B

[subscriber]

Figure 8.4 Overloading service B and the network

Service A Service B

Figure 8.5 A steady stream of messages to service B

163Reactive Messaging in Quarkus
Service A dutifully sends across five messages for processing. Once service B has fin-
ished processing some of these messages, three in this case, service A will send three
more messages. Notice that service A never sends more messages than service B has
said it can process at once.

 This section described Publishers, Subscribers, and Processors as the key compo-
nents of Reactive Streams that developers must combine effectively to create pipelines
for processing data. We also covered how the common problem associated with over-
loading Reactive Streams—sending too many messages—can be remedied using back
pressure. In the next section, we introduce how Quarkus enables developers to inte-
grate Reactive Streams into applications with Reactive Messaging.

8.3 Reactive Messaging in Quarkus
Quarkus enables developers to take advantage of Reactive Messaging, as well as the
other aspects of reactive programming, while still utilizing the Java knowledge they’ve
developed over the years with Java EE, and now Jakarta EE. This allows developers
to convert small pieces of an application to use reactive concepts, without needing to
develop an entirely reactive application.

 Developers can steadily include more reactive aspects into their applications as
their experience grows, without needing to switch between frameworks. This section
explains the various ways a developer can use Quarkus to program with Reactive in
their applications.

 Let’s start by copying the Account service from a previous chapter. Now add the
following dependency to pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-reactive-messaging-kafka</artifactId>
</dependency>

Quarkus offers Reactive Messaging extensions for Apache Kafka, AMQP, and MQTT.
In this case, we chose the extension for Apache Kafka.

Service A

How many messages can you handle?

Five, please.

Three more, please.

Service B

Figure 8.6 A steady stream of messages to service B

164 CHAPTER 8 Reactive in an imperative world

C
O
in

the

conta
O

8.3.1 Bridging from imperative to reactive with emitters

Imperative programming uses a sequence of commands to alter state but does so in a
step-by-step fashion where the developer defines the execution path. Imperative pro-
gramming clearly defines what should happen, but also when it should happen, to
achieve a desired result.

 Change the Account service by modifying Account to have a BigDecimal field
named overdraftLimit. The field will be used to track the current overdraft limit of
an account, allowing it to be updated via events. With Account having another field,
update import.sql to insert a value for the field into each record during startup. The
code for the chapter sets it to -200.00, but the reader can set an alternative value.

 The first challenge for developers is starting a Reactive Stream from imperative
code. To start a Reactive Stream, a Publisher feeds the stream with messages. In the
next example, an Emitter acts as a Publisher starting the Reactive Stream. Let’s see
how it works!

@Inject
@Channel("account-overdrawn")
Emitter<Overdrawn> emitter;

@PUT
@Path("{accountNumber}/withdrawal")
@Transactional
public CompletionStage<Account> withdrawal(@PathParam("accountNumber")
 Long accountNumber, String amount) {
 ...

 if (entity.accountStatus.equals(AccountStatus.OVERDRAWN)
 && entity.balance.compareTo(entity.overdraftLimit) <= 0) {
 throw new WebApplicationException("Account is overdrawn, no further

withdrawals permitted", 409);
 }

 entity.withdrawFunds(new BigDecimal(amount));

 if (entity.balance.compareTo(BigDecimal.ZERO) < 0) {
 entity.markOverdrawn();
 entity.persist();
 Overdrawn payload =
 new Overdrawn(entity.accountNumber, entity.customerNumber,

 entity.balance, entity.overdraftLimit);
 return emitter.send(payload)
 .thenCompose(empty -> CompletableFuture.completedFuture(entity));
 }
 return entity;
}

Listing 8.1 AccountResource

The name of the channel for emitting messages.
The name of the channel in the application isn’t

required to match the name of the topic on Kafka.
Injects an Emitter
for the Overdrawn
message payload type

The return type must be
CompletionStage because the

entity used in the Kafka message
is still inside a transaction.

Throws an exception if the
account has already passed
the overdraftLimit amount

Forces the entity to
persist before sending
it in the message

reates an
verdrawn
stance as
 message

payload

Sends a
message
ining the
verdrawn

payload Chains the CompletionStage
from emitter.send() to return

one with the account entity

165Reactive Messaging in Quarkus
Listing 8.1 is an example of bridging between imperative and reactive programming.
While inside a JAX-RS resource method—imperative programming—the application
sends a message onto a channel—reactive programming—bridging from one pro-
gramming model to the other. Section 8.3.3 details how listing 8.1 can be tested.

 Being able to combine imperative and reactive programming into a single applica-
tion is incredibly powerful. No longer is a developer restricted to utilizing only one
part of their toolbox in developing an application. Now they can include as many
parts of their toolbox as they need, or desire, in any given application, irrespective of
whether it requires imperative or reactive programming. With Quarkus, developers
are no longer required to choose between imperative or reactive programming for a
project; they are able to use Quarkus in whichever direction the project might take.

 Looking at the code in listing 8.1, we see the Emitter has a type of Overdrawn. An
instance of Overdrawn will be the payload of the message that is sent to Apache Kafka,
as shown next.

public class Overdrawn {
 public Long accountNumber;
 public Long customerNumber;
 public BigDecimal balance;
 public BigDecimal overdraftLimit;

 public Overdrawn(Long accountNumber, Long customerNumber, BigDecimal
balance, BigDecimal overdraftLimit) {

 this.accountNumber = accountNumber;
 this.customerNumber = customerNumber;
 this.balance = balance;
 this.overdraftLimit = overdraftLimit;
 }
}

Injecting a @Channel can start a Reactive Stream within the same application or con-
nect to an external system, such as Apache Kafka. In this case, it needs to connect to
an external Apache Kafka topic. For that, the application needs to configure the chan-
nel indicated with the @Channel annotation, as illustrated in the next listing.

mp.messaging.outgoing.account-overdrawn.connector=smallrye-kafka
mp.messaging.outgoing.account-overdrawn.topic=overdrawn
mp.messaging.outgoing.account-overdrawn.value.serializer=

io.quarkus.kafka.client.serialization.JsonbSerializer

Listing 8.2 Overdrawn

Listing 8.3 application.properties

Uses the smallrye-kafka connector for the channel.
This equates to sending the messages to Apache Kafka.

Connects to the overdrawn
topic to send messages

Uses the Quarkus JSON-B serializer to convert
the Overdrawn instance to JSON

166 CHAPTER 8 Reactive in an imperative world
The keys used in application.properties in this example do have special meaning, so
let’s discuss the various parts to them. The key format follows:

mp.messaging.<incoming|outgoing>.<channel_name>.<key_name>

The first variable aspect to the key is whether it represents an incoming or outgoing
connection. In listing 8.1, a message will be sent from an application to Kafka, requir-
ing listing 8.3 to use outgoing. The next variable is channel_name. Listing 8.1 speci-
fied the Emitter with @Channel("account-overdrawn"). Thus, all keys need to use
the channel name account-overdrawn. Lastly is the variable key component identify-
ing the specific piece of functionality being configured. In the next code listing, it
includes connector, topic, and value.serializer. The full list of possible configura-
tion keys for Apache Kafka with outgoing channels (http://mng.bz/OQeo) and
incoming channels (http://mng.bz/YwWK) are in the SmallRye Reactive Messaging
documentation (http://mng.bz/GOvR).

NOTE If the channel name used within the application matched the topic on
Apache Kafka, the key for topic can be skipped because it assumes the topic
name is the channel name if not present.

Instead of emitting only the payload of a message, it’s also possible to send the
entire Message, including handlers for an acknowledgment, successful and failure,
as shown here.

int ackedMessages = 0;
List<Throwable> failures = new ArrayList<>();
...
CompletableFuture<Account> future = new CompletableFuture<>();
emitter.send(Message.of(payload,
 () -> {
 future.complete(entity);
 return CompletableFuture.completedFuture(null);
 },
 reason -> {
 failures.add(reason);
 future.completeExceptionally(reason);
 return CompletableFuture.completedFuture(null);
 })
);
return future;

Listing 8.4 AccountResource

A CompletableFuture
is needed as the

return type.

Uses Message.of() to construct an immutable
message. The payload is the same content as the
previous usage with emitter.send(payload).

Defines an acknowledgment handler
supplying a CompletionStage<Void>
as the result. This handler increases a
count of acknowledged messages.

Completes the future
with the account entity

A negative acknowledgment
function where Throwable is
a parameter and returns a
CompletionStage<Void>. The
example function captures the
failure reason returned from
the negative acknowledgment.

Completes the future
exceptionally

http://mng.bz/OQeo
http://mng.bz/YwWK
http://mng.bz/GOvR

167Reactive Messaging in Quarkus
This section introduced how to bridge from imperative to reactive code with emitters,
enabling developers to send messages from a JAX-RS resource method and transmit
them to a destination—in this case, an Apache Kafka topic—using @Channel on the
Emitter injection point, to indicate the topic.

8.3.2 What about blocking?

When developing reactive code, it’s extremely important to not block the execution
loop, also referred to as the event loop or IO thread. Blocking on the execution
loop prevents other methods from executing at the same time, resulting in reduced
throughput because the framework is not able to switch between inactive and active
processes.

 Figure 8.7 is a representation of the execution loop, showing it processing incoming
requests with a single thread. Requests are all processed on the execution loop, but
there are times when it’s necessary to perform work that can be slower, such as writing to
a database. In such a situation, it’s critical to offload the slower work from the execution
loop; otherwise, the single thread handling all requests will be prevented from doing
anything except processing the slower work. When slower work is offloaded to other
threads, the execution loop can handle a significantly higher request load.

For these situations, developers need the ability to indicate which code is blocking,
allowing the framework to offload the blocking code into a separate thread. Quarkus
enables this with the @Blocking annotation for reactive messaging, as shown next.

@Incoming("overdraft-update")
@Blocking
@Transactional

Listing 8.5 AccountResource

Request

Request

Request Execution loop

(Single thread)

Operation complete

Blocking

operations

Offload

Figure 8.7 The execution loop

Indicates that the method acts as a Subscriber by
receiving messages but not sending any out. Just like

@Channel, @Incoming contains the name of the channel,
or topic, from which to read messages.

The method executes blocking
code and runs the method on a
thread that is not the execution
loop thread.

168 CHAPTER 8 Reactive in an imperative world

public void processOverdraftUpdate(OverdraftLimitUpdate overdraftLimitUpdate) {
 Account account =

Account.findByAccountNumber(overdraftLimitUpdate.accountNumber);
 account.overdraftLimit = overdraftLimitUpdate.newOverdraftLimit;
}

NOTE Section 8.4.2 explains the acknowledgment policies of @Incoming.

OverdraftLimitUpdate is a POJO with accountNumber and newOverdraftLimit as
fields. The source for OverdraftLimitUpdate is in /chapter8/account-service/.

 @Blocking is a great annotation because it enables developers to utilize Reactive
Streams, while still executing more imperative, but blocking, code. Without the anno-
tation, executing blocking code would need an Executor to spawn another thread to
perform the work and deal with propagating contexts between threads for CDI beans,
database transactions, or any other context that might be on the current thread that is
required to execute the method.

%prod.kafka.bootstrap.servers=my-cluster-kafka-bootstrap.kafka:9092
mp.messaging.incoming.overdraft-update.connector=smallrye-kafka
mp.messaging.incoming.overdraft-update.topic=new-limit
mp.messaging.incoming.overdraft-update.value.deserializer=

quarkus.accounts.OverdraftLimitUpdateDeserializer

These settings are similar to those from listing 8.3, but they configure an incoming
channel. Notice that incoming replaces outgoing in the key, and the channel name
overdraft-update replaces account-overdrawn.

 Listing 8.6 specified a deserializer for OverdraftLimitUpdate. Let’s take a look at
what it does, as shown next.

public class OverdraftLimitUpdateDeserializer extends
JsonbDeserializer<OverdraftLimitUpdate> {

 public OverdraftLimitUpdateDeserializer() {
 super(OverdraftLimitUpdate.class);
 }
}

Listing 8.6 application.properties

Listing 8.7 OverdraftLimitUpdateDeserializer

OverdraftLimitUpdate is the
payload from the message

that was received.
Updates the Account with
the new overdraft limit

Sets the Kafka broker location for production. In
development, the value defaults to localhost:9092,

making it unnecessary to set in most situations.
Reads the message from
the new-limit topic

Specifies the deserializer used to convert the JSON
payload into an instance of OverdraftLimitUpdate

The deserializer needs to
extend JsonbDeserializer for
JSON-B content. If using Jackson,
ObjectMapperDeserializer would
need to be extended instead.

In the default constructor, passes the
class type to the superclass constructor

169Reactive Messaging in Quarkus
There’s not much to the deserializer, but it handles the JSON-to-POJO conversion for
developers. Developers don’t need to use object mappers or interact with JSON
objects—they can use the POJO directly in the method that receives a message.

 This section introduced the @Blocking annotation for Reactive Messaging meth-
ods where developers know it could block and, therefore, needs to run in a separate
thread. In addition, we covered using @Incoming to indicate a Subscriber of a Reac-
tive Stream.

8.3.3 Testing “in memory”

Though it’s important to test the integration with Apache Kafka, there is also benefit
in being able to test quickly without it. To support testing of channels without Apache
Kafka, the in-memory connector can be used instead. The in-memory connector replaces
the smallrye-kafka connector for handling interaction with topics.

 To use the in-memory connector, the following dependency is needed:

<dependency>
 <groupId>io.smallrye.reactive</groupId>
 <artifactId>smallrye-reactive-messaging-in-memory</artifactId>
 <scope>test</scope>
</dependency>

NOTE The dependency is in test scope because it’s not required for compi-
lation, and it shouldn’t be packaged into the final application.

The in-memory connector works by redefining the configuration of the channels in
the application. To be able to do that, a QuarkusTestResourceLifecycleManager,
shown in the next code listing, is needed.

public class InMemoryLifecycleManager implements
QuarkusTestResourceLifecycleManager {

 @Override
 public Map<String, String> start() {
 Map<String, String> env = new HashMap<>();
 env.putAll(InMemoryConnector.switchIncomingChannelsToInMemory(

"overdraft-update"));
 env.putAll(InMemoryConnector.switchOutgoingChannelsToInMemory(

"account-overdrawn"));
 return env;
 }

 @Override
 public void stop() {
 InMemoryConnector.clear();
 }
}

Listing 8.8 InMemoryLifecycleManager

Alters the incoming channel
named overdraft-update to

use the in-memory connector

The outgoing channel account-
overdrawn switches to use the
in-memory connector.

Resets the configuration for any
channels that were switched to
the in-memory connector.

170 CHAPTER 8 Reactive in an imperative world

h

r

s
.

Now let’s use this class in a test, illustrated next, to verify that an account going over-
drawn triggers an event.

@QuarkusTest
@QuarkusTestResource(InMemoryLifecycleManager.class)
public class AccountResourceEventsTest {

 @Inject @Any
 InMemoryConnector connector;

 @Test
 void testOverdraftEvent() {
 InMemorySink<Overdrawn> overdrawnSink = connector.sink("account-overdrawn");

 Account account =
 given()
 .when().get("/accounts/{accountNumber}", 78790)
 .then().statusCode(200)
 .extract().as(Account.class);

 BigDecimal withdrawal = new BigDecimal("23.82");
 BigDecimal balance = account.balance.subtract(withdrawal);

 account =
 given()
 .contentType(ContentType.JSON)
 .body(withdrawal.toString())
 .when().put("/accounts/{accountNumber}/withdrawal", 78790)
 .then().statusCode(200)
 .extract().as(Account.class);

 // Asserts verifying account and balance have been removed.

 assertThat(overdrawnSink.received().size(), equalTo(0));

 withdrawal = new BigDecimal("6000.00");
 balance = account.balance.subtract(withdrawal);

 account =
 given()
 .contentType(ContentType.JSON)
 .body(withdrawal.toString())
 .when().put("/accounts/{accountNumber}/withdrawal", 78790)
 .then().statusCode(200)
 .extract().as(Account.class);

 // Asserts verifying account and customer details have been removed.
 assertThat(account.accountStatus, equalTo(AccountStatus.OVERDRAWN));
 assertThat(account.balance, equalTo(balance));

 assertThat(overdrawnSink.received().size(), equalTo(1));

Listing 8.9 AccountResourceEventsTest

Uses the InMemoryLifecycle-
Manager with the test to switc
the channels to in-memory

Injects an InMemoryConnector into the test for
interacting with a channel. @Any on the injection
point is needed because the instance to be injected
has a qualifier present, indicating any qualifiers
can be ignored.

Retrieves the sink fo
the account-overdrawn

channel from the
InMemoryConnector. The
sink receives any event

sent to the channel

Sets a withdrawal amount that
will not cause the account to

become overdrawn

Verifies that the sink for the
channel has not received any
events. It shouldn’t because

the account is not overdrawn.

Makes another account
withdrawal that will
trigger it being
overdrawn

Asserts the
account status is
OVERDRAWN

The channel
should have
received an
event.

171Reactive Messaging in Quarkus

E
o
a
-2

S

the
u

 Message<Overdrawn> overdrawnMsg = overdrawnSink.received().get(0);
 assertThat(overdrawnMsg, notNullValue());
 Overdrawn event = overdrawnMsg.getPayload();
 assertThat(event.accountNumber, equalTo(78790L));
 assertThat(event.customerNumber, equalTo(444222L));
 assertThat(event.balance, equalTo(balance));
 assertThat(event.overdraftLimit, equalTo(new BigDecimal("-200.00")));
 }
 ...
}

Listing 8.9 tests the use of Emitter in AccountResource.withdrawal() by verifying
that an event is sent to the Emitter, but only when the account becomes overdrawn,
and not before.

 Next, let’s see the test for @Incoming.

public class AccountResourceEventsTest {
 ...
 @Test
 void testOverdraftUpdate() {
 InMemorySource<OverdraftLimitUpdate> source =

connector.source("overdraft-update");

 Account account =
 given()
 .when().get("/accounts/{accountNumber}", 123456789)
 .then().statusCode(200)
 .extract().as(Account.class);

 // Asserts verifying account and balance have been removed.
 assertThat(account.overdraftLimit, equalTo(new BigDecimal("-200.00")));

 OverdraftLimitUpdate updateEvent = new OverdraftLimitUpdate();
 updateEvent.accountNumber = 123456789L;
 updateEvent.newOverdraftLimit = new BigDecimal("-600.00");

 source.send(updateEvent);

 account =
 given()
 .when().get("/accounts/{accountNumber}", 123456789)
 .then().statusCode(200)
 .extract().as(Account.class);

 // Asserts verifying account and balance have been removed.
 assertThat(account.overdraftLimit, equalTo(new BigDecimal("-600.00")));
 }
}

Listing 8.10 AccountResourceEventsTest

Retrieves the event, Message
instance, from the channel sink

Verifies the contents of the Overdrawn payload
have the appropriate values for the account

Retrieves the source for the
overdraft-update channel from
the InMemoryConnector. The
source can send events to the
channel.

nsures the current
verdraft limit on the
ccount is the default
00.00

Creates an OverdraftLimitUpdate
instance with the account number

and new overdraft limit

ends the
event to
 channel
sing the

source

After retrieving the account,
verifies the overdraft limit has

been updated to -600.00

172 CHAPTER 8 Reactive in an imperative world
To see the tests run, open a terminal and change to /chapter8/account-service/
directory and run the following:

mvn verify

If everything worked as expected, the tests pass without error.
 With the 2.x release of Quarkus, an alternative to in-memory testing is available for

Kafka. When a Docker instance is available, the new Dev Services (https://quarkus
.io/guides/kafka-dev-services) facility will start a Kafka broker using Redpanda (https://
vectorized.io/redpanda).

 This section revealed how to test Reactive Messaging applications without needing
to run an external messaging broker, such as Apache Kafka. Whether application code
uses an Emitter, @Incoming, or any method annotation for reactive messaging, the
code can be unit tested. Though there is still a need for integration testing, being able
to unit test code provides a faster feedback loop for issues.

8.4 How does it work?
The previous section covered some examples using Reactive Messaging, but now let’s
take a look at what underpins the examples. Readers will learn about the MicroProfile
Reactive Messaging specification, which is where the annotations from the examples
are defined, and what a Reactive Stream looks like.

8.4.1 MicroProfile Reactive Messaging specification

The specification defines the means to build distributed systems enforcing asynchro-
nous communication by promoting location transparency and temporal decoupling.
Temporal decoupling refers to separating two different actions, or steps of execution,
such that they can occur at different times. Location transparency requires not hard-
coding physical addresses of one service into another but enabling the physical loca-
tion of services to shift over time and still be addressable.

 Synchronous communication, often through HTTP, can have a level of location
transparency through the use of DNS records or service registries. For example,
Kubernetes uses DNS for location transparency to abstract which node in the cluster is
hosting a service instance. However, there is no way to avoid temporal coupling
between services because the very nature of synchronous communication requires it.

 How does Reactive Messaging differ from the message-driven beans of JMS? JMS
was designed at a time when message brokers were present at the edges of application
architectures, not as an integral piece of an application’s architecture. If a developer
wants to use messages with JMS within their application, it requires a message to be
published to an external broker, before the same application then receives the same
message from an external broker. When dealing with intra-application messaging,
message brokers built for operating at the edges of a system would be overweight. The
Reactive Messaging specification brings this functionality to developers by not requir-
ing external brokers to create Reactive Streams within an application.

https://quarkus.io/guides/kafka-dev-services
https://quarkus.io/guides/kafka-dev-services
https://quarkus.io/guides/kafka-dev-services
https://vectorized.io/redpanda
https://vectorized.io/redpanda
https://vectorized.io/redpanda

173How does it work?
 Over the following sections, the reader will learn about
the specification, including how messages, channels, con-
nectors, and streams work together as part of a distributed
system.

8.4.2 Message content and metadata

The core of the specification is a Message, representing the
data that’s transmitted, as shown in figure 8.8. As seen from
the examples earlier in the chapter, the Message wraps the
specific payload being sent.

 The Message interface provides methods that readers have already seen in earlier
examples, including the following:

 getPayload—Retrieves the payload from the message wrapper. Examples of
payload are OverdraftLimitUpdate and Overdrawn.

 getMetadata—Accesses the metadata from within the message wrapper. Depend-
ing on the underlying message type, the available metadata will differ. When
using Apache Kafka, getMetadata(IncomingKafkaRecordMetadata.class)
can be called on Message. IncomingKafkaRecordMetadata offers methods to
access details of the underlying Kafka record, such as getTopic, getKey, and
getTimestamp.

 ack—For acknowledging the completion of message processing.
 nack—To negatively acknowledge message processing. This indicates there was

a failure in processing the message, and the publisher of the message needs to
determine the appropriate handling of the failed message.

IMPORTANT A Subscriber or Processor must properly acknowledge the pro-
cessing of a message. Doing so assists in preventing the reprocessing of suc-
cessful messages. With Quarkus, in many situations acknowledgment happens
automatically for the developer. When a method has a Message parameter,
developers must manually call ack() on the message. In other situations,
acknowledgment occurs as long as no exception is thrown.

NOTE Negative acknowledgment, the nack() method, is an experimental
feature of SmallRye Reactive Messaging in Quarkus. If feedback from the
community is positive, the method will be proposed to the specification.

When more control over automatic acknowledgment of a message is needed, the
developer can annotate a method with @Acknowledgement. @Acknowledgement pro-
vides the following four options for configuring the type of acknowledgment:

 POST_PROCESSING—Acknowledgment of an incoming message does not occur
until any produced message has been acknowledged. If service A sends a mes-
sage to service B, which in turn sends a message to service C, service B will not
acknowledge the message it received from service A until service C has acknowl-
edged the message service B sent.

Message

Metadata

Payload

Figure 8.8 Content of a
Message

174 CHAPTER 8 Reactive in an imperative world

Upd
c

and
o

 PRE_PROCESSING—The incoming message is acknowledged before method
execution.

 MANUAL—The developer has full control over executing ack() on the Message.
 NONE—No acknowledgment of any kind is performed.

Now let’s see in the next code listing some methods that interact with message meta-
data by adding it to a message and then retrieving it in a subsequent method.

@Incoming("account-overdrawn")
@Outgoing("customer-overdrafts")
public Message<Overdrawn> overdraftNotification(Message<Overdrawn> message) {
 Overdrawn overdrawnPayload = message.getPayload();

 CustomerOverdraft customerOverdraft =
 customerOverdrafts.get(overdrawnPayload.customerNumber);
 // Create a new CustomerOverdraft if it's null. Full content in chapter

source

 AccountOverdraft accountOverdraft =
customerOverdraft.accountOverdrafts.get(overdrawnPayload.accountNumber);

 // Create a new AccountOverdraft if it's null. Full content in chapter
source

 customerOverdraft.totalOverdrawnEvents++;
 accountOverdraft.currentOverdraft = overdrawnPayload.overdraftLimit;
 accountOverdraft.numberOverdrawnEvents++;

 return message.addMetadata(customerOverdraft);
}

Listing 8.11 is a Publisher, defined earlier in the chapter, because it includes both
@Incoming and @Outgoing on the method. In the next code listing, we extract the cus-
tomer overdraft details to determine the appropriate fee, then we create an Account-
Fee that is packaged into a message and sent to the outgoing channel.

@ApplicationScoped
public class ProcessOverdraftFee {
 @Incoming("customer-overdrafts")
 @Outgoing("overdraft-fee")

Listing 8.11 OverdraftResource

Listing 8.12 ProcessOverdraftFee

An incoming channel connected to the topic
that receives messages from AccountResource

An internal application
channel for passing a message to
ProcessOverdraftFee in listing 8.12

Receives a Message with an Overdrawn
payload, and returns an identical message
and payload combination, though not the
same message content in this case

Retrieves the
Overdrawn payload

from inside the message

Gets the current set of overdraft
events for the customer

ates the
ustomer
 account
verdraft

events

Returns a new Message instance containing the same payload,
but with CustomerOverdraft as metadata in the message

A CDI bean with an application scope
means only one will be created.

Receives the messages from the
customer-overdrafts channel that
were added in listing 8.11

Creates a message to be sent
to the overdraft-fee channel

175How does it work?
 public AccountFee processOverdraftFee(Message<Overdrawn> message) {
 Overdrawn payload = message.getPayload();
 CustomerOverdraft customerOverdraft =
 message.getMetadata(CustomerOverdraft.class).get();

 AccountFee feeEvent = new AccountFee();
 feeEvent.accountNumber = payload.accountNumber;
 feeEvent.overdraftFee = determineFee(payload.overdraftLimit,

customerOverdraft.totalOverdrawnEvents,
 customerOverdraft.accountOverdrafts.get(payload.accountNumber)

.numberOverdrawnEvents);
 return feeEvent;
 }
}

OverdraftResourceEventsTest tests these interactions, which is in the chapter source
in the /chapter8/overdraft-service/src/test/java/quarkus/overdraft_ directory. Because
the content of OverdraftResourceEventsTest is quite similar to listing 8.9, it was not
included for brevity.

 Running mvn verify in the /chapter8/overdraft-service/ directory runs the test.
Everything should pass without a problem.

 Because the test used the in-memory connector, there was no need to configure
any of the channels with properties. However, they are needed when connecting with
Kafka, as shown next.

mp.messaging.incoming.account-overdrawn.connector=smallrye-kafka
mp.messaging.incoming.account-overdrawn.topic=overdrawn
mp.messaging.incoming.account-overdrawn.value.deserializer=

quarkus.overdraft.OverdrawnDeserializer

mp.messaging.outgoing.overdraft-fee.connector=smallrye-kafka
mp.messaging.outgoing.overdraft-fee.topic=account-fee
mp.messaging.outgoing.overdraft-fee.value.serializer=

io.quarkus.kafka.client.serialization.JsonbSerializer

mp.messaging.outgoing.overdraft-update.connector=smallrye-kafka
mp.messaging.outgoing.overdraft-update.topic=new-limit
mp.messaging.outgoing.overdraft-update.value.serializer=

io.quarkus.kafka.client.serialization.JsonbSerializer

IMPORTANT Listing 8.13 does not include a channel definition for customer-
overdrafts. customer-overdrafts is purely an internal application channel;
@Outgoing and @Incoming are present in the same application deployment,

Listing 8.13 application.properties

Accepts a Message with Overdrawn payload,
and returns an AccountFee payload that will
be wrapped into a message

Retrieves the CustomerOverdraft
metadata from the Message, which

was added in listing 8.11

AccountFee is the payload that will
be included in the new message

the method produces.

OverdrawnDeserializer converts JSON into an Overdrawn
instance and is nearly identical to listing 8.7.

176 CHAPTER 8 Reactive in an imperative world
so there is no need for it to be defined in configuration. Quarkus will auto-
matically create a Reactive Stream connecting them.

This section introduced the Message interface with methods for accessing the pay-
load, acknowledging a message, and retrieving metadata from the message. Message
consists of the payload with additional metadata wrapped together.

8.4.3 Messages in the stream

How does a Message fit within a Reactive Stream?
 Figure 8.9 shows an internal view of an application where several CDI beans pub-

lish, process, and subscribe to messages, creating a Reactive Stream between them.
Between each CDI bean is a channel, enabling methods on CDI beans to be connected
together in a chain, where they can pass messages.

A channel can be within an application between components, as in figure 8.9, or con-
nect to remote brokers or message transport layers.

 The architecture in figure 8.10 is an application receiving messages with one con-
nector and publishing messages to another connector.

In this architecture, channels connect external brokers to the application and
between components of the application internally. The connector transport could

Bean 3Bean 2Bean 1

Channel

Message

Metadata

Payload

Channel

Message

Metadata

Payload Figure 8.9 Connecting internal
code with streams

Application

BrokerBroker

Message

MessageConnectorBean 3Bean 2Bean 1Connector

Message

Message

Message

Channel

Message

Metadata

Payload

Message

Channel

Message

Metadata

Payload

Figure 8.10 Integrating streams between microservices

177Deploying to Kubernetes
be of the same or different types, such as a Kafka cluster or an AMQP broker. If the
connector transport utilizes a Kafka cluster, an external channel is a representation
of a Kafka topic. An example of this architecture can be seen in listing 8.11 and list-
ing 8.12.

8.5 Deploying to Kubernetes
To be able to deploy the application to Kubernetes, it’s necessary to have an Apache
Kafka cluster to send to and receive messages from topics.

8.5.1 Apache Kafka in Minikube

The Strimzi (https://strimzi.io/) project is a great way to run an Apache Kafka cluster
on Kubernetes. We will use it with Minikube for testing the application for the chap-
ter. Strimzi includes the following great features by default:

 Secured by default, with support for TLS
 Options for configuring NodePort, LoadBalancer, and Ingress
 Dedicated Kafka nodes
 Operation-based deployment

If Minikube is already running, stop it and run minikube delete before restarting it. It
is recommended to use more than the default 2 GB RAM for Minikube when running
Apache Kafka.

 To keep all the Kafka components separate from the applications, let’s put them
into their own namespace as follows:

kubectl create namespace kafka

Now install the Strimzi Kubernetes operator, as shown here:

kubectl apply -f 'strimzi-cluster-operator-0.25.0.yaml' -n kafka

NOTE Operators are software extensions to Kubernetes that utilize custom
resources to manage applications or their components. In this instance, the
operator is managing an Apache Kafka cluster.

To create the cluster, some YAML, shown in the next code listing, is required to inform
the Strimzi operator of the type of cluster needed.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:

Listing 8.14 kafka_cluster.yml

Sets the resource kind to Kafka, which
is recognized by the Strimzi operator

Indicates the name
for the cluster

https://strimzi.io/

178 CHAPTER 8 Reactive in an imperative world
 replicas: 2
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 ...
 zookeeper:
 replicas: 2
 ...

NOTE In a production environment, it is recommended to have three repli-
cas of Kafka and Zookeeper, at a minimum, for failover purposes. However,
in the constrained environment of a local machine, two replicas shouldn’t
overwhelm the local system while still showcasing multiple brokers.

Now create the cluster defined in listing 8.14 as follows:

kubectl apply -f kafka_cluster.yml -n kafka

Creating the cluster can take a few minutes because it needs to download container
images for Kafka and Zookeeper and configure all the instances. There are a couple
of alternatives to wait for it to be ready. Run a wait command that will complete when
the cluster is ready like so:

kubectl wait kafka/my-cluster --for=condition=Ready --timeout=300s -n kafka

Or keep checking the status of the Kubernetes Pods as follows:

kubectl get pods -n kafka

The expected result of the above command is shown here:

NAME READY STATUS RESTARTS AGE
my-cluster-entity-operator-574bcbc568-xb4xr 3/3 Running 0 86s
my-cluster-kafka-0 1/1 Running 0 115s
my-cluster-kafka-1 1/1 Running 0 115s
my-cluster-zookeeper-0 1/1 Running 0 3m2s
my-cluster-zookeeper-1 1/1 Running 0 3m2s
strimzi-cluster-operator-54ff55979f-895lj 1/1 Running 0 4m14s

Let’s run a quick test to verify the Kafka cluster is operating correctly. First, start a pro-
ducer that accepts messages in the terminal as follows:

kubectl -n kafka run kafka-producer -ti

➥ --image=quay.io/strimzi/kafka:0.25.0-kafka-2.8.0 --rm=true

➥ --restart=Never -- bin/kafka-console-producer.sh --broker-list

➥ my-cluster-kafka-bootstrap.kafka:9092 --topic my-topic

Number of Kafka
replicas to create

Defines the plain
and tls listeners
for the broker

Number of Zookeeper replicas. Zookeeper
is a key-value store used in distribution
systems for storing configuration.

179Deploying to Kubernetes
When the producer is ready to accept input, it will display “>” on the left-hand side of
the terminal window. To send a message, type anything into the terminal and press
Enter. Pressing Enter creates a message, adding it to the my-topic topic.

 Now run the consumer in a different terminal to read the messages, as shown next:

kubectl -n kafka run kafka-consumer -ti

➥ --image=quay.io/strimzi/kafka:0.25.0-kafka-2.8.0 --rm=true

➥ --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server

➥ my-cluster-kafka-bootstrap.kafka:9092 --topic my-topic --from-beginning

A delay of a few seconds occurs while it downloads and starts the container image.
Once started, the messages entered into the producer appear in the order they were
entered. When the messages have been received, stop the consumer and producer by
typing Ctrl-C in each terminal window.

 For the Account service and Overdraft service to operate, topics in Kafka are
needed, so add them as follows:

kubectl apply -f kafka_topics.yml -n kafka

The kafka_topics.yml asks for three topics to be created, named overdrawn, new-
limit, and account-fee. Each topic defines three partitions and two replicas. The
kafka_topics.yml can be found in the /chapter8 directory.

 In the next section, we retrieve messages directly from a Kafka topic.

8.5.2 Putting it all together

With the Apache Kafka cluster in place, it’s time to deploy the Account service and
Overdraft service. Before deploying the services, we need the following PostgreSQL
database:

kubectl apply -f postgresql_kubernetes.yml

NOTE Run eval $(minikube -p minikube docker-env) before the next com-
mand to ensure the container image build uses Docker inside Minikube.

Next, deploy the Account service. Change to the /chapter8/account-service/ direc-
tory in a terminal and run the following code:

mvn verify -Dquarkus.kubernetes.deploy=true

Next, deploy the Overdraft service in the same manner.
 When complete, run minikube service list to show the deployed services, as

shown in the next code listing.

180 CHAPTER 8 Reactive in an imperative world
|-------------|-------------------------------------|-------------------|----------------------------|

| NAMESPACE | NAME | TARGET PORT | URL |

|-------------|-------------------------------------|-------------------|----------------------------|

| default | account-service | http/80 | http://192.168.64.15:30704 |

| default | kubernetes | No node port |

| default | overdraft-service | http/80 | http://192.168.64.15:31621 |

| default | postgres | http/5432 | http://192.168.64.15:31615 |

| kafka | my-cluster-kafka-bootstrap | No node port |

| kafka | my-cluster-kafka-brokers | No node port |

| kafka | my-cluster-zookeeper-client | No node port |

| kafka | my-cluster-zookeeper-nodes | No node port |

| kube-system | kube-dns | No node port |

|-------------|-------------------------------------|-------------------|----------------------------|

With everything in place it’s time to test it all out!
 Let’s withdraw $600 from an account that will make it overdrawn. Open a terminal

and run the following:

ACCOUNT_URL=`minikube service --url account-service`
curl -H "Content-Type: application/json" -X PUT -d "600.00"

${ACCOUNT_URL}/accounts/123456789/withdrawal

The response we should receive is shown in the next code sample.

{
 "id":1,
 "accountNumber":123456789,
 "accountStatus":"OVERDRAWN",
 "balance":-49.22,
 "customerName":"Debbie Hall",
 "customerNumber":12345,
 "overdraftLimit":-200.00
}

With an account becoming overdrawn, a message should have been added to the
account-fee topic. To find out if there is one, use the kafka-console-consumer.sh
script from the Kafka installation. In a terminal run the following:

kubectl -n kafka run kafka-consumer -it \
 --image=strimzi/kafka:0.25.0-kafka-2.8.0 \
 --rm=true --restart=Never \
 -- bin/kafka-console-consumer.sh \
 --bootstrap-server my-cluster-kafka-bootstrap.kafka:9092 \

Listing 8.15 Services present in Minikube

Listing 8.16 Account details response

Status of the
account is
OVERDRAWN.

The account
is reduced from
$550.78 to -$49.22.

Runs an interactive instance
named kafka-consumer

Uses the Strimzi Kafka
container image

Doesn’t restart the container
and remove it when done

Uses the topic consumer
script within the instance

The Kafka bootstrap server

181Deploying to Kubernetes
 --topic account-fee \
 --from-beginning

NOTE Ensure the kafka-consumer from earlier in the chapter was stopped
first to prevent errors.

Assuming the message was correctly sent to the Kafka topic, the result of the previous
command should be the following:

{
 "accountNumber":123456789,
 "overdraftFee":15.00
}

For the same account, now verify what the current overdraft limit is set to as follows:

curl -X GET ${ACCOUNT_URL}/accounts/123456789

The response should be the same as listing 8.16. It will show a current overdraft-
Limit of -200.00. Now call the Overdraft service to adjust the limit as follows:

OVERDRAFT_URL=`minikube service --url overdraft-service`
curl -H "Content-Type: application/json" -X PUT -d "-600.00"

${OVERDRAFT_URL}/overdraft/123456789

Now verify a message was sent through Kafka and the limit is updated in the Account
service, as shown next:

curl -X GET ${ACCOUNT_URL}/accounts/123456789

The response should be the following:

{
 "id":1,
 "accountNumber":123456789,
 "accountStatus":"OVERDRAWN",
 "balance":-49.22,
 "customerName":"Debbie Hall",
 "customerNumber":12345,
 "overdraftLimit":-600.00
}

This section explained how to use the Strimzi operator for creating an Apache Kafka
cluster. Whether in Minikube or a production Kubernetes cluster, the Strimzi opera-
tor can be used for it all. With a Kafka cluster in place, we can create topics with the
Strimzi operator. With the services deployed, the reader ran curl commands to inter-
act with the different services for interacting with the topics.

Connects to
the account-
fee topicReads messages from

offset 0 of the topic

The overdraftLimit for the
account has been updated
to -$600.00.

182 CHAPTER 8 Reactive in an imperative world
Summary
 Reactive Streams consist of a Publisher to create a message, a Subscriber to

receive a message terminating the stream, and any number of Processors in
between.

 By adding @Incoming to a method, a Subscriber listens to messages from a Reac-
tive Stream.

 Whether connecting to Apache Kafka, AMQP brokers, MQTT brokers, or other
types of messaging systems, developers are able to switch configuration between
them without needing to modify application code.

 Include @Blocking on a method to indicate it should occur on a separate
thread, because the work required is potentially blocking. An example is storing
records in a database.

 Use the Strimzi operator for creating an Apache Kafka cluster in Kubernetes, or
Minikube, and creating topics.

Exercise for the reader
Copy the Transaction service from a previous chapter, and modify it to process mes-
sages from the account-fee topic in Kafka. The messages on the topic will have
AccountFee instances as a payload. Retrieve the content of AccountFee, and create
a transaction against the accountNumber with the specified amount.

Developing Spring
microservices with Quarkus
Spring is a popular Java microservices runtime with a large developer base that
has invested a lot of time learning Spring APIs. By offering compatibility with
commonly used Spring APIs, Quarkus enables Spring developers to leverage that
investment and get started quickly. Spring developers can then benefit from
Quarkus development features like live coding and production efficiencies like
low memory usage and fast boot time. This chapter is intended for experienced
Spring developers and will not cover Spring APIs in depth. The examples for
this chapter update the examples from chapters 3 and 7 to use Spring APIs
where possible. By updating existing examples, the following two concepts will
become apparent:

 Spring APIs can be used side by side with Quarkus and MicroProfile APIs.
 Spring APIs and Quarkus/MicroProfile APIs have similar programming

models.

This chapter covers
 Comparing Spring and Quarkus/MicroProfile APIs

 Replacing Quarkus/MicroProfile APIs with Spring
APIs

 How Quarkus implements Spring API compatibility
183

184 CHAPTER 9 Developing Spring microservices with Quarkus
The next section gives a more in-depth overview of the compatibility between Quarkus
and Spring APIs.

9.1 Quarkus/Spring API compatibility overview
When adopting Quarkus, Spring developers can bring their existing API knowledge
with them. The list of Quarkus/Spring compatibility extensions follows:

 Quarkus Extension for Spring Boot properties
 Quarkus Extension for Spring Cache API (not covered in this chapter)
 Quarkus Extension for Spring Cloud Config Client
 Quarkus Extension for Spring DI API
 Quarkus Extension for Spring Data JPA API
 Quarkus Extension for Spring Scheduled (not covered in this chapter)
 Quarkus Extension for Spring Security API
 Quarkus Extension for Spring Web API

The Spring and Quarkus ecosystems are much larger in scope than the extensions
outlined in this list. Migrating existing Spring applications to Quarkus using the
Spring compatibility APIs is not a primary goal of the Spring compatibility APIs. The
goal is to offer enough of the Spring ecosystem APIs to make Spring developers imme-
diately comfortable and productive with Quarkus. Regardless, organizations have
been using the compatibility APIs to facilitate the migration of existing Spring appli-
cations where sufficient API coverage is available and supported APIs, like Micro-
Profile Fault Tolerance, are available.

 Once familiar with Quarkus, some developers decide to switch from the Spring
APIs to the Quarkus and MicroProfile APIs because the APIs are similar and they pre-
fer developing to industry standards when possible. For example, table 9.1 shows a
simple method using both the JAX-RS and Spring Web APIs. The APIs are similar, and
both can run on Quarkus.

The following sections focus on applying the Spring compatibility APIs to the Bank
service, Account service, and Transaction service. To a surprising degree, it is a simple
mapping, similar to table 9.1.

Table 9.1 Comparing a method written using JAX-RS vs. Spring Web annotations

JAX-RS Spring Web

@GET
@Path("/{accountNumber}/balance")
public BigDecimal getBalance(
 @PathParam("accountNumber")
Long accountNumber) {
 ...
}

@GetMapping("/{accountNumber}/balance")
public BigDecimal getBalance(
 @PathVariable("accountNumber")
Long accountNumber) {
 ...
}

185Spring dependency injection and configuration compatibility
9.2 Spring dependency injection and configuration
compatibility
Spring popularized Java dependency injection more than a decade ago, and CDI pop-
ularized annotation-based dependency injection a few years later. Today, both frame-
works offer annotation-based dependency injection with similar functionality. The
configuration annotations are also similar between Spring and Quarkus. Table 9.2
shows how Quarkus converts Spring annotations to CDI and MicroProfile Config
annotations during compilation.

The next section will set up a Spring Cloud Config Server as a configuration source
for the Bank service, followed by a section that uses Spring DI annotations to obtain
properties from the Spring Cloud Config Server.

9.2.1 Setting up the Spring Cloud Config Server

The Spring Cloud Config Server (Config Server) is a configuration source that provides
common access to configurations stored in Git repositories, Redis, Vault, and more. By
supporting the Config Server, Quarkus applications can more easily run in existing
Spring environments. The instructions for installing the Config Server are available from
the Spring community (https://spring.io/guides/gs/centralized-configuration).

NOTE Optionally, use the Config Server included in the book’s Git reposi-
tory in the chapter 9 spring-config-server subdirectory.

Listing 9.1 shows the properties from the chapter 3 Bank service that have been added
to the Config Server Git repository at https://github.com/jclingan/banking-config-
repository in the bank-service.properties file. The properties have minimal differences,

Table 9.2 Spring-to-CDI/MicroProfile annotation compile-time conversions

Spring CDI/MicroProfile Comments

@Autowire @Inject Injects a component.

@Bean @Produces Defines a factory method.

@Configuration @ApplicationScoped

@ConfigurationProperties @ConfigProperties Injects multiple properties.

@Qualifier @Named Differentiates between different
beans of the same type in the
same scope.

@Value @ConfigProperty Injects a property value;
@Value provides expression
language support.

@Component
@Service
@Repository

@Singleton By default, Spring stereotypes
are singletons.

https://github.com/jclingan/banking-config-repository
https://github.com/jclingan/banking-config-repository
https://spring.io/guides/gs/centralized-configuration

186 CHAPTER 9 Developing Spring microservices with Quarkus
like the (“Config Server”) text appended to some properties to make the configura-
tion source apparent.

Configuration file
key = value

Bank names
bank.name=Bank of Quarkus (Config Server)
%dev.bank.name=Bank of Development (Config Server)
%prod.bank.name=Bank of Production (Config Server)

Using @ConfigProperties
bank-support.email=support@bankofquarkus.com (Config Server)
bank-support.phone=555-555-5555 (Config Server)

Devmode properties for expansion below
username=quarkus_banking
password=quarkus_banking

Property expansion
db.username=${username}
db.password=${password}

The next listing shows the required properties to configure the Config Server in src/
main/resources/application.properties.

server.port=18888
spring.cloud.config.server.git.uri=https:/ /github.com/jclingan/banking-

config-repository/

Package the Config Server using mvn package, and then start it with java -jar tar-
get/ spring-config-server-0.0.1-SNAPSHOT.jar. With the Config Server running,
the next step is to update the Bank service to use the server as a configuration source.

9.2.2 Using the Spring Config Server as a configuration source

The Bank service requires updates to use the Config Server. First, run mvn quarkus:
add-extension -Dextensions=quarkus-spring-cloud-config-client to add the Con-
fig Server as a configuration source.

 The Config Server will provide most of the properties defined in the chapter 3
Bank service. However, the Bank service properties outlined in the next code listing
have to be defined locally because they are Quarkus build-time properties.

Listing 9.1 Config Server bank-service.properties

Listing 9.2 Config Server application.properties

Specifies a port that does not
conflict with other services

The location of the Git repository
that defines properties used by
the Bank service

187Spring dependency injection and configuration compatibility
Spring Cloud Config Server Client configuration

quarkus.application.name=bank-service
quarkus.spring-cloud-config.enabled=true
quarkus.spring-cloud-config.url=http:/ /localhost:18888
%prod.quarkus.spring-cloud-config.url=http:/ /spring-config-server:18888

From the bank-service directory, test the results by running mvn quarkus:dev, and
then check an endpoint using curl localhost:8080/bank/secrets.

 The output should match the text in the next listing.

{"password":"quarkus_banking","db.password":"quarkus_banking","db.username":"
quarkus_banking","username":"quarkus_banking"}

9.2.3 Converting the Bank service to use Spring Configuration APIs

To use the Spring DI and Spring Boot Configuration APIs, add the quarkus-spring-di
and quarkus-spring-boot-properties extensions using mvn quarkus:add-extension
-Dextensions=quarkus-spring-di,quarkus-spring-boot-properties.

 Referring to table 9.2, update the BankSupportConfig.java source code to use
Spring’s @ConfigurationProperties annotation as shown next.

@ConfigurationProperties
public class BankSupportConfig {
 ...
}

Update BankResource.java to replace MicroProfile’s @ConfigProperty annotation
with Spring’s @Value annotation as shown in the following code.

@Value("${bank.name:Bank of Default}")
 String name;

 @Value("${db.username:Missing}")
 String db_username;

Listing 9.3 Bank service application.properties

Listing 9.4 Bank service application.properties

Listing 9.5 Converting to Spring’s @ConfigurationProperties

Listing 9.6 Converting to Spring’s @Value annotation in BankResource.java

The Config Server selects the configuration based
on the application name. This maps to bank-

service.properties in the Git repository.
Enables the Config Server
as a configuration source

Provides the URL to the Config Server when
running locally during development

Provides the URL to the Config
Server when running in Minikube

Changes the MicroProfile
@ConfigProperties annotation to Spring
Boot’s @ConfigurationProperties

Replaces @ConfigProperty with
@Value. The @ConfigProperty
defaultValue parameter value is now
defined in the @Value expression.

188 CHAPTER 9 Developing Spring microservices with Quarkus
 @Value("${db.password:Missing}")
 String db_password;

 @Value("app.mobilebanking")
 Optional<Boolean> mobileBanking;

 @Value("username")
 String username;

 @Value("password")
 String password;

Check an endpoint using curl localhost:8080/bank/secrets. The output should
match the earlier output in listing 9.4. Stop the Bank service to avoid port conflicts
with upcoming services.

 As shown, converting the Bank service to using Spring property and DI annota-
tions is seamless, including using a Config Server as a configuration source.

The next section will convert the Account service to use Spring Web APIs.

9.3 Quarkus/Spring Web API compatibility
This section will change JAX-RS APIs in the Account service to their Spring Web
equivalents. As with using Spring configuration and DI annotations, the JAX-RS and
Spring Web APIs are similar enough to make the conversion straightforward. A list of
Spring Web annotations supported by Quarkus follows:

 @CookieValue

 @DeleteMapping

 @ExceptionHandler (with Quarkus, usable only in the @RestControllerAdvice
class)

 @MatrixVariable

 @RequestBody

 @RequestMapping

 @RequestParam

 @ResponseStatus

 @RestController

 @RestControllerAdvice (with Quarkus, supports only the @ExceptionHandler
capability)

 @PatchMapping

 @PathVariable

Exercise for the reader
Update the remaining services to Spring DI APIs. The book’s Git repository contains
working updated code for the Bank service, Account service, and Transaction service.

Replaces @ConfigProperty with
@Value. The @ConfigProperty
defaultValue parameter value is now
defined in the @Value expression.

189Quarkus/Spring Web API compatibility

@PostM
replaces

@PA

anno

Res

rep
Web
 @PostMapping

 @PutMapping

Before updating the code to Spring Web APIs, execute the following steps:

1 Add Spring Web compatibility—From the account-service directory, add the quarkus-
spring-web extension to the Account service to enable the Spring Web annota-
tions. Run mvn quarkus:add-extension -Dextensions=quarkus-spring-web.

2 Start the PostgreSQL database—The Account service requires the PostgreSQL
database. If it is not already running, deploy the PostgreSQL database to Mini-
kube by running kubectl apply -f postgresql_kubernetes.yml from the
chapter 9 top-level directory.

3 Proxy database requests—To forward local database requests to the Minikube Post-
greSQL instance, run kubectl port-forward service/postgres 5432:5432.

The next code listing converts AccountResource.java to the Spring Web APIs.

@RestController
@RequestMapping(path = "/accounts",
 produces=MediaType.APPLICATION_JSON_VALUE,
 consumes=MediaType.APPLICATION_JSON_VALUE)
public class AccountResource {

 @GetMapping
 public String hello() {
 return "hello";
 }

 @PostMapping("{accountNumber}/transaction")
 @Transactional
 public Map<String, List<String>>
 transact(@RequestHeader("Accept") String acceptHeader,
 @PathVariable("accountNumber") Long accountNumber,
 @RequestBody BigDecimal amount) {

 ...
 if (account == null) {
 throw new ResponseStatusException(HttpStatus.NOT_FOUND,
 "Account with " + accountNumber + " does not exist.");
 }

 if (entity.getAccountStatus().equals(AccountStatus.OVERDRAWN)) {
 throw new ResponseStatusException(HttpStatus.CONFLICT,
 "Account is overdrawn, no further withdrawals permitted");
 }

 ...

Listing 9.7 Converting the Account service to Spring Web APIs

@RestController replaces
the @ApplicationScoped
annotation.

@RestMapping and its
parameters replace JAX-RS
@Path, @Produces, and
@Consumes annotations.

@GetMapping
replaces JAX-RS
@GET.apping

 JAX-RS
TH and
@POST
tations.

@RequestHeader replaces
@Context HttpHeaders. For the

moment, directly injecting a
@RequestHeader MultiValueMap

is not supported. This will be
addressed in a Quarkus update.

@PathVariable
replaces

@PathParam.
@RequestBody has no JAX-RS
equivalent. By default, JAX-RS attempts
to bind JSON to a specified data type.

ponseStatus
Exception

laces JAX-RS
Application
Exception.

190 CHAPTER 9 Developing Spring microservices with Quarkus
 List<String> list = new ArrayList<>();

 list.add((acceptHeader));
 Map<String,List<String>> map = new HashMap<String,List<String>>();
 map.put("Accept", list);

 ...
 }

 @GetMapping("/{accountNumber}/balance")
 public BigDecimal getBalance(@PathVariable("accountNumber") Long
 accountNumber) {
 ...
 if (account == null) {
 throw new ResponseStatusException(HttpStatus.NOT_FOUND,
 "Account with " + accountNumber + " does not exist.");
 }
 }
}

AccountResource.java also defines an exception handler, which catches application
exceptions and returns an HTTP 500 status code. This code is slightly more complex
than previous examples because the annotations do not map one to one, and some
new data types are involved, such as ResponseEntity. The next code snippet replaces
the JAX-RS ExceptionMapper with a Spring Web @RestControllerAdvice class.

@RestControllerAdvice
 public static class ErrorMapper {
 @ExceptionHandler(Exception.class)
 public ResponseEntity<Object> toResponse(Exception exception) {

 HttpStatus code = HttpStatus.INTERNAL_SERVER_ERROR;
 if (exception instanceof ResponseStatusException) {
 code = ((ResponseStatusException) exception).getStatus();
 }

 JsonObjectBuilder entityBuilder = Json.createObjectBuilder()
 .add("exceptionType", exception.getClass().getName())
 .add("code", code.value());

 if (exception.getMessage() != null) {
 entityBuilder.add("error", exception.getMessage());
 }

Listing 9.8 Converting ExceptionMapper to @RestControllerAdvice

This section of code “manually” creates Spring’s MultiValueMap with one entry that can be
returned to the caller. This code will be removed once MultiValueMap injection is supported in
a future Quarkus update (https://github.com/quarkusio/quarkus/issues/14051).

@GetMapping
replaces JAX-RS @GET.

@PathVariable replaces
JAX-RS @PathParam.

ResponseStatusException replaces JAX-RS
WebApplicationException and uses Spring’s

HttpStatus class to return the HTTP status code.

The JAX-RS ExceptionMapper interface is converted to
a Spring Web @RestControllerAdvice annotation and
also replaces the JAX-RS @Provider annotation. The JAX-RS toResponse() interface

method is converted to a method
annotated with the Spring Web
@ExceptionHandler annotation.

Spring
HttpStatus

replaces
integer
status
code.

https://github.com/quarkusio/quarkus/issues/14051

191Quarkus/Spring Web API compatibility
 return new ResponseEntity(entityBuilder.build(), code);
 }
 }

curl -i localhost:8080/accounts/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Test the POST endpoint and verify posting works as shown as follows.

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d "2.03" \
 localhost:8080/accounts/444666/transaction

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json

{"Accept":["*/*"]}

curl -i localhost:8080/accounts/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3501.15

Listing 9.9 Searching for valid account

Listing 9.10 Account balance

Listing 9.11 POSTing to the account

Listing 9.12 Updating the account balance

Listing 9.13 Getting the updated balance

Listing 9.14 Updating the account balance

Exercise for the reader
Update the remaining services to Spring Web APIs. The book’s Git repository contains
working converted code for the Bank service and the Transaction service.

Spring ResponseEntity
replaces JAX-RS Response.

192 CHAPTER 9 Developing Spring microservices with Quarkus
With the Spring DI and Spring Web conversions completed, the next section covers
updating Hibernate ORM with Panache to Spring Data JPA.

9.4 Quarkus/Spring Data JPA compatibility
The final major Quarkus/Spring compatibility API to cover is the Spring Data JPA API
to persist data. The Hibernate ORM with Panache repository pattern is based on the
repository pattern popularized by Spring Data JPA, giving the two comparable func-
tionality and a similar API. The following Spring Data JPA repositories, and the inter-
faces that extend them, are supported:

 Repository
 CrudRepository
 PagingAndSortingRepository
 JpaRepository

To use the Spring Data JPA APIs, add the quarkus-spring-data-jpa extension using mvn
quarkus:add-extension -Dextensions=quarkus-spring-data-jpa.

 Use the following three steps to update the current Account service to use the
Spring Data JPA APIs:

1 Create the AccountRepository interface.
2 Revert the Hibernate ORM with Panache entity to a JPA entity.
3 Update Account service to use the Spring Repository APIs.

First, create the AccountRepository as shown next.

public interface AccountRepository extends JpaRepository<Account, Long> {
 public Account findByAccountNumber(Long accountNumber);
}

Next, update the Account class to follow JPA entity rules as shown in the following list-
ing. This is the same entity defined in the JPA example in chapter 4.

@Entity
public class Account {
 @Id
 @GeneratedValue
 private Long id;

Listing 9.15 Creating the AccountRepository interface

Listing 9.16 Reverting Account.java to a JPA entity

The JpaRepository replaces the
PanacheRepository covered in

chapter 4. Hibernate ORM with
Panache is implemented as a
class, whereas JpaRepository

is an interface.

findByAccountNumber is updated to follow
the JpaRepository interface method-naming
pattern using query creation keywords. The
query creation keywords are available in
the Spring Data JPA documentation
(http://mng.bz/Zx85).

Creates a JPA entity ID field that
was provided by the Hibernate
ORM with Panache entity

http://mng.bz/Zx85

193Quarkus/Spring Data JPA compatibility
 private Long accountNumber;
 private Long customerNumber;
 private String customerName;
 private BigDecimal balance;
 private AccountStatus accountStatus = AccountStatus.OPEN;

 @Override
 public int hashCode() {
 return Objects.hash(id, accountNumber, customerNumber);
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public Long getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(Long accountNumber) {
 this.accountNumber = accountNumber;
 }

 public Long getCustomerNumber() {
 return customerNumber;
 }

 public void setCustomerNumber(Long customerNumber) {
 this.customerNumber = customerNumber;
 }

 public String getCustomerName() {
 return customerName;
 }

 public void setCustomerName(String customerName) {
 this.customerName = customerName;
 }

 public BigDecimal getBalance() {
 return balance;
 }

 public void setBalance(BigDecimal balance) {
 this.balance = balance;
 }

 public AccountStatus getAccountStatus() {
 return accountStatus;
 }

Although not required, changes field access
modifiers from public to private as the code
reverts back to traditional JPA entities

Creates field
accessors

194 CHAPTER 9 Developing Spring microservices with Quarkus
 public void setAccountStatus(AccountStatus accountStatus) {
 this.accountStatus = accountStatus;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Account account = (Account) o;
 return id.equals(account.id) &&
 accountNumber.equals(account.accountNumber) &&
 customerNumber.equals(account.customerNumber);
 }
}

Note that, developers have successfully used Lombok with Quarkus. However, edge
case issues exist, and Lombok is not included in the Quarkus test suite. For these rea-
sons, Lombok is not shown here.

 Last, update the Account service to use the repository as shown in the following
code sample, which is similar to the panache-repository example in chapter 4.

@RestController
@RequestMapping(path = "/accounts",
 produces=MediaType.APPLICATION_JSON_VALUE,
 consumes=MediaType.APPLICATION_JSON_VALUE)
public class AccountResource {

 AccountRepository repository;

 public AccountResource(AccountRepository repository) {
 this.repository = repository;
 }

 @GetMapping
 public String hello() {
 return "hello";
 }

 @GetMapping("/{accountNumber}/balance")
 public BigDecimal getBalance(
 @PathVariable("accountNumber") Long accountNumber) {

Listing 9.17 Updating the Account service to use the Spring Data JPA repository

Creates field
accessors

The Account service currently uses the active record data
access pattern, introduced in chapter 4, to invoke methods
on the entity directly. The Account service needs to be
updated to use the Spring Data JPA repository pattern
for data access. Spring Data JPA requires a repository
instance to access the entity.

Injects an
instance of the
AccountRepository
using constructor
injection

195Quarkus/Spring Data JPA compatibility
 Account account = repository.findByAccountNumber(accountNumber);
 ...
 }

 @PostMapping("{accountNumber}/transaction")
 @Transactional
 public Map<String, List<String>> transact(
 @RequestHeader("Accept") String acceptHeader,
 @PathVariable("accountNumber") Long accountNumber,
 @RequestBody BigDecimal amount) {
 Account entity = repository.findByAccountNumber(accountNumber);

 ...

 entity.setBalance(entity.getBalance().add(amount));
 repository.save(entity);

 ...

 }
}

To test the JPA repository, run the following commands. These are the same com-
mands that are provided in the previous section.

curl -i localhost:8080/accounts/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d "2.03" \
 localhost:8080/accounts/444666/transaction

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json

{"Accept":["*/*"]}

Listing 9.18 Searching for valid account

Listing 9.19 Account balance

Listing 9.20 POSTing to the account

Listing 9.21 Updating the accountBalance

Finds the accountNumber
by calling the repository
findByAccountNumber()

method

Updates the entity
using an entity field

accessor method
Persists the

updated entity

196 CHAPTER 9 Developing Spring microservices with Quarkus
curl -i localhost:8080/accounts/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3501.15

This completes the conversion of the Quarkus and MicroProfile APIs to the Spring
API equivalents, all running on Quarkus! The next section gives more detail on how
Quarkus implements the Spring API compatibility.

NOTE The completed examples for this chapter in the Git repository use
Spring APIs for most functionality in the Bank service, Account service, and
Transaction service. The primary API exceptions are the MicroProfile Fault
Tolerance APIs and MicroProfile Rest Client, which do not have equivalent
Spring compatibility APIs. However, the MicroProfile Rest Client and Micro-
Profile Fault Tolerance APIs can be used side by side with the Spring compat-
ibility APIs.

9.5 Deploying to Kubernetes
With everything running successfully locally, deploy the services to Kubernetes using
the following steps:

1 Use Minikube Docker daemon—Run eval $(/usr/local/bin/minikube docker-
env) to use the Docker daemon running in Minikube. This needs to be run for
any terminal that is used to deploy the Bank, Account, or Transaction services.

2 Create the Config Server container image—From the spring-config-server directory,
run mvn package to create the uber-JAR, and then docker build -t quarkus-
mp/spring-config-server:0.0.1-SNAPSHOT . to generate the container image.
This will build the image using the Minikube Docker registry.

3 Deploy the Config Server—From the spring-config-server directory, run kubectl
apply -f minikube.yml.

4 Deploy the Bank service—From the bank-service directory, deploy the Bank service
to Kubernetes with mvn clean verify -Dquarkus.kubernetes.deploy=true.

Test the service using the following commands:

export BANK_SERVICE_URL=`minikube service bank-service --url`
curl $BANK_SERVICE_URL/bank/secrets

Listing 9.22 Getting the updated balance

Listing 9.23 The updated balance

Gets the service URL from Minikube
(repeat for each service below)

Accesses the service (repeat
for each service below)

197Common Quarkus/Spring compatibility questions
5 Deploy the Account service—From the account-service directory, deploy the Account
service to Kubernetes with mvn clean verify -Dquarkus.kubernetes.deploy
=true.

Test the service using the following commands:

export ACCOUNT_SERVICE_URL=`minikube service account-service --url`
curl -i $ACCOUNT_SERVICE_URL/accounts/444666/balance

6 Deploy the Transaction service—From the transaction-service directory, deploy the
Transaction service to Kubernetes with mvn clean verify -Dquarkus.kubernetes
.deploy=true.

Test the service using the following commands:

export TRANSACTION_SERVICE_URL=`minikube service transaction-service --url`
curl -i $TRANSACTION_SERVICE_URL/transactions/444666/balance

9.6 How Quarkus implements Spring API compatibility
Due to their similarity, using the Spring APIs in place of the existing Quarkus APIs
(and vice versa) is straightforward. This section adds details that are helpful to know
when using the Spring Compatibility APIs.

 Quarkus implements Spring APIs in a Quarkus-native manner so developers have a
consistent developer experience when combining Spring APIs with Quarkus and Micro-
Profile APIs. To accomplish this, Quarkus implements Spring compatibility using the
following three techniques:

 Annotation substitution—Quarkus replaces Spring annotations with annotations
supported by existing extensions during compilation. For example, Spring
Dependency Injection annotations are replaced with CDI annotations during
compilation.

 Interface implementation—Quarkus provides implementations for Spring inter-
faces. Its support of Spring Data JPA takes this approach, leveraging Hibernate
and Hibernate with Panache framework functionality to implement Spring
Data interfaces.

 Spring-aware extensions—Update Quarkus-supported extensions to under-
stand Spring annotations and Spring concepts. For example, RESTEasy and
Quarkus Cache extensions were updated to understand Spring Web and Spring
Cache APIs.

9.7 Common Quarkus/Spring compatibility questions
Answers to a few common Spring Compatibility API questions follow:

 Can Spring Starters be used with Quarkus? Spring framework .jar files, like those
that are defined in Spring Starters, are not compatible with Quarkus. The two
frameworks take very different application-bootstrapping approaches, for

198 CHAPTER 9 Developing Spring microservices with Quarkus
example. The next section compares the two application bootstrapping
approaches in more detail.

 Which versions of Spring is Quarkus compatible with? The Quarkus Spring API com-
patibility does not target a specific minor version of Spring, but it generally tar-
gets Spring 5 and Spring Boot 2 APIs. Quarkus can be updated as Spring APIs
evolve to remain compatible.

 What is the Spring compatibility performance overhead? Because the Spring APIs are
implemented in a Quarkus-native manner, no performance penalty exists for
using the Spring compatibility extensions with Quarkus. In fact, as covered in
chapter 1, the result is faster startup time with lower memory utilization.

 Can Spring properties like server.port be used? No. Only Quarkus properties,
which begin with quarkus.*, can be used. However, the “Quarkus: All Configu-
ration Options” guide (https://quarkus.io/guides/all-config) contains a search
field for helpful lookup of Quarkus properties that can help to find a Quarkus
equivalent.

9.8 Comparing the Spring Boot and Quarkus startup
processes
Quarkus and Spring Boot optimize application bootstrapping differently. Spring Boot
optimizes for late binding, where it makes dynamic decisions based on its environ-
ment while it is starting. Figure 9.1 illustrates the Spring Boot startup process.

1 Spring Boot does very little during build time.
2 The application is compiled. Java class files and static content are packaged

into a .jar file.
3 Spring Boot conducts most of its work during startup (run time). The .jar file is

booted using java -jar. The process is similar for Spring Boot .war deployments.
4 The application configuration is loaded and parsed.
5 The classpath is scanned for annotated classes.
6 The metamodel (Spring application context) is created.
7 Business logic is executed.

Build time Run time

Spring boot

Package

(build .jar)

Load and

parse config

Classpath

scanning

Build

metamodel

Execute

app logic

Figure 9.1 The Spring Boot startup processing

https://quarkus.io/guides/all-config

199Summary
The run-time steps occur every time a Spring Boot application is started.
 Quarkus, as shown in Figure 9.2, optimizes for immutable containers and Kuber-

netes infrastructure using ahead-of-time (AOT) compilation:

1 Quarkus does most of the work up front during the application build.
2 The configuration is loaded and parsed.
3 The classpath is scanned for annotations.
4 Quarkus builds the metamodel based on the parsed configuration and scanned

annotations. The metamodel is stored as precompiled bytecode in generated
.class files.

5 Package the precompiled metamodel, class files, and static content in the .jar
file. Quarkus extension designers use build-time configuration properties, dis-
cussed in chapter 3, to enable or disable extension features to achieve a form
of “dead code elimination,” which eliminates startup code that might other-
wise be executed.

6 Quarkus does very little work during startup (run time).
7 The precompiled metamodel is loaded and followed by application business

logic execution.

Quarkus optimizes its Spring API compatibility for AOT (build-time) compilation,
often delivering significant startup time improvement. Quarkus AOT compilation can
also significantly reduce run-time memory consumption by avoiding the heap mem-
ory associated with run-time configuration parsing and annotation scanning.

Summary
 Quarkus offers Spring compatibility for popular Spring APIs.
 Spring developers can quickly become productive with Quarkus.
 Spring APIs can be used side by side with Quarkus and MicroProfile APIs in the

same application and even in the same Java class.

Build time Run time

Quarkus

Package

(build .jar)

Load and

parse config

Classpath

scanning

Build

metamodel

Execute

app logic

Figure 9.2 The Quarkus startup processing

200 CHAPTER 9 Developing Spring microservices with Quarkus
 With Spring Cloud Config Server support, Quarkus applications can be more
easily run side by side with Spring Boot applications on the same infrastructure.

 Spring Starters do not run properly with Quarkus due to Quarkus relying more
heavily on build-time annotation scanning and Spring relying more heavily on
run-time annotation scanning. Use the available Quarkus Spring Compatibility
extensions (https://quarkus.io/guides/#compatibility) instead.

https://quarkus.io/guides/#compatibility

Part 3

Observability,
API definition, and

security of microservices

Part 3 dives into key topics beyond the mere development of microservices.
This part covers key pillars for observability, metrics and tracing, microservice
API definitions with OpenAPI, and, finally, securing microservices.

Capturing metrics
MicroProfile Metrics exposes runtime metrics like CPU and memory utilization
and can also expose custom application performance and business metrics. We can
forward exposed metrics to graphing systems like Grafana and view them in dash-
boards representing a live view of running microservices. A live view of metrics can
improve business performance and improve application availability.

 In this chapter, we instrument the chapter 7 Account service and Transaction
service with metrics using MicroProfile Metrics APIs, with a section covering the
Quarkus Micrometer metrics extension.

 The following section explains the benefits of metrics.

This chapter covers
 The role of metrics in a microservices

architecture

 Types of metrics

 Creating custom metrics

 Metrics scopes

 Viewing metrics in Grafana

 MicroProfile Metrics and Micrometer metrics
203

204 CHAPTER 10 Capturing metrics
10.1 The role of metrics in a microservices architecture
Instrumenting runtimes and applications with metrics offer benefits such as the
following:

 Facilitate troubleshooting—Instrumenting runtimes and applications with metrics
gives administrators and developers insights into microservice failures and
hopefully avoids failures before they occur. For example, a microservice contin-
ually approaching maximum allocated resources like memory or CPU gives
administrators insights into Kubernetes cluster resource allocation.

 Monitor telemetry and generate alerts—Telemetry delivers a continuous stream of
live data to provide a basis for decision making. As an analogy, modern auto-
mobiles constantly monitor their state in the context of their environment.
More concretely, lane departure assist nudges the steering wheel to inform
the driver to stay in the proper lane. Similarly, Prometheus alerts can monitor
a live system instrumented with metrics and react to predefined conditions
and thresholds. Alerts can take actions as simple as sending warning messages
to an actively monitored Slack channel or scaling a service by adding instances
to a Kubernetes cluster.

 Monitor service level agreement (SLA) compliance—Service deployments are often
accompanied by SLAs agreed to by business units, developers, and administra-
tors. Metrics like requests per second and average service request time often
form the foundation for SLAs.

With these benefits in mind, let’s quickly look at metrics in action.

10.2 Getting started with MicroProfile Metrics
This section will enable Account service and Transaction service metrics provided by
Quarkus extensions and give some context for the remainder of the chapter.

 The services require the PostgreSQL database to be running. To start the database
in Minikube, run the following commands from the chapter10 directory in a new ter-
minal window.

kubectl apply -f postgresql_kubernetes.yml

Wait for the pod to start running (CTRL-C to exit)
kubectl get pods -w

Forward requests from localhost to PostgreSQL running in minikube
kubectl port-forward service/postgres 5432:5432

With the database up and running, add the quarkus-smallrye-metrics extension to
each service and start the service in a new terminal window, as shown in the next list-
ing. This extension implements MicroProfile Metrics.

Listing 10.1 Starting PostgreSQL

205Getting started with MicroProfile Metrics
cd account-service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-metrics"
mvn quarkus:dev

In another terminal window
cd ../transaction-service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-metrics"
mvn quarkus:dev -Ddebug=5006

As shown in listing 10.2, in a new terminal window, repeat these commands, replacing
account-service with transaction-service and specifying a different debugging
port that doesn’t conflict with the default port used by the Account service.

 MicroProfile Metrics requires that runtimes expose metrics at the /metrics end-
point. Quarkus does this indirectly by redirecting the HTTP call to /q/metrics, as
shown in the next code sample.

curl -i localhost:8080/metrics

HTTP/1.1 301 Moved Permanently
location: /q/metrics
content-length: 0

In Quarkus, all non-application HTTP/s endpoints are on the /q/ subpath with a sim-
ilar redirect. Next, make an HTTP request to the /q/metrics/ endpoint directly, as
shown in the next listings, with detailed explanations to follow.

curl -i localhost:8080/q/metrics

HELP base_classloader_loadedClasses_count Displays the number of classes
that are currently loaded in the Java virtual machine.
TYPE base_classloader_loadedClasses_count gauge
base_classloader_loadedClasses_count 13010.0
...

NOTE The output order may change across Quarkus versions. If this output is
not easily found, then run curl -i localhost:8080/q/metrics | grep
base_classloader_loadedClasses_count.

Listing 10.2 Adding the quarkus-smallrye-metrics extension and starting the services

Listing 10.3 Requesting metrics from the Account service /metrics endpoint

Listing 10.4 Metrics redirect output

Listing 10.5 Requesting metrics from the Account service /q/metrics endpoint

Listing 10.6 Metrics request output (explained in more detail later)

Metric HELP metadata

Metric TYPE metadata

Metric name
and valueThe output has been shortened to display only the

first metric. In a real-world running system, there
could be hundreds of metrics!

206 CHAPTER 10 Capturing metrics
This command and its output look simple, and, on the surface, they are. However, we
will explain in detail a lot of context and capability behind these in the remaining sec-
tions. Before digging deeper, let’s install Prometheus and Grafana to graph the metric
output to make viewing metrics easier to follow.

10.2.1 Graphing metrics with Prometheus and Grafana

Grafana graphs the Account service and Transaction service metrics using Prometheus
as the time-series metrics data source, with the metrics flow shown in figure 10.1.

NOTE This metrics architecture is based on scraping, or pulling, data. The
Prometheus installation scrapes service metric endpoints every 3 seconds.
Grafana scrapes Prometheus every 15 seconds. The Grafana graphs refresh
every 5 seconds. Metrics data is never pushed from one service to another.

The source code for the book includes manifests for Prometheus and Grafana installa-
tion in the /chapter10/manifests-prometheus-grafana directory. These files are from
the 0.7 release of https://github.com/prometheus-operator/kube-prometheus.

 To ensure we have sufficient memory for all the components of Prometheus and
Grafana, we start Minikube with at least 4 GB of memory as follows:

minikube start --memory=4g

With that done, change into the top-level /chapter10 directory of the book source and
install Prometheus, Grafana, and ServiceMonitor custom resource definitions (CRDs; they
specify how services should be monitored) with the provided manifests, as shown next.

3. Grafana pulls the Account service and Transaction service metrics
from Prometheus and graphs them.

2. Prometheus scrapes the Transaction service metrics.

1. Prometheus scrapes the Account service metrics and stores them in its
time-series database.

Transaction service

Prometheus Grafana

Account service

Default namespace

Minikube

Monitoring namespace

Figure 10.1 Chapter 10 metrics visualization architecture

https://github.com/prometheus-operator/kube-prometheus

207Getting started with MicroProfile Metrics

e
Scrap

en
using
kubectl create -f metrics/manifests-prometheus-grafana/setup
until kubectl get servicemonitors --all-namespaces ; do date; sleep 1; echo "";

done
kubectl create -f metrics/manifests-prometheus-grafana/
kubectl apply -f metrics/servicemonitor.yml

The Prometheus Operator uses ServiceMonitor CRDs to determine which services to
monitor. The next listing explains the ServiceMonitor CRD in more detail.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: transaction-service
 namespace: default
 labels:
 app.kubernetes.io/name: transaction-service
spec:
 namespaceSelector:
 matchNames:
 - default
 selector:
 matchLabels:
 app.kubernetes.io/name: transaction-service
 endpoints:
 - port: http
 interval: 3s
 path: /q/metrics

...

Figure 10.2 explains the monitoring process, at a high level, from end to end:

1 During the installation outlined in listing 10.7, the Prometheus operator
instructs Prometheus to monitor for ServiceMonitor definitions and to create a
Prometheus configuration for it when one is found.

2 During installation, Grafana is preconfigured to scrape metric data from
Prometheus.

Listing 10.7 Installing Prometheus, Grafana, and the ServiceMonitor CRDs

Listing 10.8 Transaction service ServiceMonitor CRD

Creates the Kubernetes CRDs first. A CRD extends Kubernetes with a
new feature, like monitoring. The CRD installs a Prometheus operator

that is responsible for managing the Prometheus life cycle.

Waits for the
ServiceMonitor
CRDs to be created

Installs the
Prometheus and
Grafana servicesSpecifies custom Kubernetes ServiceMonitor CRDs to

monitor the Account service and Transaction service

The CRD API version

This document section
specifies a ServiceMonitor.

The name of the ServiceMonitor is transaction-
service. It can have any name but is called
transaction-service for consistency.

Creates the transaction-service
ServiceMonitor in the default
Kubernetes namespace

Adds a transaction-service
Kubernetes label to the
ServiceMonitor

Searches for the service
to monitor in the default
Kubernetes namespace Selects (scrapes) services

whose app.kubernetes.io/nam
label is transaction-servicees the

dpoint
 HTTP Scrapes the endpoint

every 3 seconds

Scrapes the endpoint subpath

Account service ServiceMonitor is
removed from the example for brevity.

208 CHAPTER 10 Capturing metrics
3 The servicemonitor.yaml, shown in listing 10.8, defines the Transaction service
ServiceMonitor. This definition instructs the consumer—Prometheus in this
case—to search for Pods labeled with app.kubernetes.io/name transaction-
service.

4 The servicemonitor.yaml is applied in listing 10.7. When applied, the Service-
Monitor CRD (definition) is added to the Kubernetes etcd registry.

5 As defined in the ServiceMonitor, Prometheus waits for Pods labeled with
app.kubernetes.io/name transaction-service.

6 The Transaction service application.properties define the Kubernetes name as
transaction-service.

7 The Maven package phase (e.g., mvn package) generates minikube.yml. The
app.kubernetes.io/name label value is defined by the quarkus.kubernetes
.name property.

minikube

4. Definition stored in etcd

5. Definition read
from etcd

2. Grafana scrapes
Prometheus data.

1. Operator manages
prometheus and
Grafana life cycle.

11. Prometheus
scrapes metrics.

10. Pod is created
when YAML applied.

9. Scrape
service at
endpoint.

8. Name
used
in label

6. Set
service
name.

7. Quarkus Maven goal
generates YAML.

Grafana

Prometheus

Prometheus operator

transaction-service

Pod

Monitoring namespace

applicaton.properties

minikube.yml

quarkus.kubernetes.name=transaction-service

kind: Service

kind: Deployment

metadata:

metadata:

labels:

annotations:
prometheus.io/scrape: “true”

prometheus.io/path: /q/metrics

app.kubernetes.io/name: transaction-service

Default namespace

3. Monitor
transaction-
service.

Prometheus operator and monitoring

servicemonitor.yml

etcd

servicemonitor

kind: ServiceMonitor

app.kubernetes.io/name: transaction-service

spec:
selector:

matchLabels:

Figure 10.2 Monitoring flow

209Getting started with MicroProfile Metrics
8 When applied, the Transaction service–related Kubernetes objects like Service,
Deployment, and Pod are labeled with app.kubernetes.io/name: transaction-
service.

9 The prometheus.io/scrape="true" and prometheus.io/path: /q/metrics
deployment annotations inform Prometheus to scrape the service (“true”) at
the specified path (/q/metrics).

10 When the Transaction service is deployed (e.g., mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true), the Kubernetes objects are cre-
ated, and the transaction-service Pod is created.

11 Prometheus identifies a new Pod based on the ServiceMonitor definition and
begins to scrape the container metrics.

NOTE The key to “binding” the Pod to the ServiceMonitor is the Pod label.
The binding relationship is highlighted with a circle. The ServiceMonitor in
step 3 is looking for an app.kubernetes.io/name=transaction-service
match. In step 6, the quarkus.kubernetes.name specifies the transaction-
service service name in application.properties. When building the Transac-
tion service, Quarkus will generate the YAML in step 8, which generates the
app.kubernetes.io/name=transaction-service key-value pair that will be
matched by the ServiceMonitor, circled. Also, to simplify the diagram, only
the Transaction service is shown. This flow applies to all services with a Service-
Monitor, like the Account service. Last, the monitoring processes are running
in the monitoring namespace. Run kubectl get pods -n monitoring to see
the running Pods related to monitoring.

To access Grafana in Minikube, port 3000 will need to be forwarded from the desktop
to the cluster, as follows:

kubectl port-forward \
 -n monitoring \
 service/grafana 3000:3000

Open http:/ /localhost:3000 in a browser, and log in with username “admin” and pass-
word “admin.” Figure 10.3 shows the Grafana home page. When the URL first opens,
it requires login credentials. Use “admin” for the username and password; it will ask to
set a new password before opening the home page.

 Next, load the preconfigured Grafana dashboard as shown in figure 10.4. Deploy
the Account service and Transaction service to Minikube as shown in the listing 10.9.

Forwards local Grafana
requests to Minikube

Grafana is running in the
monitoring namespace.

Forwards requests from desktop
port 3000 to the Grafana service
running in Minikube on port 3000

210 CHAPTER 10 Capturing metrics
In the account-service and transaction-service directories, run:
cd account-service
eval $(/usr/local/bin/minikube docker-env)

Listing 10.9 Deploying services to Minikube

Figure 10.3 Grafana home page

4. Click the Import button (not shown).

1. Click the + button to add a dashboard.

2. Import an existing dashboard.

3. Upload Banking_Microservices_Dashboard.json located in the
chapter 0/metrics directory.1

Figure 10.4 Import the Banking Microservices dashboard

Uses the Docker engine running in Minikube

211Getting started with MicroProfile Metrics
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

cd ../transaction-service
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

View the dashboard and notice the Used Heap panel, shown in figure 10.5, is updated
in 15 to 30 seconds with the JVM heap used by each service.

NOTE Only the JVM Used Heap panel will update. The remaining panels will
update as we instrument the services with metrics throughout the remainder
of this chapter.

With the successful deployment and graphing of the Banking microservices, it’s time
to dig into MicroProfile Metrics.

10.2.2 MicroProfile Metrics

The Java platform has shipped with the Java Management Extensions (JMX) since
JDK 5. JMX does not meet the metric needs of modern Enterprise Java applications.
For example, the JMX API is somewhat complex and was created before annotations
were added to the Java platform. Also, JMX does not expose metric metadata, nor
does it expose metrics in a modern cloud-friendly format. The MicroProfile commu-
nity created MicroProfile Metrics to address all of these concerns.

Deploys the
service to
Kubernetes

The graph body shows the
used heap for each service,
between roughly 5 MB and1

45 MB, depending on when
garbage collection occurs.

Graph title

The graph legend shows the Transaction service and Account
service. For each service, the value is an average of all
running service instances, which is the case for most graph
panels. Exceptions are identified later.

Figure 10.5 Grafana JVM Used Heap graph

212 CHAPTER 10 Capturing metrics
MICROPROFILE METRICS OUTPUT FORMATS

MicroProfile Metrics requires implementations to support two output formats. The
first is OpenMetrics (https://openmetrics.io) format, a standard text format defined
under the Cloud Native Computing Foundation (CNCF). OpenMetrics is the default
MicroProfile Metrics output format when the HTTP accept header is text/plain.
As shown in listing 10.6, it contains useful metadata such as HELP and TYPE, which can be
consumed by external metrics tooling. The next listing expands on listing 10.6.

HELP base_classloader_loadedClasses_count Displays the number of classes
that are currently loaded in the Java virtual machine.
TYPE base_classloader_loadedClasses_count gauge
base_classloader_loadedClasses_count 13010.0

Metrics output is machine readable, but the format is easy to understand, even for
developers. Metrics are helpful when debugging an application by querying the
/q/metrics endpoint. For example, to view the metric displayed in listing 10.10, run
the curl command shown next.

curl -i localhost:8080/q/metrics/base/classloader.loadedClasses.count

MicroProfile also requires support for metrics output in JSON format. JSON-formatted
metric output can be obtained by using the application/json HTTP request header,
as shown in the following code snippet.

curl -i \
 -H "Accept:application/json" \
 localhost:8080/q/metrics

Sample output is shown next, with some output excluded for brevity, as identified by
the ellipses.

Listing 10.10 OpenMetrics output explained

Listing 10.11 Obtaining a metric directly using the metric name

Listing 10.12 Requesting metrics in JSON-formatted output

OpenMetrics metadata begins with a hashtag ("#"). The first field, the metadata keyword
HELP, offers help text that is used by external tooling. The second field in the HELP metadata

is the metric name, base_classloader_loadedClasses_count. The remainder of the line
describes the intent of base_classloader_loadedClasses_count.

The metric TYPE metadata. The second field, base_classloader_
loadedClasses_count, is the metric name. The third field is the
metric type—gauge, in this case. We describe metric types in
detail in an upcoming section.

The metric name and value.
Quarkus had loaded 13010
classes into memory when
this value was read.

Note that the curl command is using the inherent metric name, whereas OpenMetrics replaces
the '.' character with underscores, and MicroProfile Metrics prefixes base. Therefore, the

OpenMetrics metric name equivalent is base_classloader_loadedClasses_count.
We explain the MicroProfile Metrics naming convention in the next section.

https://openmetrics.io

213Getting started with MicroProfile Metrics
{
 "base": {
 "cpu.systemLoadAverage": 2.1865234375,
 "thread.count": 60,
 "classloader.loadedClasses.count": 9667,
 ...
 },
 "vendor": {
 ...
 }
 "application": {
 ...
 }
}

Note that the JSON format does not include the TYPE and HELP metadata available in
OpenMetrics format and instead focuses on the efficient machine-consumable JSON
format. This chapter focuses on OpenMetrics output because it is a standard format
easily consumed by Prometheus later in the chapter.

 This section used the annotated MicroProfile Metrics naming convention. The fol-
lowing section explains the naming convention in more detail.

ANNOTATED METRICS NAMING CONVENTION

MicroProfile Metrics follows a naming convention. The naming convention shown in
the next listing is explained in detail in table 10.1.

<scope>.<class>.<method>.<name>l

Upcoming sections discuss topics like tags, scope, and absolute that can influence the
metric name. This section references scope a couple of times, so the next section digs
into that a bit deeper.

Listing 10.13 JSON-formatted metrics output

Listing 10.14 MicroProfile Metrics annotated metrics naming convention

Table 10.1 MicroProfile Metrics naming convention details

Convention Description

Scope Must be base, vendor, or application. Scopes are explained in the next section.

Class The package and class name the annotation applies to.

Method The method the annotation applies to.

Name The name of the metric, like classloader.loadedClasses.count.

The output
is in JSON
format.

The output uses base, vendor, and
application JSON objects. These objects
will be explained in the next section.

Metrics are JSON name-value
pairs. In this example, the
Account service has created
60 threads.

The output uses base, vendor, and
application JSON objects. These objects
are explained in the next section.

214 CHAPTER 10 Capturing metrics
MICROPROFILE METRICS SCOPES

MicroProfile categorizes metrics into the three scopes outlined in table 10.2.

Scopes can be queried directly by appending the scope to the metrics URL. For exam-
ple, the next code listing requests only base metrics.

curl -i localhost:8080/q/metrics/base

A few lines of query output is shown next. The list of required base metric names will
be the same across all MicroProfile Metrics implementations, although the metric val-
ues will differ.

HELP base_REST_request_total The number of invocations and total response

➥ time of this RESTful resource method since the start of the server.
TYPE base_REST_request_total counter
base_REST_request_total{class="quarkus.accounts.AccountResource",

➥ method="transact_javax.ws.rs.core.HttpHeaders_java.lang.Long_java.

➥ math.BigDecimal"} 24.0
TYPE base_REST_request_elapsedTime_seconds gauge
base_REST_request_elapsedTime_seconds{class="quarkus.accounts.

➥ AccountResource",method="transact_javax.ws.rs.core.HttpHeaders_

➥ java.lang.Long_java.math.BigDecimal"} 0.767486469
HELP base_classloader_loadedClasses_count Displays the number of classes

➥ that are currently loaded in the Java virtual machine.
TYPE base_classloader_loadedClasses_count gauge
base_classloader_loadedClasses_count 13925.0
...

NOTE If no scope is specified, then all available metrics are returned. In
OpenMetrics format, metric names are preceded by their scope. In this exam-
ple, all metrics are preceded with base_.

Table 10.2 Metric scopes

Scope Description

Base Metrics required by all MicroProfile Metrics implementations. For example, the
base_thread_count metric exposes the number of live threads in the running
application process. Base metrics are portable across implementations.

Vendor Metrics specific to a runtime. Vendor metrics are not portable across implementa-
tions. For example, the vendor_cpu_processCpuTime_seconds metric, which
is specific to Quarkus, exposes the CPU time used by the application process. Each
Quarkus extension exposes metrics specific to that extension. As the number of
extensions used by an application grows, so does the number of available metrics.

Application Metrics defined by the application or on behalf of the application.

Listing 10.15 Requesting base metrics

Listing 10.16 Requesting base metrics output

215Getting started with MicroProfile Metrics
MICROPROFILE METRICS–SUPPORTED TYPES

The OpenMetrics and JSON-formatted outputs reference metric types, like gauge.
MicroProfile Metrics offers support for the commonly used metric types outlined in
table 10.3.

Metric annotations accept a number of parameters, as shown in table 10.4.

Table 10.3 Metric types (as defined in the specification)

Metric Annotation Description

Counter @Counter A monotonically increasing numeric value.

Concurrent gauge @ConcurrentGauge Incrementally increasing or decreasing value.

Gauge @Gauge Metric sampled to obtain its current value.

Meter @Metered Tracks mean throughput and 1-, 5-, and 15-minute expo-
nentially weighted moving-average throughput.

Metric @Metric This is not a metric type but an annotation that contains
the metadata information when requesting a metric to
be injected or produced.

Histogram N/A Calculates the distribution of a value.

Timer @Timed Aggregates timing durations and provides duration sta-
tistics, plus throughput statistics.

Table 10.4 MicroProfile Metrics specification annotation field descriptions

Metric field Description

name Optional. Sets the name of the metric, like concurrentBlockingCalls. If not
explicitly given, the name of the annotated object is used, such as
newTransaction when the annotated object is the newTransaction method.

absolute If true, uses the given name as the absolute name of the metric, like new-
Transaction_current. If false, prepends the package name and class name
before the given name, like io_quarkus_transactions_Transaction-
Resource_newTransaction_current. The default value is false. The metric
names can get quite long, so it is more readable to set absolute to true when
there is no risk of metric name collision across multiple objects within an applica-
tion. Base metrics are absolute. Quarkus vendor metrics are also absolute. By
default, metrics in the application scope are not absolute.

displayName Optional. A human-readable display name for metadata. Useful metadata for third-
party tooling to consume.

description Optional. A description of the metric. Useful metadata for third-party tooling to
consume.

unit Unit of the metrics, like gigabytes, nanoseconds, and percent. Check the
MetricUnits class for a set of predefined units.

tags A list of key-value pairs. We will describe tags in more detail later.

216 CHAPTER 10 Capturing metrics

S
the
With a list of available metrics in hand, the next step is to instrument the Account ser-
vice with a useful metric.

10.2.3 Instrumenting the Account service

A useful place to start is to count the number of times the ExceptionMapper is called.
Based on the count, perhaps a frontend web UI could be improved or the API
enhanced. The Counter metric will count ExceptionMapper invocations, as shown in
the next code snippet.

@Provider
public static class ErrorMapper implements ExceptionMapper<Exception> {
 @Metric(
 name = "ErrorMapperCounter",
 description = "Number of times the AccountResource ErrorMapper is invoked"
)
 Counter errorMapperCounter;

 @Override
 public Response toResponse(Exception exception) {
 errorMapperCounter.inc();

 ...
 }
}

Invoking an endpoint with an invalid value will increment the counter. The next two
code listings pass an invalid account number to invoke the ErrorMapper and show
the output.

curl -i localhost:8080/accounts/234/balance

HTTP/1.1 404 Not Found
Content-Length: 109
Content-Type: application/json

{"exceptionType":"javax.ws.rs.WebApplicationException",
 "code":404,
 "error":"Account with 234 does not exist."
}

To validate the counter has been incremented, along with validating the counter
metadata is available, run the following code.

Listing 10.17 AccountResource.java

Listing 10.18 Incrementing ErrorMapper counter

Listing 10.19 ErrorMapper output

Injects a metric. If the metric does not exist, then it will be created.

pecifies
 metric

name Specifies
the metric

description
The injected metric
is a counter.

Increments
the counter

217Getting started with MicroProfile Metrics

e

 is
on.

In
Metric
into a
curl localhost:8080/q/metrics | grep ErrorMapper

HELP application_quarkus_accounts_AccountResource_ErrorMapper_ErrorMapper_

➥ total Number of times the AccountResource ErrorMapper is invoked
TYPE application_quarkus_accounts_AccountResource_

➥ ErrorMapper_ErrorMapper_total counter
application_quarkus_accounts_AccountResource_ErrorMapper_

➥ ErrorMapper_total 1.0

The ErrorMapperCounter is the only Account service custom metric. In the next sec-
tion, we heavily instrument the Transaction service.

10.2.4 Instrumenting the TransactionService

MicroProfile Metrics stores metrics and their metadata like the ErrorMapperCounter
in a MetricRegistry. There is a metric registry for each scope: base, vendor, and
application. Custom metrics created by the developer are stored in the application
scope. A unique MetricID, consisting of the metric name and an optional list of tags,
identifies a metric in the MetricRegistry.

 Metric tags are key-value pairs that add a dimension to metrics that share a com-
monality. Metrics with tags can be queried by tag or holistically (in aggregate). For
example, consider the TransactionServiceFallbackHandler.java, which maps Java
exceptions to HTTP response codes. It is useful to track the overall number of fall-
back invocations (“holistically”) and track each exception type resulting in a fallback.

 The next listing updates TransactionServiceFallbackHandler.java to use a fall-
back metric and the MetricRegistry to track fallbacks by the resulting HTTP status
code.

public class TransactionServiceFallbackHandler implements
FallbackHandler<Response> {

 @Inject
 @RegistryType(type = MetricRegistry.Type.APPLICATION)
 MetricRegistry metricRegistry;

Listing 10.20 Validating ErrorMapper counter output

Listing 10.21 ErrorMapper counter output

Listing 10.22 TransactionServiceFallbackHandler.java: track fallbacks by exception

Gets only the ErrorMapper metrics output. Using grep is often easier than remembering the
format to access the metric directly as was done in listing 10.11. To access the metric directly, use curl

localhost:8080/q/metrics/application/quarkus.accounts.AccountResource\$ErrorMapper.ErrorMapperCounter.

The MicroProfile metric description maps
to the OpenMetrics HELP metadata.

The MicroProfile
metric type maps to
the OpenMetrics TYPE
metadata.

The metric name and value. When creating a metric
using the @Metric annotation, the metric name uses
the MicroProfile Metrics Annotated Naming Convention,
which prefixes the scope, package, and class name to
the metric name.

Specifies the registry typ
to inject. MetricRegistry
.Type.APPLICATION is
used because the metric
specific to this applicati

jects the
Registry
 metric-
Registry
variable

218 CHAPTER 10 Capturing metrics

ter
d.
 @Override
 public Response handle(ExecutionContext context) {
 Logger LOG =

Logger.getLogger(TransactionServiceFallbackHandler.class);

 Response response;
 String name;

 if (context.getFailure().getCause() == null) {
 name = context.getFailure().getClass().getSimpleName();
 } else {
 name = context.getFailure().getCause().getClass().getSimpleName();
 }

 switch (name) {
 case "BulkheadException":
 response = Response.status(Response.Status.TOO_MANY_REQUESTS)
 .build();
 break;

 case "TimeoutException":
 response = Response.status(Response.Status.GATEWAY_TIMEOUT)
 .build();
 break;

 case "CircuitBreakerOpenException":
 case "ConnectTimeoutException":
 case "SocketException":
 response = Response.status(Response.Status.SERVICE_UNAVAILABLE)
 .build();
 break;

 case "ResteasyWebApplicationException":
 case "WebApplicationException":
 case "HttpHostConnectException":
 response = Response.status(Response.Status.BAD_GATEWAY)
 .build();
 break;

 default:
 response =

Response.status(Response.Status.NOT_IMPLEMENTED).build();

 }

 metricRegistry.counter("fallback",
 new Tag("http_status_code",
 "" + response.getStatus()))
 .inc();

 LOG.info("******** " + context.getMethod().getName() + ": " + name + "
********");

 return response;
 }
}

Counts the number of fallbacks using a
counter metric named fallback. If the coun
does not exist, the counter will be create

Creates a metric using a Tag,
which is a name-value pair. The
tag name is http_status_code.

The tag value
is the HTTP

response
status code.

Increments
the counter

219Getting started with MicroProfile Metrics
To test the fallback counter, run the next command.

metrics/scripts/overload_bulkhead.sh

After the script has finished, run the following commands to see the metric output.

export TRANSACTION_URL=http:/ /localhost:8088
curl -i -s $TRANSACTION_URL/q/metrics/application | grep -i fallback_total

TYPE application_fallback_total counter
application_fallback_total{http_status_code="429"} 290.0

Redeploy the Transaction service to Minikube with mvn clean package -DskipTests
-Dquarkus.kubernetes.deploy=true.

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue at https://github.com/quarkusio/
quarkus/issues/19701 for updates on a resolution. We can work around the
problem by removing the application first with kubectl delete -f /target/
kubernetes/minikube.yaml.

The next step is to generate failures and view the results in the Grafana dashboard.
First, generate BulkheadExceptions, resulting in an HTTP status code of TOO_
MANY_REQUESTS. Second, make requests to the Transaction Service while the Account
service is scaled to zero and then scaled back to one. Scaling the Account service in
this manner will trip the circuit breaker and result in exceptions like Circuit-
BreakerOpenException and WebApplicationException. These exceptions result in
SERVICE_UNAVAILABLE (HTTP status code: 503) and BAD_GATEWAY (HTTP status code:
502), respectively. We can accomplish these steps with the heavily commented
force_multiple_fallbacks.sh, which executes against the Transaction service run-
ning in Minikube, as shown in listings 10.26 and 10.27.

Listing 10.23 Running the overload_bulkhead.sh script

Listing 10.24 Getting fallback_total metric

Listing 10.25 fallback_total metric output

Overloads the local transaction-service started with mvn
quarkus:dev -Ddebug=5006 to generate BulkheadExceptions

Uses the local Transaction
service listening on port 8088

Requests application metrics from the metrics
endpoint, and narrows the output to fallback_total

The BulkheadException maps to HTTP status code 429 (TOO_MANY_REQUESTS) in TransactionFallback-
Handler.java. There were 290 BulkheadExceptions (after multiple runs of the overload_bulkhead.sh).

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

220 CHAPTER 10 Capturing metrics
export TRANSACTION_URL=`minikube service --url transaction-service`
metrics/scripts/force_multiple_fallbacks.sh

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 429 Too Many Requests
Content-Length: 0

HTTP/1.1 429 Too Many Requests
Content-Length: 0

HTTP/1.1 200 OK
Content-Length: 0

...

******* DISABLING ACCOUNT SERVICE ******
deployment.apps/account-service scaled
HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 502 Bad Gateway
Content-Length: 0

HTTP/1.1 503 Service Unavailable
Content-Length: 0

...

"******* RESTARTING ACCOUNT SERVICE ******"
deployment.apps/account-service scaled
Waiting for container to start
Waiting for container to start

HTTP/1.1 200 OK
Content-Length: 0

With forced fallbacks in place, the dashboard should update accordingly. Figure 10.6
show the fallbacks by type.

 To demonstrate an additional metric, add the @Timed metric to the Transaction-
ServiceFallbackHandle.handle() method shown in listing 10.28. This metric will
track how much time is spent in the fallback handler and the number and rate of calls
to the fallback handler.

Listing 10.26 Running force_multiple_fallbacks.sh

Listing 10.27 Shortened force_multiple_fallbacks.sh output

Some requests will
execute successfully.

Some requests exceed
the Bulkhead limit of one
simultaneous request.

The script will scale the
Account service down to
trip the circuit breaker.

A request made to a service
that is down before the circuit
breaker has tripped

CircuitBreakerOpen
exception

Scales the Account
service to one instance
and waits for it to start

Generates more requests
after service is up

221Getting started with MicroProfile Metrics

di
public class TransactionServiceFallbackHandler
 implements FallbackHandler<Response> {

 @Inject
 @RegistryType(type = MetricRegistry.Type.APPLICATION)
 MetricRegistry metricRegistry;

 @Timed(
 name = "fallbackHandlerTimer",
 displayName = "Fallback Handler Timer",
 description = "Time spent handling fallbacks",
 absolute = true,
 unit=MetricUnits.NANOSECONDS
)
 @Override
 public Response handle(ExecutionContext context) {
 ...
 }

 ...

The @Timed annotation tracks the frequency of invocations of the annotated object
and how long it takes for invocations to complete. Sample OpenMetrics output of the
@Timed annotation in listing 10.28 is shown here.

TYPE application_fallbackHandlerTimer_rate_per_second gauge
application_fallbackHandlerTimer_rate_per_second 2.426100958072672
TYPE application_fallbackHandlerTimer_one_min_rate_per_second gauge
application_fallbackHandlerTimer_one_min_rate_per_second 0.21734790157044565
TYPE application_fallbackHandlerTimer_five_min_rate_per_second gauge
application_fallbackHandlerTimer_five_min_rate_per_second 1.1224561659490684
TYPE application_fallbackHandlerTimer_fifteen_min_rate_per_second gauge

Listing 10.28 Timing the fallback handler

Listing 10.29 Timed fallback handler output

Layered time-series graph.
The force_fallback_errors.sh
script was run multiple times,
which explains the multiple
“steps” in the chart.

Legend, with HTTP status code in parentheses

Figure 10.6 Number of Transaction service fallbacks by HTTP status code

Tracks amount of time spent
in the fallback handler

Sets the
metric
name

Optional—
sets the

metric
splay name

Optional—sets the
metric description

Optional—the absolute
parameter is true, which
will remove the prepended
class and method from the
metric name because this
is the only metric under
this name.

Optional—
the timer
counts in

nanoseconds.

222 CHAPTER 10 Capturing metrics
application_fallbackHandlerTimer_fifteen_min_rate_per_second 0.6479305746101738
TYPE application_fallbackHandlerTimer_min_seconds gauge
application_fallbackHandlerTimer_min_seconds 1.35104E-4
TYPE application_fallbackHandlerTimer_max_seconds gauge
application_fallbackHandlerTimer_max_seconds 0.05986594
TYPE application_fallbackHandlerTimer_mean_seconds gauge
application_fallbackHandlerTimer_mean_seconds 3.792392736865503E-4
TYPE application_fallbackHandlerTimer_stddev_seconds gauge
application_fallbackHandlerTimer_stddev_seconds 0.001681891771616228
HELP application_fallbackHandlerTimer_seconds Time spent handling fallbacks
TYPE application_fallbackHandlerTimer_seconds summary
application_fallbackHandlerTimer_seconds_count 768.0
application_fallbackHandlerTimer_seconds{quantile="0.5"} 2.78085E-4
application_fallbackHandlerTimer_seconds{quantile="0.75"} 3.65377E-4
application_fallbackHandlerTimer_seconds{quantile="0.95"} 6.51634E-4
application_fallbackHandlerTimer_seconds{quantile="0.98"} 8.98868E-4
application_fallbackHandlerTimer_seconds{quantile="0.99"} 0.001348871
application_fallbackHandlerTimer_seconds{quantile="0.999"} 0.004710182

Redeploy the application using mvn clean package -DskipTests -Dquarkus.kuber-
netes.deploy=true. Once deployed, rerun metrics/scripts/force_multiple_
fallbacks.sh.

 The dashboard Transaction Service Fallback Call Rate Rolling One Minute Aver-
age gauge displays a sample application_fallbackHandlerTimer_one_min_rate_per_
second metric value, which is the rate of method invocations, per second, over the last
minute. Figure 10.7 shows sample requests per second over the last minute.

NOTE The “acceptable” and “unacceptable” requests per second are defined
in the Grafana gauge configuration, not in the application code. These are
hypothetical values to demonstrate the gauge.

Another approach to monitoring performance, perhaps tied to an SLA, is to track
concurrent requests on a method. To see this in action, add the @ConcurrentGauge

The maximum recorded
request rate over the
last minute was 5.75
requests per second.

Values over 5 are
unacceptable,
as identified by
the thin red band.

Values between 0 and 5
are acceptable, as identified
by the thin green outside
band. The minimum
requests-per-second
value over the last
minute was 0.0 .1

Requests/second
over last minute

Figure 10.7 Grafana Transaction service fallback call rate

223Getting started with MicroProfile Metrics

The

sh
represe

of
annotation to the TransactionResource.newTransaction() method as shown in the
following listing.

@ConcurrentGauge(
 name = "concurrentBlockingTransactions",
 absolute = true,
 description = "Number of concurrent transactions using blocking API"
)
@POST
@Path("/{acctNumber}")
public Map<String, List<String>> newTransaction(@PathParam("acctNumber")
 Long accountNumber,
 BigDecimal amount) {
 try {
 updateDepositHistogram(amount);
 return accountService.transact(accountNumber, amount);
 } catch (Throwable t) {
 t.printStackTrace();
 Map<String, List<String>> response = new HashMap<>();
 response.put("EXCEPTION - " + t.getClass(),

Collections.singletonList(t.getMessage()));
 return response;
 }
}

With the code updated, redeploy the application using mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true and invoke each endpoint using the
script shown next.

metrics/scripts/concurrent.sh

Figure 10.8 shows the number of concurrent requests.
 We have covered a lot of ground in this chapter, but we have one last code modifi-

cation to make to the Transaction service: creating business metrics.

10.2.5 Creating business metrics

Metrics are not only about application performance; they can also encompass busi-
ness performance. For example, it may be helpful to a business to have a live view of
the distribution of customer deposits. It is better for the bank if customers tend

Listing 10.30 Applying the @ConcurrentGauge annotation

Listing 10.31 Generating concurrent requests to the blocking transaction endpoint

Adds the @ConcurrentGauge to newTransaction() to
track the number of concurrent requests to the method

 metric
name

ould be
ntative
 intent.

The package and class name
prefix will be removed from
the metric name. There is no
name conflict with another
metric of the same name.

Provides a description
representative of the metric intent

Scales the Transaction service to two replicas, and runs 8,000 requests (eight sets
of 1,000 parallel requests). It will then scale the Transaction service to one replica,

and run 8,000 requests (eight sets of 1,000 parallel requests).

224 CHAPTER 10 Capturing metrics

newTra
to u
toward larger deposits. Accomplishing this is trivial with MicroProfile Metrics, as shown
in the next listing.

public class TransactionResource {

 @Inject
 @Metric(
 name = "deposits",
 description = "Deposit histogram"
)
 Histogram histogram;

 ...

 void updateDepositHistogram(BigDecimal dollars) {
 histogram.update(dollars.longValue());
 }

 ...

 @POST
 @Path("/{acctNumber}")
 public Map<String, List<String>> newTransaction(
 @PathParam("acctNumber") Long accountNumber, BigDecimal amount) {
 try {
 updateDepositHistogram(amount);
 return accountService.transact(accountNumber, amount);
 } catch (Throwable t) {

Listing 10.32 TransactionResource.java

Two Transaction service Pods running
during load generation

Pod transaction-service-85f4b4fc9f-m5ps2
handled up to three concurrent blocking calls
during load generation.

Pod transaction-service-85f4b4fc9f-hx527
handled up to one concurrent call before
it was scaled down.

Figure 10.8 Transaction service concurrent blocking calls graph

The Histogram class is not an annotation,
although an instance can be injected. The
Histogram metadata, name, and description
are provided using the @Metric annotation.

Provides the update-
DepositHistogram()
method that adds a
deposit amount to
the histogram

A histogram can be updated
only with integer and long
values, which is accurate
enough for this use case.

Updates
nsaction()
pdate the

deposit
histogram

225Getting started with MicroProfile Metrics
 t.printStackTrace();
 Map<String, List<String>> response = new HashMap<>();
 response.put("EXCEPTION - " + t.getClass(),
 Collections.singletonList(t.getMessage()));
 return response;
 }
 }

 @POST
 @Path("/async/{acctNumber}")
 public CompletionStage<Map<String,
 List<String>>> newTransactionAsync(@PathParam("acctNumber") Long

accountNumber,
 BigDecimal amount) {
 updateDepositHistogram(amount);
 return accountService.transactAsync(accountNumber, amount);
 }

 @POST
 @Path("/api/{acctNumber}")
 @Bulkhead(1)
 @CircuitBreaker(
 requestVolumeThreshold=3,
 failureRatio=.66,
 delay = 1,
 delayUnit = ChronoUnit.SECONDS,
 successThreshold=2
)
 @Fallback(value = TransactionServiceFallbackHandler.class)
 public Response newTransactionWithApi(@PathParam("acctNumber") Long

accountNumber, BigDecimal amount)
 throws MalformedURLException {
 AccountServiceProgrammatic acctService =
 RestClientBuilder.newBuilder().baseUrl(new URL(accountServiceUrl))
 .connectTimeout(500, TimeUnit.MILLISECONDS).readTimeout(1200,
 TimeUnit.MILLISECONDS)
 .build(AccountServiceProgrammatic.class);

 acctService.transact(accountNumber, amount);
 updateDepositHistogram(amount);
 return Response.ok().build();
 }
}

With the code updated, redeploy the application using mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true, and invoke each endpoint using the
script shown next.

metrics/scripts/invoke_deposit_endpoints.sh

The Grafana Deposits Distribution panel should be updated with data, as shown in fig-
ure 10.9.

Listing 10.33 Invoking each deposit endpoint

Updates newTransactionAsync()
to update the deposit histogram

Updates newTransaction-
WithApi() to update the
deposit histogram

226 CHAPTER 10 Capturing metrics
In the next section, we discuss how MicroProfile Metrics integrates with other specifi-
cations to provide additional built-in metrics.

10.2.6 MicroProfile Fault Tolerance and JAX-RS integration
with MicroProfile Metrics

MicroProfile Fault Tolerance automatically registers metrics for @Retry, @Timeout,
@CircuitBreaker, @Bulkhead, and @Fallback annotations. The Transaction service
uses all of these fault tolerance annotations. As a result, a plethora of metrics is avail-
able by probing the endpoint, as shown in the next listing, with the metrics output
shown in listing 10.35.

export TRANSACTION_URL=`minikube service --url transaction-service`
metrics/scripts/force_multiple_fallbacks.sh
curl -is $TRANSACTION_URL/q/metrics/application | grep ft | grep -v "^#"

...

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_bulkhead_callsAccepted_total 110.0

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_bulkhead_executionDuration_min 8816204.0

Listing 10.34 Transaction Service fault tolerance metrics

Listing 10.35 Fault tolerance metrics output (output reduced)

The deposit distribution after running the
invoke_deposits_endpoints.sh multiple
times

Figure 10.9 Grafana Deposits Distribution panel

Uses the Transaction service running in MinikubeForces fallbacks

Views the MicroProfile Fault Tolerance
metrics only and without the metadata

227Getting started with MicroProfile Metrics
application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_bulkhead_executionDuration_max 1.28532238E8

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_bulkhead_executionDuration_mean 1.4306619234752553E7

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_circuitbreaker_callsSucceeded_total 110.0

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_circuitbreaker_closed_total 1.038171586389E12

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_circuitbreaker_halfOpen_total 0.0

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_circuitbreaker_open_total 0.0

application_ft_io_quarkus_transactions_TransactionResource_newTransactionWith
Api_invocations_total 110.0

...

A few notes about MicroProfile Fault Tolerance metrics integration follow:

 The metric names are not absolute and are in the application scope.
 The metrics are customized by the metric type. For example, the @Bulkhead

metrics are a histogram covering the number of calls and the distribution of
execution time in the method (not shown). The @CircuitBreaker metrics
count the number of invocations for each state of the circuit breaker.

 To disable registration of fault tolerance metrics, set the property MP_Fault_
Tolerance_Metrics_Enabled=false.

As an optional feature for MicroProfile implementations, JAX-RS can integrate with
MicroProfile Metrics and provide time spent in REST endpoints and count REST
endpoint invocations. To enable this feature in Quarkus, set the property quarkus
.smallrye-metrics.jaxrs.enabled=true. REST metrics enabled in this manner are
created in the base scope. Once the property is set, run the following commands.

mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true
export TRANSACTION_URL=`minikube service --url transaction-service`
metrics/scripts/invoke_deposit_endpoints.sh
curl -is $TRANSACTION_URL/q/metrics/base | grep base_REST

Sample REST metric data is shown here.

HELP base_REST_request_total The number of invocations and total response

➥ time of this RESTful resource method since the start of the server.
TYPE base_REST_request_total counter
base_REST_request_total{class="io.quarkus.transactions.TransactionResource",

➥ method="newTransactionAsync_java.lang.

Listing 10.36 Generating JAX-RS metrics

Listing 10.37 REST metrics output

Deploys the applicationUses the Transaction service running in Minikube

Deposits funds
using the blocking,
async, and client
API endpoints

Views the JAX-RS metrics

228 CHAPTER 10 Capturing metrics
➥ Long_java.math.BigDecimal"} 10.0
TYPE base_REST_request_elapsedTime_seconds gauge
base_REST_request_elapsedTime_seconds{class="io.quarkus.transactions.

➥ TransactionResource",method="newTransactionAsync_java.lang.

➥ Long_java.math.BigDecimal"} 0.231018078
base_REST_request_total{class="io.quarkus.transactions.TransactionResource",

➥ method="newTransactionWithApi_java.lang.Long_java.math.BigDecimal"}

➥ 610.0
base_REST_request_elapsedTime_seconds{class="io.quarkus.transactions.

➥ TransactionResource",method="newTransactionWithApi_java.lang.Long_java.

➥ math.BigDecimal"} 6.058761321
base_REST_request_total{class="io.quarkus.transactions.TransactionResource",

➥ method="newTransaction_java.lang.Long_java.math.BigDecimal"} 10.0
base_REST_request_elapsedTime_seconds{class="io.quarkus.transactions.

➥ TransactionResource",method="newTransaction_java.lang.Long_java.math.

➥ BigDecimal"} 0.193222971

Before wrapping up, Quarkus not only supports MicroProfile Metrics, it also supports
Micrometer metrics. The next section will explain the difference and why both
Quarkus and MicroProfile Metrics are moving towards Micrometer.

10.2.7 Micrometer metrics

Since Quarkus 1.8, Micrometer (https://micrometer.io/) is included as an alterna-
tive approach to metrics. Micrometer was popularized with widespread use within
Spring and Spring Boot projects but also has wide adoption within the broader Java
ecosystem.

 Why another metrics implementation? Though Micrometer does not implement
the MicroProfile Metrics specification, its use is a de facto standard within the Java
ecosystem. This is an important factor to consider. When operations or site reliability
engineers monitor many Java services, it’s critical for metrics to be named alike to
enable the aggregation of data across instances. MicroProfile Metrics defines a hierar-
chical naming scheme, whereas Micrometer utilizes a dimensional naming scheme
with labels, or tags, associated with a name for additional context. With the popularity
of Micrometer, it’s important for Quarkus to provide identically named metrics in
environments with many Java frameworks in deployments. For this reason, Quarkus
recommends the use of the Micrometer extension for exposing metrics.

NOTE At the time of this writing, MicroProfile Metrics is considering adop-
tion of Micrometer as the engine under the MicroProfile application API.

Let’s see Micrometer in action. Open the book source to the /chapter10/micrometer-
account-service directory. The example comes from the active record in chapter 4.
Only one additional dependency is needed, as shown next.

A counter is available for each REST endpoint that counts
the number of REST invocations on that endpoint.

A gauge is available for each REST endpoint that
samples the time spent in a REST endpoint (latency).

https://micrometer.io/

229Getting started with MicroProfile Metrics
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-micrometer-registry-prometheus</artifactId>
</dependency>

The quarkus-micrometer-registry-prometheus dependency brings in the base
Micrometer extension, as well as the Micrometer Prometheus registry dependency.
This dependency activates the /q/metrics endpoint with metrics in the Prometheus
format.

NOTE Alternative metrics backends are available with Micrometer and Quarkus.
Check the additional registries in the Quarkiverse at https://github.com/
quarkiverse/quarkus-micrometer-registry.

Time to see the Micrometer extension in action! Run the commands shown in list-
ings 10.39 and 10.40.

eval $(minikube -p minikube docker-env)
mvn clean package -Dquarkus.kubernetes.deploy=true

ACCOUNT_URL=`minikube service --url account-service-micrometer`
curl -X GET ${ACCOUNT_URL}/q/metrics

...
jvm_threads_live_threads 11.0
jvm_threads_daemon_threads 7.0
process_uptime_seconds 322.512
jvm_threads_peak_threads 11.0
...

With no requests having executed on the endpoints, there are no metrics covering
HTTP requests. Let’s change that now, as shown in the next code listing and a sample
of the metrics output in listing 10.42.

curl -X GET ${ACCOUNT_URL}/accounts
curl -X GET ${ACCOUNT_URL}/accounts/87878787
curl -X GET ${ACCOUNT_URL}/q/metrics

Listing 10.38 Quarkus Micrometer Prometheus registry extension dependency

Listing 10.39 Deploying account-service-micrometer

Listing 10.40 Micrometer metrics output (sample)

Listing 10.41 Invoking HTTP endpoints to get accounts

Uses Docker engine in Minikube
Deploys the
application

Saves the account-service-
micrometer URL. This will

be used multiple times.
Gets the Micrometer-

generated metrics

It is immediately evident that the Micrometer
metrics are not following the MicroProfile
naming convention, with metric names like
jvm_threads_live_threads missing the
MicroProfile Metrics scope.

https://github.com/quarkiverse/quarkus-micrometer-registry
https://github.com/quarkiverse/quarkus-micrometer-registry
https://github.com/quarkiverse/quarkus-micrometer-registry

230 CHAPTER 10 Capturing metrics
HELP http_server_requests_seconds
TYPE http_server_requests_seconds summary
http_server_requests_seconds_count{method="GET",outcome="SUCCESS",status="200

",uri="/accounts/{acctNumber}",} 2.0
http_server_requests_seconds_sum{method="GET",outcome="SUCCESS",status="200",

uri="/accounts/{acctNumber}",} 0.015225187
http_server_requests_seconds_count{method="GET",outcome="SUCCESS",status="200

",uri="/q/",} 1.0
http_server_requests_seconds_sum{method="GET",outcome="SUCCESS",status="200",

uri="/q/",} 0.052366224
http_server_requests_seconds_count{method="GET",outcome="SUCCESS",status="200

",uri="/accounts",} 2.0
http_server_requests_seconds_sum{method="GET",outcome="SUCCESS",status="200",

uri="/accounts",} 0.285417871
HELP http_server_requests_seconds_max
TYPE http_server_requests_seconds_max gauge
http_server_requests_seconds_max{method="GET",outcome="SUCCESS",status="200",

uri="/accounts/{acctNumber}",} 0.011469553
http_server_requests_seconds_max{method="GET",outcome="SUCCESS",status="200",

uri="/q/",} 0.052366224
http_server_requests_seconds_max{method="GET",outcome="SUCCESS",status="200",

uri="/accounts",} 0.277971268

Without adding anything other than a dependency, the service is now producing
many useful metrics using Micrometer!

 We have covered a lot of content in this chapter. Before finishing up, let’s simulate
a busy production environment that generates a lively dashboard.

10.2.8 Simulating a busy production system

The run_all.sh script runs the commands and scripts used in this chapter to gener-
ate load. The result is a busy Grafana dashboard that looks like a busy production sys-
tem. From the top-level chapter10/ directory, run the following command.

metrics/scripts/run_all.sh

Press CTRL-C to stop

Figure 10.10 shows the overall Grafana dashboard after running the metrics/
scripts/run_all.sh command for five minutes.

Listing 10.42 Account service sample metrics output

Listing 10.43 From chapter10 directory, running the run_all.sh script

231Summary
Summary
 MicroProfile Metrics offers multiple types of metrics to address varying perfor-

mance use cases, like counters, histograms, gauges, meters, and timers.
 MicroProfile Metrics separates metrics into scopes: base, vendor, and application.
 MicroProfile Fault Tolerance and (optionally) JAX-RS integrate with Micro-

Profile Metrics.
 MicroProfile Metrics exports metrics in JSON and OpenMetrics formats.
 Quarkus supports JSON and OpenMetrics output formats.
 Metrics output can be observed live using external tools like Prometheus and

Grafana.
 Quarkus supports MicroProfile Metrics and Micrometer.

Figure 10.10 Grafana Deposits Distribution panel

Tracing microservices
Any form of application observability requires tracing execution paths within a dis-
tributed system. With the rise of distributed systems, developers can no longer
debug and step through code because they are now dealing with many services.
Tracing is the new debugging when dealing with distributed systems. In addition,
being able to visualize the bottlenecks in services by observing higher execution
times is critical. By no means does this discount the importance of observing met-
rics, discussed in chapter 10, but it is often necessary to drill deeper into a specific
execution path to determine the root of a problem.

 In essence, tracing is a key tool in the operations toolbox for observing a run-
ning production system. It is the best means of debugging the execution path of a
distributed system.

 In this chapter, we update the example architecture from chapter 8 to include trac-
ing to highlight the impact of tracing across different communication mechanisms.

This chapter covers
 Using tracing between microservices

 Viewing traces with the Jaeger UI

 Injecting a tracer to customize attributes
on a span

 Tracing beyond HTTP
232

233How does tracing work?
These include HTTP calls, both into a service and to another service, database inter-
actions, and sending or receiving messages from Apache Kafka.

 For a reminder of the services from chapter 8 and how they interact, see figure 11.1.

In this chapter, we won’t change any of the functionality with respect to how the ser-
vices interact, but instead we focus on tracing the existing interactions.

11.1 How does tracing work?
When tracing a specific service, or even a series of services within a single monolith,
there is no need to propagate trace information because all calls are within a single
JVM process. Every service within the single monolith can access a tracer, creating or
ending spans as necessary without regard to service boundaries. That’s not the case
when dealing with distributed systems, or even two services in different JVMs calling
each other. Propagating the trace context is required.

 Whether it’s HTTP, Apache Kafka, or another transportation protocol, each pro-
vides the ability to include headers along with the payload being sent. Figure 11.2
shows both these pieces of content on a request as it passes between services. In the
header of such a request, there could be a header representing an existing trace cre-
ated by the caller. If no tracing header is already present, the receiving service pre-
sumes no trace exists and will create one if tracing is enabled.

 Figure 11.2 also highlights what happens to a trace when a service call completes.
In the case of service A or service B, when processing is complete, any trace and span
information that was captured will be passed to a collector. The collector might be
known by different names, depending on the tracing implementation, but its purpose

Overdraft

microservice

Update overdraft

topic

Data

Apache Kafka

Transactions

microservice

Accounts

microservice

Overdraft fee

topic

Overdraft

topic

Figure 11.1 Microservice
architecture

234 CHAPTER 11 Tracing microservices
is to receive trace information from any service that has captured traces throughout a
distributed system. Once collected, all the trace information can be combined to pro-
vide a visualization of the trace execution path between services.

11.2 Jaeger
Jaeger (www.jaegertracing.io/) is a distributed tracing system that facilitates creating a
view of the interaction between services within a distributed system. It’s not the only
tracing system available—Zipkin (https://zipkin.io/) is another. In this chapter, we
use Jaeger in the examples for visualizing traces. Irrespective of the distributed tracing
system used, they all provide the ability to visualize a trace through a system.

 Before delving into some examples, it’s worth mentioning the terms that are
related to tracing to familiarize the reader with them. The execution path through a
system captured by Jaeger is a trace, because it traces a path through different services.
Each trace comprises one or more spans. A span represents a single unit of work within
a trace.

 Collecting traces does require time to gather the information a service captured
during execution and time to send the tracing data to the collector in an external ser-
vice. Depending on what’s captured in a trace, large pieces of data could require
memory as well. When handling several dozen requests, the extra time and memory
requirements are likely minimal, but when dealing with thousands, or tens of thou-
sands, of requests, the extra time and memory requirements to capture every execu-
tion can significantly impact service response times and throughput.

 Because the collection of traces can be expensive in time and memory, compared
to metrics, Jaeger provides the ability to define a sampling rate to indicate how many
traces should be captured.

IMPORTANT Though the examples in this chapter have a sampling rate of 1,
meaning to capture every trace, doing so in a production situation is appro-
priate only when the throughput is low enough to not be impacted. Or, if an
application is critical, it’s necessary to trace every execution if something
goes wrong.

Service BService A

Request Request

Headers

Payload Payload

Metadata

Collector

Figure 11.2 Tracing headers

https://zipkin.io/
http://www.jaegertracing.io/

235Jaeger
11.2.1 Trace sampling

The previous section introduced the concept of a sampling rate and how it can impact
the cost of collecting traces. Understanding the sampling of traces is important,
because each type of sampling has different features. The type of sampling chosen
impacts the number of traces captured within an application.

 Jaeger offers the following sampling options:

 Constant—The constant sampler always makes the same decision for every pos-
sible trace. All traces are sampled when set to 1, or ignored when set to 0.
Most demo applications use a constant sampler with a value of 1 to capture all
traces. For production, using constant sampling is beneficial only for applica-
tions that don’t have many requests; otherwise, the cost of storing the traces
grows too quickly.

 Probabilistic—The probabilistic sampler uses weighting to determine the likeli-
hood of sampling a trace. Given a value of 0.2, for example, approximately two
traces will be sampled out of 10 traces.

 Rate limiting—A leaky bucket rate limiter ensures traces are sampled at a constant
rate. A value of 4.0 informs Jaeger to sample requests at a rate of four traces
every second.

 Remote—Remote is the default sampling type used if no other configuration is
set. The Jaeger agent provides the sampling type remotely, as defined by the
configuration in the Jaeger backend.

11.2.2 Setting up the Minikube environment

Chapter 8 contains all the details of how to set up Minikube with Apache Kafka, a
PostgreSQL database, the Account service, and the Overdraft service. We use Apache
Kafka and PostgreSQL in the later tracing examples. The steps to deploy everything,
details of which are available in chapter 8, follow.

minikube start --memory 4096
kubectl create namespace kafka
kubectl apply -f 'strimzi-cluster-operator-0.25.0.yaml' -n kafka
kubectl apply -f kafka_cluster.yml -n kafka
kubectl wait kafka/my-cluster --for=condition=Ready --timeout=300s -n kafka
kubectl apply -f kafka_topics.yml -n kafka
kubectl apply -f postgresql_kubernetes.yml

11.2.3 Installing Jaeger

Jaeger has several installation options, depending on the environment it will run in.
In this chapter, we use the Jaeger operator to install it into Minikube.

NOTE An operator is a software extension to Kubernetes for managing appli-
cations and their components. Operators can perform many varied tasks in

Listing 11.1 Environment setup

Identical to listing 8.14, except for having
one replica of Apache Kafka instead of two

236 CHAPTER 11 Tracing microservices

r
Kubernetes. In this case, the Jaeger operator performs the installation of the
collector, UI, and dependent services.

With Minikube started, run the following commands to install the Jaeger operator.

kubectl create namespace observability
kubectl create -f https:/ /raw.githubusercontent.com/jaegertracing/

➥ jaeger-operator/master/deploy/crds/

➥ jaegertracing.io_jaegers_crd.yaml
kubectl create -n observability -f https:/ /raw.githubusercontent.com/

➥ jaegertracing/jaeger-operator/master/deploy/service_account.yaml
kubectl create -n observability -f https:/ /raw.githubusercontent.com/

➥ jaegertracing/jaeger-operator/master/deploy/role.yaml
kubectl create -n observability -f https:/ /raw.githubusercontent.com/

➥ jaegertracing/jaeger-operator/master/deploy/role_binding.yaml
kubectl create -n observability -f https:/ /raw.githubusercontent.com/

➥ jaegertracing/jaeger-operator/master/deploy/operator.yaml

With the commands complete, run kubectl get deployment jaeger-operator -n
observability to verify the Jaeger operator is present and ready to create instances.
To be ready, the jaeger-operator needs to be in a READY state of 1/1.

 The Jaeger operator creates an ingress route for Kubernetes, enabling access to
the Jaeger console. Ingress routes are the Kubernetes means for exposing a service to
the outside world. Because Minikube doesn’t include ingress providers by default, one
needs to be installed, as follows:

minikube addons enable ingress

To simplify the deployment of Jaeger, we use the all-in-one image (all-in-one combines
all the pieces needed for using Jaeger, without having to deploy storage, query, and UI
components separately), as shown next:

kubectl apply -n observability -f - <<EOF
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simplest
EOF

Use kubectl get pods -n observability to see when all the Jaeger components have
started successfully.

IMPORTANT The all-in-one image is not recommended for production usage.
There is no single image available for production, because it requires working
through the necessary storage requirements, collectors, and querying.

Listing 11.2 Jaeger operator installation

Creates an observability namespace
for the Jaeger components

Installs the CRDs
(custom resource

definitions) for Jaeger

Creates
the Jaege
operator

Installs the ingress add-on for Minikube. minikube
addons list shows all the available add-ons.

237Jaeger
With all the components started, the URL of the Jaeger console is available by query-
ing the ingress object, as follows:

kubectl get -n observability ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
simplest-query <none> * 192.168.64.18 80 65s

Open a browser at http://192.168.64.18 to see the Jaeger console, shown in figure 11.3.

Now that Jaeger is installed, in the next section, we trace the microservices, showing
how they appear in the Jaeger console.

11.2.4 Microservice tracing with Jaeger

Distributed tracing is difficult to describe; it’s far easier to see the traces that are pro-
duced and how they change as a service is altered. To that end, let’s deploy all the
microservices from figure 11.1 to see what’s traced, as shown in the next code listing.

eval $(minikube -p minikube docker-env)
/chapter11/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapter11/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapter11/transaction-service> mvn verify -Dquarkus.kubernetes.deploy=true

Listing 11.3 Microservice deployment

Figure 11.3 The Jaeger console

http://192.168.64.18

238 CHAPTER 11 Tracing microservices
Before proceeding, verify the three services are up and running by executing kubectl
get pods. The terminal returns three Pods, one for each service, in the state of RUN-
NING. Once they’re ready, withdraw funds from an account, making it overdrawn, as
shown here:

TRANSACTION_URL=`minikube service --url transaction-service`
curl -H "Content-Type: application/json" -X PUT -d "600.00"

${TRANSACTION_URL}/transactions/123456789/withdrawal

A JSON response is returned, showing the new account balance of –49.22. In the
browser, refresh the Jaeger console page, and select the Service drop-down menu. Fig-
ure 11.4 shows the services available for selection.

We expected account-service and transaction-service, but what’s jaeger-query?
jaeger-query is the service the Jaeger console interacts with when the console is
refreshed or a tracing search is made. When the Jaeger console was first loaded in fig-
ure 11.3, jaeger-query wasn’t present because there hadn’t been any queries issued
until the page was actually loaded. In figure 11.4, select transaction-service from
the dropdown and click Find Traces.

 Figure 11.5 explains the parts of the Jaeger UI seen. The left-hand pane labeled
Search includes different parameters that can be used to retrieve available traces.

 In the usage so far, we’ve used only the Service drop-down menu, but if we have
hundreds of traces for a particular service, we can use additional parameters to filter
the results. Parameters include Operation name, any Tags on a trace, over what
period to search for traces, Min Duration and Max Duration of a trace—which is help-
ful when trying to find problematic traces taking too long to execute—and Limit
Results to a specific number of traces. Depending on the number of traces found, the
top portion of the right-hand side of the page displays a dot for every trace found over
time based on the search. Dots, or traces, toward the top of the page had a higher
duration than lower-placed dots, and traces are spread left to right from oldest to
most recent. As has already been seen, the bottom part of the page is the list of all the
traces found from a search.

Figure 11.4 Jaeger console
service selection

239Jaeger
Figure 11.5 shows all the traces currently found, which is only a single trace resulting
from the withdrawal consisting of three spans. To see more detail about the captured
trace, and the included spans, click the trace.

 Figure 11.6 includes useful information about the request. The very top of the
page highlights the method that triggered the creation of the trace—in this case,
PUT—against the transaction-service that resulted in TransactionResource.with-
drawal being called.

Below the header is pertinent information on the trace, including the date and time
it started, total duration of the trace, number of services in the trace, total trace
depth, and the number of spans. Each span is visualized as a separate horizontal bar.
The bar’s length indicates the time a span took to complete. Its position shows when
it began and ended, and its color indicates which service the span belongs to. In fig-
ure 11.6, spans in the transaction-service appear in one color (yellow when
viewed in the browser), whereas the account-service span is a different color (a
blue-green color).

 The bottom half of figure 11.6, under Service & Operation, lists every span within
the trace, broken down by which service and methods within a service were called.

Figure 11.5 Transaction service trace results

Figure 11.6 Transaction service trace detail

240 CHAPTER 11 Tracing microservices
The timeline on the right provides a visualization of each span and its execution
within the overall trace. For instance, the span for the account-service took 591.87
ms to complete but didn’t commence until about 600 ms into processing on the
transaction-service.

 When looking at figure 11.6, clicking the first transaction-service span heading
expands it to provide further information such as that in figure 11.7, after expanding
each section.

Figure 11.7 shows the list of all the Tags present on the trace and the Process informa-
tion that was collected. The Tags present will be dependent on the component being
traced. In this instance, Tags include jaxrs for the type of component, HTTP method,
HTTP status code response, HTTP URL being executed, and details on the sampling.
Process captured the Kubernetes Pod name as the hostname, the IP address, and the
version of Jaeger being used. The span ID is displayed in the bottom right-hand corner.

 Figure 11.8 includes similar information as figure 11.7 but for the account-service.

Figure 11.7 Transaction service span detail

Figure 11.8 Account service span detail

241Jaeger
The Tags and Process sections are collapsed by default, but a particular tag and infor-
mation are shown as a single line until it’s expanded. Examining figure 11.8, we see
the actual time at which the account-service span began on the right-hand edge.
Spend some time exploring the different parts of the Jaeger console to understand
the different pieces of information available and where they can be found.

 From the Jaeger console search page, select account-service from the Service
drop-down menu and click Find Traces. It should return the same trace but from the
perspective of the Account service. In the list of available services to search on, there
are no traces from the Overdraft service! No services or spans are being captured after
the message is sent to Kafka. The trace is not being propagated from one side of Kafka
to the other. We discuss how to implement propagation with Kafka in section 11.4.4.

 Figure 11.9 highlights where the trace and spans fall in terms of the Banking archi-
tecture. What’s interesting to note is that a single service, the Transaction service, con-
tains multiple spans. Multiple spans within a single service can be a good way to break
down the various pieces of work that are performed in a single request to better visual-
ize where time is spent.

In view of the traces in the Jaeger console from a transaction withdrawal request, what
was necessary to make that possible?

 Each of the services needs the dependency for OpenTracing in Quarkus. This
dependency includes the OpenTracing APIs, discussed in section 11.3.1, and the trac-
ing implementation from Jaeger, shown next:

Overdraft

microservice

Overdraft

topic

Data

Overdraft fee

topic

Apache Kafka

Span 1, 2

Transactions

microservice

Accounts

microservice

Trace

Span 3

Figure 11.9 Banking
architecture with trace
and spans

242 CHAPTER 11 Tracing microservices
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

It’s not necessary to add a dependency for the Jaeger implementation—it is transi-
tively brought in through OpenTracing. With an implementation present, Jaeger
needs to be informed about where to send traces collected during execution. The fol-
lowing updates to application.properties are needed:

%prod.quarkus.jaeger.endpoint=
http:/ /simplest-collector.observability:14268/api/traces
quarkus.jaeger.service-name=account-service
quarkus.jaeger.sampler-type=const
quarkus.jaeger.sampler-param=1

The configuration for Jaeger needs to be included in all the services, along with the
quarkus-smallrye-opentracing dependency. Don’t forget to change the service-
name value when copying it between the files. If it’s not changed, every trace will be
from account-service, making it very confusing to understand what has actually
been traced.

 Those are all the changes that we made to capture a trace. Though it still misses
the use of the Overdraft service, the trace was correctly propagated from Transaction
service to Account service without any intervention from developers to make it hap-
pen. For that matter, other than adding a dependency and configuration, developers
don’t need to add any code to begin tracing what their application is doing!

 The next section provides details on the various specifications for tracing, explain-
ing how they’re related and which ones are used in Quarkus.

11.3 Tracing specifications
This section provides details on the key projects and specifications related to tracing,
both inside and outside of MicroProfile, while also providing some insight into what’s
coming with OpenTelemetry.

11.3.1 OpenTracing

OpenTracing (https://opentracing.io/) consists of an API specification and frame-
works and libraries implementing the specification for various languages. Open-
Tracing itself is not a standard, because it is not part of any official standards body.
The OpenTracing project is part of the Cloud Native Computing Foundation (CNCF)
(https://www.cncf.io/).

URL for the Jaeger collector. Microservices send any traces to the collector. Defining it as a
production configuration means the default URL, http://jaeger-collector:14268/api/traces,
will work running locally with Docker.

Any traces passing
through the service will
use this name on spans.

The type of sampling to perform.
Options include const, probabilistic,
rate-limiting, and remote.Value used in conjunction

with sampler-type

http://jaeger-collector:14268/api/traces
https://opentracing.io/
https://www.cncf.io/

243Tracing specifications
 OpenTracing began in 2015 with a goal of enabling application and framework
developers to include instrumentation for tracing within their projects, but without
being tied to a specific tracing vendor. Without this ability, there is no guarantee
that a trace started in one application will be correctly propagated down the chain
of execution.

 Jaeger is one possible backend that can accept traces created with OpenTracing.
OpenTracing and Jaeger have seen wide adoption within the open source community
and within enterprises needing to trace their services.

11.3.2 What is MicroProfile OpenTracing?

MicroProfile OpenTracing chose to build upon the foundations of OpenTracing and
not define its own API for creating or interacting with traces. The beauty of this
approach is any trace format OpenTracing supports will be supported by MicroProfile
OpenTracing. Additionally, the mere inclusion of a MicroProfile OpenTracing imple-
mentation facilitates the capturing and propagation of traces without any interaction
on the part of a developer in their application code.

 Implementations enable no code propagation of traces by extracting SpanContext
information from incoming JAX-RS requests. No code instrumentation, where every
JAX-RS resource method has a new Span of its execution, ensures tracing of every
JAX-RS endpoint in a microservice by default. MicroProfile OpenTracing adds the
@Traced annotation for developers to indicate that specific methods, or all methods on
a class, should have a Span created to represent the processing of the method. @Traced
can be used on non-JAX-RS resource methods to have spans created, and the creation
of a Span can be prevented by adding @Traced(value = false) onto a method.

 @Traced can modify the default span name for any traced method. The default for
inbound requests follows:

<HTTP-method>:<package-name>.<class-name>.<method-name>

However, the span name can be overridden with @Traced(operationName = "my-
method").

11.3.3 OpenTelemetry

In March 2019, members of the OpenTracing and OpenCensus communities decided
to merge under a single project named OpenTelemetry. Both projects focus on unify-
ing application instrumentation to make observability a built-in feature for modern
applications. However, each project tackled a different aspect. OpenTracing imple-
ments tracing APIs, whereas OpenCensus has APIs for metrics. Combining the two
into a single project for all observability is the right approach.

 Because both OpenCensus and OpenTracing are well-established projects in their
own right, it takes time to combine them into a single project while ensuring each
project is considered equally. In early 2021, OpenTelemetry released tracing APIs as

244 CHAPTER 11 Tracing microservices
GA (generally available). The release included finalized tracing features. As of August
2021, Metrics is close to being finalized, but Logging is not expected until 2022.

 Readers might be wondering why we discuss OpenTelemetry if it will not be final
for a while. The reason is the MicroProfile community is only beginning to explore
OpenTelemetry. In particular, how it will impact the existing Metrics and OpenTracing
specifications, what becomes of MicroProfile Metrics and OpenTracing, and whether
an OpenTelemetry specification should be added to the MicroProfile platform will be
discussed in 2022.

 Quarkus has initial support for OpenTelemetry already. However, because the book
focuses on MicroProfile functionality, we won’t cover the OpenTelemetry features.

11.4 Customizing application tracing
We have several ways to customize what’s traced, both in terms of what’s being cap-
tured in a trace but also what is being traced. The following sections detail how each
of these can be achieved with existing services.

11.4.1 Using @Traced

As we described in a previous section, @Traced enables developers to customize the
name of the span to provide more meaning to the name. Let’s modify Account-
Resource by adding the following annotation to the withdrawal method:

@Traced(operationName = "withdraw-from-account")

With the change made, redeploy the Account service as follows:

mvn verify -Dquarkus.kubernetes.deploy=true

Once it’s deployed, make a withdrawal from an account, as shown next:

curl -H "Content-Type: application/json" -X PUT -d "2500.00"
${TRANSACTION_URL}/transactions/111222333/withdrawal

Refresh the Jaeger console browser page, and search for account-service traces.
Click the most recent trace result, and expand the account-service span section.
The reader will see content similar to figure 11.10, showing the span name is now
withdraw_from_account.

Figure 11.10 Account service: custom span name

245Customizing application tracing
11.4.2 Injecting a tracer

Let’s take the customization a step further. Injecting a Tracer instance provides the
ability to interact with the trace and span through an API. Modify AccountResource
.withdrawal to inject a tracer, and modify the span to have the account number as a
tag and the withdrawal amount as a baggage item, as shown in the next listing. A bag-
gage item enables propagation of state across process boundaries within a trace.

public class AccountResource {
 @Inject
 Tracer tracer;

 public CompletionStage<Account> withdrawal(@PathParam("accountNumber") Long
accountNumber, String amount) {

 ...
 tracer.activeSpan().setTag("accountNumber", accountNumber);
 tracer.activeSpan().setBaggageItem("withdrawalAmount", amount);
 ...
 }
}

With the changes made, redeploy the Account service. When the deployment is ready,
withdraw money from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "950.00"
${TRANSACTION_URL}/transactions/87878787/withdrawal

With the response received, reload the Jaeger console in the browser. Search for
account-service traces, and select the most recent one to see the details.

 Figure 11.11 shows the span with the new tag and baggage item that were added.
All the tags seen on previous spans are still there, but the span now includes the tag
added directly through the tracer API.

11.4.3 Tracing database calls

Having seen how it’s possible to modify details of the span operation and customize
the tags and baggage items on the span with the API, now let’s trace the database
interactions. Although knowing how long a particular method takes to execute is
important for diagnosing performance issues, it doesn’t provide enough of a picture
when a method interacts with many other methods or services, such as a database.

Exercise for the reader
Try out different scenarios with @Traced, such as changing span names, disabling
tracing, and making withdrawal and deposit requests. Take a look at how they appear
in the Jaeger console.

Listing 11.4 AccountResource

Injects an
OpenTracing
Tracer instance

Sets a tag on the currently
active span with a key of

accountNumber

Sets a baggage item on the current
span with a key of withdrawalAmount

246 CHAPTER 11 Tracing microservices
Maybe a method takes two seconds to complete, but most of that occurs performing
database operations. Data needs to be of the correct granularity to be useful; other-
wise, it is just as likely to be harmful as helpful.

 We need to make a few modifications to be able to trace database calls. First we add
a tracing dependency for JDBC as shown here:

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-jdbc</artifactId>
</dependency>

The JDBC tracer from OpenTracing sits between a service and the database. For that
to work, an application needs to know the tracer must be used instead of the driver for
a specific database. It’s also necessary to inform Hibernate which database is being
used, because it’s no longer possible to deduce it from the JDBC driver. That’s a lot of
pieces! Thankfully, all it means is a few changes to the application.properties of the
Account service:

%prod.quarkus.datasource.db-kind=postgresql
%prod.quarkus.datasource.username=quarkus_banking

Figure 11.11 Account service: modify span content

247Customizing application tracing

s
.

%prod.quarkus.datasource.password=quarkus_banking
%prod.quarkus.datasource.jdbc.url=
 jdbc:tracing:postgresql:/ /postgres.default:5432/quarkus_banking
%prod.quarkus.datasource.jdbc.driver=io.opentracing.contrib.jdbc.TracingDriver
%prod.quarkus.hibernate-orm.dialect=org.hibernate.dialect.PostgreSQL10Dialect

All the properties for the database are set to the prod profile. Doing so prevents the
tracing driver from interfering with Dev Services starting the PostgreSQL database.

 With the changes made, redeploy the service. When the deployment is ready, with-
draw money from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "900.00"
${TRANSACTION_URL}/transactions/987654321/withdrawal

Once the response has been received, head back to the Jaeger console in the browser,
and search for account-service. A new trace will be retrieved from the most recent
request, similar to that shown in figure 11.12, where the number of spans for the
account-service has increased from one to three.

Click the trace with the new spans from figure 11.12.
 The Jaeger console should show details like those in figure 11.13. There are now

two additional spans in the trace that were not previously present. Named Query
and Update, they represent the two database interactions that were performed during
the request.

 Looking at the AccountResource.withdrawal() method, the first line calls
Account.findByAccountNumber(accountNumber), which is the Query. Though it’s
within the persistence framework handling inside Quarkus, and not in application
code, Update results from committing the transaction to the database.

Adds tracing to
the JDBC URL from
previous chapters

Specifies the JDBC driver for tracing. With multiple JDBC drivers on the clas
path, PostgreSQL, and Tracing, it’s necessary to specify which one to use

Informs Hibernate that the underlying database type is PostgreSQL.
Without this configuration property, Quarkus is unable to

determine the database type from the chosen driver.

Figure 11.12 Account service traces

248 CHAPTER 11 Tracing microservices
Let’s take a look at what the detail for each of them contains. Figure 11.14 includes
details of the database interaction that retrieved the account, including the database
type and the SQL select statement used to retrieve the account.

Though this particular select executed in 5.16 ms, having the ability to know the
called SQL enables us to investigate whether the statement is as efficient as it can be
when the execution time is longer.

 Figure 11.15 shows the Update database transaction trace. As with figure 11.14, we
see information about the database the trace connected to and the SQL statement
executed to update the record.

 The traces being collected now include information about the database calls, but
there’s still nothing from the pesky Overdraft service. Time to fix that! In the next sec-
tion, we explain how to propagate OpenTracing traces with Kafka, filling the gap in
tracing end to end with the example code.

Figure 11.13 Account service trace with a database call

Figure 11.14 Database query trace detail

249Customizing application tracing
11.4.4 Tracing Kafka messages

At the moment, some spans exist for JAX-RS resource methods and database calls, but
nothing for the producing and consuming of messages with Kafka! Let’s fix that right
now. For both the Account service and Overdraft Service, add the following depen-
dency to pom.xml:

<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-client</artifactId>
 <version>0.1.15</version>
</dependency>

Similar to the dependency for JDBC tracing, this dependency is an extension to Open-
Tracing for Kafka. With the dependency in place, the tracing interceptors for Kafka
need to be identified to the connectors for consuming and producing messages. The
necessary changes to application.properties for the Account service follow:

mp.messaging.outgoing.account-overdrawn.interceptor.classes=

➥ io.opentracing.contrib.kafka.TracingProducerInterceptor

mp.messaging.incoming.overdraft-update.interceptor.classes=

➥ io.opentracing.contrib.kafka.TracingConsumerInterceptor

NOTE Existing mp.messaging properties were left out for brevity, because
they were not altered.

The required interceptor configuration for the Overdraft service is shown next:

mp.messaging.incoming.account-overdrawn.interceptor.classes=
io.opentracing.contrib.kafka.TracingConsumerInterceptor

Figure 11.15 Database update trace detail

The connector to the account-overdrawn topic will use the
TracingProducerInterceptor when producing messages.

Consuming messages from the overdraft-update topic uses
the TracingConsumerInterceptor for consuming messages.

250 CHAPTER 11 Tracing microservices
mp.messaging.outgoing.overdraft-fee.interceptor.classes=
io.opentracing.contrib.kafka.TracingProducerInterceptor

mp.messaging.outgoing.overdraft-update.interceptor.classes=
io.opentracing.contrib.kafka.TracingProducerInterceptor

Without adding anything more than a dependency and configuration, redeploy the
Account service and Overdraft service as follows:

/chapter11/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapter11/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true

Once they’re both deployed and running, verify with kubectl get pods that each ser-
vice has a Pod running, and withdraw funds from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "400.00"
${TRANSACTION_URL}/transactions/5465/withdrawal

Once the response is received, open the Jaeger console in the browser and refresh
the page.

 When selecting the Service drop-down menu, we now see an entry for overdraft-
service when there wasn’t one before, as seen in figure 11.16. Getting back to the
earlier problem of not having traces from the Overdraft service, the answer is that the
execution being performed is around Kafka and not JAX-RS.

Though the methods interacting with Kafka are on OverdraftResource, a JAX-RS
resource, without a JAX-RS incoming request, there is nothing for it to trace. With the
Kafka interceptor installed, traces are now present. Search for traces for the account-
service, and for now, it will find traces such as those depicted in figure 11.17.

 Comparing these with previous traces, the main trace of five spans containing the
call from Transaction service to Account service still exists. However, we now have a
new trace named account-service: To_overdrawn with spans in the Account service
and Overdraft service. Select the trace to take a closer look.

Figure 11.16 The Jaeger
console service list

251Customizing application tracing
Figure 11.18 shows two spans in the trace—one span for producing a message to a
Kafka topic, and another span to consume the message.

The tags on the To_overdrawn span provide details as to what’s happening, such as
message_bus.destination, peer.service, and span.kind. The From_overdrawn
span provides additional information, because it’s a consumer, such as offset and
partition. All these tags are Kafka-specific and are present only on spans connecting
to Kafka topics.

 Searching for overdraft-service traces shows two traces; see figure 11.19. One is
the trace from figure 11.18, but there is also a trace for putting a message onto the
account-fee topic.

Figure 11.17 Traces for Account service

Figure 11.18 Account service trace detail

252 CHAPTER 11 Tracing microservices
Figure 11.20 is a representation of the traces in Jaeger so far. Currently, there are
three separate traces, but it’s all from one request!

1 Call from the Transaction service to the Account service, including the database
call in the Account service

2 Message passed from the Account service to Kafka, which is consumed by the
Overdraft service

3 An overdraft fee message from Overdraft service to Kafka

Having separate traces makes it difficult to manually correlate which traces are actually
part of the same request. As a developer, the preference would be for all the spans in

Figure 11.19 Traces for the Overdraft service

Overdraft

microservice

Transactions

microservice

Accounts

microservice Data

Trace
3

Overdraft

topic

Apache Kafka

Overdraft fee

topic

T
ra

c
e

 2

Trace 1

Figure 11.20 Microservice architecture traces

253Customizing application tracing

Bu
each of the three traces to be within a single trace. Notice the points where trace con-
tinuation breaks is when moving from JAX-RS to Kafka, and also between receiving a
Kafka message and sending out another one.

 Now that we know what the problems are, let’s look at fixing them. The first step is
propagating the trace from JAX-RS to Kafka. Instead of calling emitter.send(payload),
we need to add information about the trace to the Kafka message, as shown next.

public class AccountResource {
 @Inject
 Tracer tracer;

 public CompletionStage<Account> withdrawal(@PathParam("accountNumber") Long
accountNumber, String amount) {

 ...
 RecordHeaders headers = new RecordHeaders();
 TracingKafkaUtils.inject(tracer.activeSpan().context(), headers, tracer);
 OutgoingKafkaRecordMetadata<Object> kafkaMetadata =
 OutgoingKafkaRecordMetadata.builder()
 .withHeaders(headers)
 .build();
 CompletableFuture<Account> future = new CompletableFuture<>();
 emitter.send(Message.of(payload, Metadata.of(kafkaMetadata),
 ... ack handler,
 ... nack handler
);
 return future;
 ...
 }
}

On the other side of the Kafka topic, the Overdraft service needs to retrieve the span
information. Doing so involves two steps: extracting the span information from Kafka
headers, and then creating a child span for additional method calls, as shown in the
next code listing.

public class OverdraftResource {
 @Inject
 Tracer tracer;

 public Message<Overdrawn> overdraftNotification(Message<Overdrawn> message) {
 ...
 RecordHeaders headers = new RecordHeaders();
 if (message.getMetadata(IncomingKafkaRecordMetadata.class).isPresent()) {
 Span span = tracer.buildSpan("process-overdraft-fee")

Listing 11.5 AccountResource

Listing 11.6 OverdraftResource creating a child span

Creates an instance of Kafka RecordHeaders. The
headers are added to the Kafka message, enabling the
information on them to be available in consumers.

Uses the TracingKafkaUtils utility class
to inject the details of the trace and

span into the RecordHeaders instance
created inthe previous line

Creates an OutgoingKafkaRecordMetadata instance and sets the
RecordHeaders instance on it. This metadata instance can be used

to set Kafka-specific metadata on an outgoing message.

Emits a new Message containing the payload
and OutgoingKafkaRecordMetadata instance

Verifies there is IncomingKafka-
RecordMetadata in the metadata;

otherwise doesn’t handle traces

ilds a new span
named process-

overdraft-fee

254 CHAPTER 11 Tracing microservices

m

r

 .asChildOf(
 TracingKafkaUtils.extractSpanContext(
 message.getMetadata(IncomingKafkaRecordMetadata
 .class).get().getHeaders(),
 tracer))
 .start();
 try (Scope scope = tracer.activateSpan(span)) {
 TracingKafkaUtils.inject(span.context(), headers, tracer);
 } finally {
 span.finish();
 }
 }
 OutgoingKafkaRecordMetadata<Object> kafkaMetadata =
 OutgoingKafkaRecordMetadata.builder()
 .withHeaders(headers)
 .build();

 return message.addMetadata(customerOverdraft).addMetadata(kafkaMetadata);
 }
}

Listing 11.6 extracts the encoded span information from the Kafka headers. The span
is recreated within the Tracer instance of the Overdraft service, as if it had been
called from within the same service. To ensure the trace continues, we need to create
a new child span to handle further processing.

 There’s one more change that needs to be made to propagate the trace back into
Kafka. ProcessOverdraftFee.processOverdraftFee needs to return Message<Account-
Fee> instead of just AccountFee. Changing the return type enables the trace information
in the metadata to be propagated by returning message.withPayload(feeEvent).
Using message.withPayload retains all the metadata within the message but uses a
different payload for the outgoing message.

 Redeploy the Account service and Overdraft service to enable the changes, as
shown here:

/chapter11/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapter11/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true

Once they’re both deployed and running, withdraw funds from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "500.00"
${TRANSACTION_URL}/transactions/78790/withdrawal

Now to see how the traces look! Open the Jaeger console in the browser, and refresh
the page. Select transaction-service from the drop-down menu, and click Find
Traces.

 Figure 11.21 shows a trace containing nine spans—success!

Makes the new span
a child of the span
extracted from the
Kafka message on

the next line

Extracts the
SpanContext fro
the incoming
Kafka message

Utilizes a Scope
within a try-with-

esources block, so
the scope closes
automatically at

the end of the
code block

Retrieves the current span
context, and injects it into

RecordHeaders

In addition to the metadata about the customer overdraft,
also attaches metadata for OutgoingKafkaRecordMetadata

containing the trace headers

255Summary
All the previous traces containing spans are now present within a single trace. With all
the spans properly connected, developers can now accurately observe traces through
the entire distributed system. Let’s dive in and click the trace to see the details.

 In figure 11.22, we now have a visualization of all the pieces of a single request
through the entire system. This is fantastic!

It might have taken some time to put all the pieces into place to enable a full single
trace through it all, but the benefits of doing so are worth it. Diagnosing slow execu-
tion in a request is now possible with the wider context of all methods being called.

Summary
 Including the quarkus-smallrye-opentracing dependency and Jaeger config-

uration to define the sampling type and rate is all that’s necessary to achieve
traces within JAX-RS resources.

Exercise for the reader
As an exercise for the reader, modify the Transaction service processing of messages
from the account-fee topic to extract the trace from metadata. Execute a withdrawal
from an account, and see the captured trace include the span for handling the fee in
the Transaction service.

Figure 11.21 Trace for the Transaction service

Figure 11.22 Transaction service trace detail

256 CHAPTER 11 Tracing microservices
 By adding @Traced to a method, it’s possible to customize the name of the span,
or to not trace the method at all.

 Injecting a Tracer into application code enables the addition of custom tags to
the span or adding objects into Baggage for propagation to later services.

 Similar to out-of-the-box tracing, database transactions can be traced with a
dependency and Hibernate configuration changes to indicate the new JDBC
driver to use.

 Use Kafka interceptors for OpenTracing to handle spans when producing and
consuming messages from Kafka.

API visualization
Originally developed in 2010 as a way for defining machine-readable interfaces to
describe RESTful services, in 2016, the Swagger specification was rebranded as the
OpenAPI specification under a new OpenAPI initiative sponsored by the Linux Foun-
dation. Other benefits to an OpenAPI specification of a service follow:

 Creating interactive documentation of a service
 Automation of test cases based on a specification
 Generating clients or services aligned with a specification

The ability to visualize an API, including its definition and expected behavior,
can be tremendously helpful when a developer wants to interact with an external

This chapter covers
 Generating OpenAPI (previously known as

Swagger UI) specifications for a project

 Accessing OpenAPI project specifications

 Visually inspecting project endpoints with the
Swagger UI

 Utilizing the design-first approach to developing
APIs—the process of creating an API design
before implementing it with code
257

258 CHAPTER 12 API visualization
service, particularly when the service is developed by another team or another com-
pany entirely. Why? How does it help?

 When a developer must communicate with another service, they need to know
about the service, everything from expected inputs and return types to possible error
responses. Sometimes it’s possible to review the implementation code to elicit the
needed information, but doing so is not ideal and leads to misinterpretation. In par-
ticularly complex implementations, it could require detailed knowledge of the imple-
mentation to determine all possible response types and their exceptions.

 Other times a developer can speak with the team implementing the service to ask
necessary questions. However, though such an approach is feasible with a few teams
wanting to use a service, it quickly becomes impossible for the implementors of a ser-
vice to meet the demands of questions from clients of the service as the number of cli-
ents grows.

 A single source of truth for a service defining the behavior and expected outcomes
is the only way to effectively communicate to developers of external clients how a ser-
vice operates. The OpenAPI specification (OAS) is designed for such a purpose. The ver-
sion of the specification is currently v3. In the remainder of the chapter, we refer to it
as “OpenAPI specification” only, and not the “OpenAPI specification v3.”

 The code for both examples in this chapter uses the chapter 2 Account service as a
starting point. Follow along with the changes throughout the chapter by copying the
source from /chapter2/account-service. The two completed versions of the chapter
examples are in the /chapter12 folder of the book source code.

12.1 Viewing OpenAPI documents with Swagger UI
We cover two features in this chapter: providing an OpenAPI specification file, and
visualizing it with Swagger UI. Without the former, the latter has nothing to show.
Using Swagger UI is a great way to provide a means of testing an API from a browser if
there isn’t a UI for the application already present.

 Time to get started! Copy the code from /chapter2/account-service to another
location for updating to use OpenAPI and Swagger UI as the code starting point for
the chapter.

12.1.1 Enabling OpenAPI

With the source code in place, let’s add the following dependency needed for OpenAPI:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-openapi</artifactId>
</dependency>

An alternative way to add the dependency is by using the Quarkus Maven plugin, as
shown here:

mvn quarkus:add-extension -Dextensions="quarkus-smallrye-openapi"

259Viewing OpenAPI documents with Swagger UI
That’s it! With the addition of one dependency, the Account service will have an
OpenAPI document produced from the code. Let’s try it out.

 Start the service in live coding mode as follows:

mvn quarkus:dev

When started, access http:/ /localhost:8080/q/openapi either with a browser or curl.
The default format for the OpenAPI document is YAML. If the OpenAPI document
was accessed in a browser, it will download a file with the following content.

openapi: 3.0.3
info:
 title: Generated API
 version: "1.0"
paths:
 /accounts:
 get:
 responses:
 "200":
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/SetAccount'
 post:
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Account'
 responses:
 "200":
 description: OK
 /accounts/{accountNumber}:
 get:
 parameters:
 - name: accountNumber
 in: path
 required: true
 schema:
 format: int64
 type: integer
 responses:
 "200":
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Account'
 delete:
 parameters:

Listing 12.1 The Account service–generated OpenAPI document

Version of the OpenAPI
specification with which
the document conforms

Information about the service. In this
case, there isn’t any information
because it was generated.

The paths, or API endpoints,
exposed by the service

260 CHAPTER 12 API visualization
 - name: accountNumber
 in: path
 required: true
 schema:
 format: int64
 type: integer
 responses:
 "200":
 description: OK
....
components:
 schemas:
 SetAccount:
 uniqueItems: true
 type: array
 items:
 $ref: '#/components/schemas/Account'
 Account:
 type: object
 properties:
 accountNumber:
 format: int64
 type: integer
 accountStatus:
 $ref: '#/components/schemas/AccountStatus'
 balance:
 type: number
 customerName:
 type: string
 customerNumber:
 format: int64
 type: integer
 status:
 $ref: '#/components/schemas/AccountStatus'
 AccountStatus:
 enum:
 - CLOSED
 - OPEN
 - OVERDRAWN
 type: string

NOTE Some methods were removed from the OpenAPI document shown
here for brevity. Viewing the document locally will also include the API meth-
ods for withdrawal and deposit.

The same OpenAPI document can be served in JSON format instead by accessing
http:/ /localhost:8080/q/openapi?format=json. If explicitness is desired, the YAML
format can be used as well: http:/ /localhost:8080/q/openapi?format=yaml.

NOTE Instead of using query parameters on a URL, the desired format of the
OpenAPI document can be specified with the Accept HTTP request header.
Setting it to application/json will retrieve JSON instead of YAML.

All the entities that the API endpoints
require and the schema for each,
defining their structure

261Viewing OpenAPI documents with Swagger UI
It’s by no means a great OpenAPI document to use with clients, but it’s a good first
representation of what the Account service offers and is far better than no OpenAPI
document at all.

 Readers may have noticed when the service was started earlier that the console out-
put didn’t show only smallrye-openapi as a feature. There is also swagger-ui. With
Quarkus, Swagger UI is packaged as part of the OpenAPI extension. Let’s take a look
at Swagger UI in the next section.

12.1.2 Swagger UI

As mentioned earlier, with the OpenAPI extension, Swagger UI is automatically
included. There is one caveat, though. The Swagger UI is present only during live
coding and testing, not as part of a final, packaged build. Quarkus views Swagger UI as
beneficial during development and testing with the application directly, but for pro-
duction, it is recommended to use a separate Swagger UI instance that can be prop-
erly secured using the OpenAPI document produced from a service.

WARNING The default behavior can be overridden by adding quarkus.swag-
ger-ui.always-include=true to application.properties. However, the con-
figuration is for build time only, which means the configuration value can not
be altered once a service is built. Setting this property for production use is
not recommended.

Open http:/ /localhost:8080/q/swagger-ui in a browser, as shown in figure 12.1.

Figure 12.1 The Account service OpenAPI document in Swagger

262 CHAPTER 12 API visualization
Clicking on the GET /accounts section header expands the details for that particular
endpoint, as illustrated in figure 12.2.

With an endpoint section detail expanded, click Try It Out. In this case, the endpoint
doesn’t require any parameters to be passed, so click Execute.

 Figure 12.3 shows the response received when executing the API endpoint to
retrieve all accounts. Swagger UI shows the request URL it executed and also the equiv-
alent command for use with curl. Below the request details, the response received is
detailed, including the HTTP response code, response body, and response headers.

 Take some time to explore the content of the OpenAPI document in the Swagger
UI and learn how it works. Looking through the endpoints, the only response code
defined for any of them is 200, which means OK. Why is that? The OpenAPI docu-
ment right now is generated based on the methods on the JAX-RS resource class.
Though it’s possible to make reasonable assumptions about what the methods do,
such as returning an HTTP response code of 200 if they work, anything beyond that is
more effort than what would be offered.

 For instance, expand the POST endpoint to see the response code documented
there. The code returns a 201 for the response, but the documentation shows a 200.
This is a problem wiith the generation assuming an OK response is always 200.

 We need to make some modification to the automatically generated OpenAPI doc-
ument! The next section explains how we can add customizations.

Figure 12.2 Get all Accounts details

263MicroProfile OpenAPI
12.2 MicroProfile OpenAPI
The MicroProfile OpenAPI specification provides annotations, making it easier for
Java developers to customize the contents of an OpenAPI document from existing
code. The specification does not replace the OpenAPI specification or seek to alter
how an OpenAPI document is defined. It does provide annotations, configurations,
and a programming model for customizing OpenAPI documents.

12.2.1 Application information

Quarkus allows the setting of most of the application information with configuration,
going beyond what is offered in MicroProfile OpenAPI. This approach has the added
benefit of allowing different values, depending on the selected configuration profile.
Add the following code to application.properties.

mp.openapi.extensions.smallrye.info.title=Account Service
%dev.mp.openapi.extensions.smallrye.info.title=Account Service (development)
mp.openapi.extensions.smallrye.info.version=1.0.0
mp.openapi.extensions.smallrye.info.description=Service for maintaining

accounts,\
 their balances, and issuing deposit and withdrawal transactions
mp.openapi.extensions.smallrye.info.license.name=Apache 2.0
mp.openapi.extensions.smallrye.info.license.url=https:/ /www.apache.org/

licenses/LICENSE-2.0.html

Listing 12.2 Application properties

Figure 12.3 Get all Accounts response

264 CHAPTER 12 API visualization
Let’s see what it looks like. Figure 12.4 has the Swagger UI showing the new informa-
tion added by the configuration in application.properties, including a customized
application name for development!

Stop the application with Ctrl-C, update application.properties with quarkus.swagger-
ui.always-include=true, run the mvn package, then start the service as follows:

java -jar target/quarkus-app/quarkus-run.jar

Open Swagger UI to see the application name using the production profile value!
 It’s also possible to use an annotation to define the same information. @Open-

APIDefinition enables the inclusion of information about an application such as
title, version, license, and contact information, as well as tags defining the application.
To work, the annotation must be added to a JAX-RS application class, as shown in the
next listing.

@OpenAPIDefinition(
 tags = {
 @Tag(name = "transactions",
 description = "Operations manipulating account balances."),
 @Tag(name = "admin",
 description = "Operations for managing accounts.")
 },
 info = @Info(
 title = "Account Service",

Listing 12.3 AccountServiceApplication

Figure 12.4 Swagger output with application information

Defines any tags for grouping methods or
operations within the OpenAPI document

Information about the service such as title,
description, version, and license. There is
additional data available to capture with
@Info that wasn’t used here.

265MicroProfile OpenAPI
 description = "Service for maintaining accounts, their balances,
and issuing deposit and withdrawal transactions",
 version = "1.0.0",
 license = @License(
 name = "Apache 2.0",
 url = "https:/ /www.apache.org/licenses/LICENSE-2.0.html"
)
)
)
public class AccountServiceApplication extends Application {
}

Listing 12.3 has the same information as listing 12.2, with the addition of @Tag. Use
Swagger UI to see how the OpenAPI document changed when tags were included.

 By default, all methods in an OpenAPI document are under a default tag as seen
previously in Swagger UI. Using @Tag enables developers to group different methods
into a similar category. Adding them to the application allows a common description
to be applied to all methods with the same tag without copying the description in each
of them.

 Though @OpenAPIDefinition supports tag definition, which is not possible cur-
rently in application.properties, it adds a class that isn’t needed. Tags can be included
with alternative approaches, which we cover later in the chapter.

12.2.2 Customizing the schema output

In Swagger UI the automatically generated schemas are for SetAccount, Account-
Status, and Account. SetAccount refers to the Set<Account> returned by retrieving
all accounts. We discuss SetAccount further in section 12.7. Looking at AccountStatus,
it describes an enumeration with values of CLOSED, OPEN, and OVERDRAWN. Everything
looks good.

 Now for Account. Though the presented information is accurate, it doesn’t pro-
vide detailed information on the type. There also is a weird problem of the status enum
being represented twice!

 First off, use @Schema to customize the POJO itself and also the fields, as shown in
the next listing.

@Schema(name = "Account", description = "POJO representing an account.",
type = SchemaType.OBJECT)

public class Account {
 @Schema(required = true, example = "123456789", minLength = 8, type =

SchemaType.INTEGER)
 public Long accountNumber;
 @Schema(required = true, example = "432542374", minLength = 6, type =

SchemaType.INTEGER)

Listing 12.4 Account

An empty JAX-RS application
class with no methods

Defines the POJO name and
description to be included in

the schema and its object type

Customizes the field in the schema—specifying it is
required—with a minimum length of 8, provides an
example value, and defines its type as INTEGER

266 CHAPTER 12 API visualization

se

e
 public Long customerNumber;
 @Schema(example = "Steve Hanger", type = SchemaType.STRING)
 public String customerName;
 @Schema(required = true, example = "438.32")
 public BigDecimal balance;
 @Schema(required = true, example = "OPEN")
 public AccountStatus accountStatus = AccountStatus.OPEN;
}

Though the generator does a good job of identifying the type of field for the schema,
explicitly setting it—as opposed to staying with the default of no type—ensures there
isn’t a mistake in the generation that is missed. It never hurts to be more explicit than
necessary in defining schemas.

NOTE In a real application, a customerName would be required. However,
listing 12.4 states it is not required to enable Swagger UI to show the differ-
ence between required and not-required fields.

Now the schema definition is looking better, but the enum field is still there twice.
What’s going on?

 Taking a look at Account, the getter method to retrieve the account status is
named getStatus(). Although a shorter method name for convenience works, in this
case, the generator believes it’s a different field on Account. Change the method
name to getAccountStatus() and see how Swagger UI adjusts.

 A nice side effect of providing example values for the Account POJO is that Swag-
ger UI now shows example values that are more meaningful, as opposed to empty
strings or zeroed values.

12.2.3 Defining operations

@Operation defines the details of a particular endpoint method. Developers can pro-
vide a summary message of what the endpoint does, as well a detailed description
with additional details, possibly even example usage. The most important value to set
on @Operation is operationId, because this provides a unique name for an endpoint
in the entire OpenAPI document.

 It’s also possible to mark a method as hidden from the OpenAPI document. Try add-
ing @Operation(hidden = true) to a method, then check out what the OpenAPI docu-
ment and Swagger UI show. Nothing! Any method marked as hidden is completely
removed. This is needed for methods on a JAX-RS resource that shouldn’t be executed
by clients but are required by the maintainers of the service. Depending on the service,
a better approach could be an entirely separate JAX-RS resource that is hidden in the
OpenAPI document, instead of hiding specific methods on the same resource.

 Quarkus provides a means of defaulting the operationId for all endpoints using
the following configuration property:

mp.openapi.extensions.smallrye.operationIdStrategy=METHOD

Provides an
example, becau
it’s not a
required field,
and specifies th
STRING type

267MicroProfile OpenAPI
The METHOD strategy uses the Java method name as the operationId name. Other
available strategies are CLASS_METHOD and PACKAGE_CLASS_METHOD. With the setting in
place, look at the OpenAPI document to see the generated operationId generated
for each method. In Swagger UI, there isn’t a visible way to see the name, but if a
method is selected, the operationId will be part of the new URL used to view a partic-
ular method’s information.

 What happens if further customization is needed? Is the operationIdStrategy set-
ting ignored? No, developers do not need to replicate the name when wanting to
specify additional operation information. Add an @Operation to createAccount spec-
ifying a description, as shown here:

@Operation(description = "Create a new bank account.")
public Response createAccount(Account account) {}

Notice operationId was not set with @Operation. The OpenAPI document still con-
tains the operationId naming defined by the chosen strategy, while allowing descrip-
tions or other customizations to be made. Take a look at the OpenAPI document and
Swagger UI to see the new description.

12.2.4 Operation responses

Time to ensure all possible HTTP responses are properly documented in OpenAPI.
Right now every method only defines a 200 response, which is a good start, but it
doesn’t cover all scenarios.

 Let’s begin! Looking at GET /accounts, a Set is returned, but there is no possibility
for other response codes because there are no exceptions or custom responses
defined. However, the odd-looking SetAccount schema type is being generated. It
could be left as is, but there is no real need for a referencable schema type because it’s
the only method needing it.

 Let’s add an @APIResponse as shown next to remove the autogenerated schema
type.

@APIResponse(responseCode = "200", description = "Retrieved all Accounts",
 content = @Content(
 schema = @Schema(
 type = SchemaType.ARRAY,
 implementation = Account.class)
)
)
public Set<Account> allAccounts() {
 return accounts;
}

It’s not necessary to include mediaType = "application/json" for @Content because
the method has @Produces(MediaType.APPLICATION_JSON), meaning only a single

Listing 12.5 AccountResource.allAccounts()

Defines the 200
response with a

description

Indicates the
response
content

Specifies the schema
for the response is an
ARRAY with Account
types within it

268 CHAPTER 12 API visualization
media type for the response is possible. If the method supported multiple media
types, multiple @Content values would be needed for each supported media type.

 Head over to Swagger UI, refresh it, and see the updated GET /accounts detail and
the removal of the SetAccount autogenerated schema.

 Moving on to POST /accounts, AccountResource.createAccount, the response
code, is wrong for a success because 200 cannot happen. It also misses the 400 that
could be returned. To properly document the method, we need a couple of @API-
Response entries, shown in the next listing.

@APIResponse(responseCode = "201", description = "Successfully created a new
account.",

content = @Content(
 schema = @Schema(implementation = Account.class))
)
@APIResponse(responseCode = "400",
 description = "No account number was specified on the Account.",
 content = @Content(
 schema = @Schema(
 implementation = ErrorResponse.class,
 example = "{\n" +
 "\"exceptionType\": \"javax.ws.rs.WebApplicationException\",\n" +
 "\"code\": 400,\n" +
 "\"error\": \"No Account number specified.\"\n" +
 "}\n")
)
)
public Response createAccount(Account account) {
}

Those following along will have noticed that right now the code doesn’t compile! The
400 failed response said it uses the ErrorResponse type as the schema, but it doesn’t
exist yet. With the custom exception mapper in AccountResource, a type is needed to
represent the JSON output the failed response can provide. Let’s add it now, as illus-
trated in the next listing.

private static class ErrorResponse {
 @Schema(required = true, example = "javax.ws.rs.WebApplicationException")
 public String exceptionType;
 @Schema(required = true, example = "400", type = SchemaType.INTEGER)
 public Integer code;
 public String error;
 }

Because the ErrorResponse type is not needed by any actual code, it was added to the
existing AccountResource as a private class.

Listing 12.6 AccountResource.createAccount()

Listing 12.7 ErrorResponse

A valid APIResponse for code 201 when
successfully creating an account

Details the content of a response for code 201,
an instance of Account in JSON format

Shows a failed response
of 400 when no account
number was provided

The type to represent
the failed response. We
cover ErrorResponse
momentarily.

Provides an example of the JSON
error response with actual values—

this appears nicely in Swagger UI,
as well as provides good detail for

consumers of the OpenAPI document.

269MicroProfile OpenAPI
IMPORTANT In the recently released MicroProfile OpenAPI 2.0, a new anno-
tation, @SchemaProperty, was introduced to support inline schema type defi-
nitions. Once the release is available in Quarkus, ErrorResponse can be
replaced with @SchemaProperty for each property of ErrorResponse.

Head over to Swagger UI to see how the POST method changed. The autogenerated
200 response is gone, replaced with the two valid responses added to createAccount.

NOTE Whether to use multiple @APIResponse annotations or place them all
inside a single @APIResponses annotation is entirely a matter of personal
choice for a developer. The OpenAPI document does not change based on
which approach is chosen.

Moving on to GET /accounts/{accountNumber}, we need to make the following changes:

 @APIResponse for 200 and 400 HTTP response codes
 Document the accountNumber path parameter

Let’s add them, as shown next.

@APIResponse(responseCode = "200",
 description = "Successfully retrieved an account.",
 content = @Content(
 schema = @Schema(implementation = Account.class))
)
 @APIResponse(responseCode = "400",
 description = "Account with id of {accountNumber} does not exist.",
 content = @Content(
 schema = @Schema(
 implementation = ErrorResponse.class,
 example = "{\n" +
 "\"exceptionType\":

\"javax.ws.rs.WebApplicationException\",\n" +
 "\"code\": 400,\n" +
 "\"error\": \"Account with id of 12345678 does not

exist.\"\n" +
 "}\n")
)
)
 public Account getAccount(
 @Parameter(
 name = "accountNumber",
 description = "Number of the Account instance to be retrieved.",
 required = true,
 in = ParameterIn.PATH
)
 @PathParam("accountNumber") Long accountNumber) {
 }

Listing 12.8 AccountResource.getAccount()

200 response
for successfully
retrieving an
Account

400 response
when failing to
find an Account,
with an example
exception response
content

Adds @Parameter to document the @PathParam
parameter of accountNumber. @Parameter needs
to be added next to @PathParam for the
generation to know they’re related.

Indicates accountNumber is a required parameter.
If it wasn’t required, a different endpoint could
potentially be matched instead.

Specifies the parameter
is a path parameter and
doesn’t come from a
query string, header,
or cookie

270 CHAPTER 12 API visualization

Ad
de
H
th
re
With listing 12.8 added, refresh Swagger UI and the OpenAPI JSON document to ver-
ify the changes. Try out the method call in Swagger UI to make sure the defined
responses align with what is actually received by a request.

 Let’s move on to PUT /accounts/{accountNumber}/deposit, shown next.

@APIResponse(responseCode = "200", description = "Successfully deposited
funds to an account.",

 content = @Content(
 schema = @Schema(implementation = Account.class))
)
 @RequestBody(
 name = "amount",
 description = "Amount to be deposited into the account.",
 required = true,
 content = @Content(
 schema = @Schema(
 name = "amount",
 type = SchemaType.STRING,
 required = true,
 minLength = 4),
 example = "435.61"
)
)
 public Account deposit(
 @Parameter(
 name = "accountNumber",
 description = "Number of the Account to deposit into.",
 required = true,
 in = ParameterIn.PATH
)
 @PathParam("accountNumber") Long accountNumber,
 String amount) {
 }

Where the @RequestBody annotation is placed is a little flexible. It can be above the
method name, as here, or inside the top of the method itself. Developer’s preference
is the only deciding factor. With listing 12.9, the content is always application/json
because the method is annotated with a @Consumes. If it wasn’t, multiple @Content
sections with different examples should be added for each media type.

 Check out the changes in Swagger UI, shown in figure 12.5, noticing the @Request-
Body section is now marked required and has a meaningful example as well.

Listing 12.9 AccountResource.deposit()

Exercise for the reader
As an exercise for the reader, add the necessary OpenAPI annotations to close-
Account() and withdrawal() on AccountResource. Verify it did what was expected
in Swagger UI and the OpenAPI document.

ds the OpenAPI
finition of the

TTP request body
e method should
ceive

Names the attribute
where the body of
the request will be
passed into the
method

Passing an amount is
definitely required.

Defines the possible content
of the request body

Schema of the request body. In this
case a String with a minimum length
of 4. The minimum deposit is 1.00.

Example
value of a

request
body

@Parameter similar to the one
on getAccount(), with a modified
description for this method

271MicroProfile OpenAPI
12.2.5 Tagging operations

Earlier in section 12.4, @OpenAPIDefinition included multiple @Tag annotations
within the definition. When switching to using application.properties, it wasn’t possi-
ble to include @Tags. How can we add these back in?

 First, add the @Tag entries from previously to the top of the AccountResource as
follows:

@Tag(name = "transactions",
 description = "Operations manipulating account balances.")
@Tag(name = "admin",
 description = "Operations for managing accounts.")
public class AccountResource {}

Two tags are defined: for transactions and admin. Looking at Swagger right now, we
see all methods duplicated under each tag group—not what we want at all.

 What is needed is adding either @Tag(name = "admin") or @Tag(name = "transac-
tions") to each method on AccountResource to indicate which group a method falls
into. With that done, it should look something like figure 12.6.

 If all methods within a JAX-RS resource fall under a single grouping, or @Tag, it’s
not necessary to add a @Tag to each method. There needs to be only a single instance
on the class. If it’s possible to split methods across different resource classes, aligned
with their grouping, it saves having to add @Tag to every method!

 We haven’t covered all possible annotations, such as @Header, @Callback, and
@Link. Take some time to review them in the MicroProfile OpenAPI specification
(http://mng.bz/xXD7), and try them out.

Figure 12.5 Swagger: AccountResource.deposit method

http://mng.bz/xXD7

272 CHAPTER 12 API visualization
12.2.6 Filtering OpenAPI content

The MicroProfile OpenAPI specification provides a way to customize the generated
OpenAPI document before it’s returned. Developers can implement OASFilter to
perform customizations. Let’s see how that works in the next listing.

public class OpenApiFilter implements OASFilter {
 @Override
 public Operation filterOperation(Operation operation) {
 if (operation.getOperationId().equals("closeAccount")) {
 operation.setTags(List.of("close-account"));
 }
 return operation;
 }
}

With the filter written, it needs to be activated with a change to application.properties.
Add the following configuration:

mp.openapi.filter=quarkus.accounts.OpenApiFilter

Refresh the Swagger UI page and see the new method grouping the filter created.

Listing 12.10 OpenApiFilter

Figure 12.6 Swagger: endpoints grouped by @Tag

OpenApiFilter implements OASFilter
from MicroProfile OpenAPI.

The method to
filter Operation
instances present
in the OpenAPI
document

Makes a change only when the
operationId is closeAccount. Change

the Tag to be called close-account.

273Design-first development
 We can customize and tailor any aspects of an OpenAPI document as needed.
Look through OASFilter to see all the methods that can be implemented. One thing
to bear in mind: it’s not possible to add new elements into an OpenAPI document
with a filter. Though listing 12.10 added a new tag name into the document, it wasn’t
possible to set a description for the tag.

12.3 Design-first development
Design-first development, also known as contract-first development, is when an OpenAPI
document is created by describing the service being developed before writing any
code. This approach can be a good way of validating whether an API makes sense before
writing any code. Once validated, an OpenAPI generator can then be used to gener-
ate the service based on the OpenAPI document as a starting point for implementing
a service.

 One point of note with generation is it is a one-way process. When service methods
are generated from an OpenAPI document, once the methods are implemented, there
is no way to regenerate the method signatures without losing the implementation. It’s
not entirely the end of the world—developers need to make sure they’re generating ser-
vice methods only after the OpenAPI document isn’t expected to change anymore. If it
does, it becomes a manual process of keeping the service implementation in sync with
an OpenAPI document as methods are added, removed, or modified.

 We have many tools for designing an API using the OpenAPI specification without
code, including Swagger Editor (https://swagger.io/tools/swagger-editor/) (from the
creators of the OpenAPI Specification), Apicurio Studio (https://www.apicur.io/
studio/), and many others.

 With an OpenAPI document in hand, we can use a generator such as https://
openapi-generator.tech/ to generate code from it, though using a generator is not the
focus of this chapter.

12.3.1 OpenAPI file base

To show how to use an existing OpenAPI document with a service in Quarkus, we cop-
ied the Account service from earlier in the chapter to /chapter12/account-service-
external-openapi. The main difference is all references to MicroProfile OpenAPI
annotations were removed from AccountResource and Account classes—the OpenAPI
definitions will come from an external file—and the configuration in application
.properties was removed. In addition, OpenApiFilter was removed because what it
does is already present in the OpenAPI document.

 With the source code in place, either by generation or removing previously exist-
ing annotations, where does the OpenAPI definition come from for the service?

 First, we need the OpenAPI document as a separate file. Download the YAML of
the Account service from earlier in the chapter at http:/ /localhost:8080/q/openapi.
Rename the downloaded file from openapi to openapi.yaml, then move it into the
/src/main/resources/META-INF directory of the new project.

https://swagger.io/tools/swagger-editor/
https://www.apicur.io/studio/
https://www.apicur.io/studio/
https://www.apicur.io/studio/
https://openapi-generator.tech/
https://openapi-generator.tech/
https://openapi-generator.tech/

274 CHAPTER 12 API visualization
 Adding mp.openapi.scan.disable=true to application.properties will ensure the
static OpenAPI document in the project will be served “as is.” Without this setting,
Quarkus will generate an OpenAPI document combining the static document with
the model generated from the application code.

 Start the service with mvn quarkus:dev, and verify the OpenAPI document and
Swagger UI look and behave as expected. The service should behave exactly the same
as the alternative version from earlier in the chapter.

12.3.2 Mixing the file and annotations

We have a few options for combining a static file with annotations in code. The
OpenAPI document could be the main source of truth, with minor modifications made
to annotations in code. Or an OpenAPI document could contain common schema
definitions, with code annotations referencing them.

 First, remove the mp.openapi.scan.disable configuration from application
.properties. Doing so enables the annotations in code to mix with the static OpenAPI
document.

 Add @Tag(name = "all-accounts", description = "Separate grouping because
we can") to AccountResource.allAccounts(), and see how Swagger UI adjusts, as
shown in figure 12.7.

Figure 12.7 Swagger: mixing a static OpenAPI document and annotations

275Summary
12.4 Code first or OpenAPI first?
In this chapter, we explored different ways to integrate OpenAPI documents with
code. Code-first requires adding annotations to code for @APIResponse, @Request-
Body, @Parameter, @Operation, @Tag, and others, to customize the content of a gener-
ated OpenAPI document. Design-first defines an OpenAPI document representing
the desired service and references the static file for serving the document. What’s the
best option? It depends! (All developers’ favorite saying.)

 Some situations where OpenAPI first could be the better option follow:

 Nondevelopers are defining the API and are therefore more likely to be using
an OpenAPI tool to create it.

 Some teams need to implement the service, whereas other teams will be com-
municating with the service as clients. If the service isn’t already implemented,
working on a shared API definition before either team begins developing can
help prevent issues later.

How about when to use code first? Some scenarios include the following:

 When services are already implemented, it is often easier to autogenerate the
OpenAPI document and add annotations to customize it as needed.

 If the exact structure and content of an API isn’t already known and requires
prototyping, it’s hard to define an OpenAPI document if it’s unknown what the
API needs to be.

Another factor to consider when choosing whether to use annotations in code is the
impact it has on the code itself. Comparing AccountResource content between the
two services, the version with annotations in the code is almost double the size. That’s
a large impact both to the size of the code and also the readability of the code with all
the extra annotations present.

Summary
 Including the quarkus-smallrye-openapi dependency is all that’s required to

generate an OpenAPI document automatically from code.
 OpenAPI documentation of a service is available by accessing http:/ /localhost:

8080/q/openapi.
 While live coding, use Swagger UI at http://localhost:8080/q/swagger-ui for

visualizing the OpenAPI document content, but also to try out the API with the
actual service.

Exercise for the reader
As an exercise for the reader, deploy the service to Minikube and view the OpenAPI
document. Try accessing Swagger UI—it shouldn’t be present by default.

276 CHAPTER 12 API visualization
 Use MicroProfile OpenAPI annotations, such as @OpenAPIDefinition and
@Operation, to customize the generated OpenAPI document.

 When using a design-first approach, you modify a service to serve a static ver-
sion of the OpenAPI document instead of generating it.

Securing a microservice
Enterprises require secure applications to prevent unauthorized access to informa-
tion. This chapter focuses on authentication and authorization as two primary
application security measures. This chapter updates the Bank service, Account ser-
vice, and Transaction service with new endpoints that require authenticated users.
The new, secured endpoints will exist alongside the existing insecure endpoints so
services can easily switch between them. These services will also require a user to
belong to a specific role to access new, secured REST endpoints. Existing REST
endpoints will continue to work so the reader can compare the approaches.

This chapter covers
 Securing microservices with authentication and

authorization

 Quarkus authentication and authorization options

 Utilizing Quarkus file-based user and role
definitions during development to secure REST
endpoints

 Utilizing Keycloak and OpenID Connect to
authenticate users and generate JWT tokens

 Securing microservices using MicroProfile JWT

 Quarkus features that facilitate unit testing
277

278 CHAPTER 13 Securing a microservice
13.1 Authorization and authentication overview
Let’s define a the following terms before continuing to figure 13.1:

 Authentication—A user has validated that they are who they say they are by pro-
viding credentials like a username and password or a validated JWT token.
Authenticated users can be assigned roles, like Bank customer and Bank teller.

 Authorization—The act of granting access to a resource. In figure 13.1, only authen-
ticated users assigned to the proper role have access to the secure endpoints.

 Identity provider—A facility that manages user identities, like LDAP, a file, a data-
base, or Keycloak.

 Security context—The application contains a security context for each request
that includes an authenticated user’s assigned roles.

Figure 13.1 depicts the Bank application identity providers (application.properties,
Keycloak) and the credential flow (e.g., username and role) used to access new,
secure REST endpoints added in this chapter.

Bank application authentication and authorization overview

Bank service

Transaction service

Account service

Keycloak

1. User credentials and roles are defined in properties file.

/transactions/config-secure/444666/balance

/transactions/jwt-secure/444666/balance

/accounts/jwt-secure/444666/balance

application.properties

/bank/secure/secrets

/tokeninfo

2. User credentials and roles are defined in Keycloak
and sent with each request in a JSON Web Token (JWT).

J
S

O
N

 W
e
b

T
o
k
e

n

J
S

O
N

 W
e
b

T
o

k
e
n

JSON Web Token

Figure 13.1 Authentication and authorization overview

279Using file-based authentication and authorization
The next listing illustrates a simple code example of securing access to a method
within an application using a Java annotation. Additional authorization mechanisms,
like defining roles using Java properties, are covered as well.

@RolesAllowed("customer")
public void getBalance() {
 // ...
}

Tables 13.1 and 13.2 list supported Quarkus authentication and authorization mecha-
nisms, respectively. Mechanisms identified with an asterisk (*) are covered in detail
throughout the remainder of the chapter.

13.2 Using file-based authentication and authorization
One approach to securing the Transaction service uses the Quarkus built-in HTTP
policy configuration and a file-based identity provider. This approach is both effective
and highly productive when developing a microservice. To add support for defining
user credentials and roles using configuration properties, add the quarkus-elytron-
security-properties-file extension as shown in the next listing.

Listing 13.1 Authorizing Java method access

Table 13.1 Quarkus authentication mechanisms

Mechanism Description

Basic* An HTTP user agent (e.g., web browser) requests user credentials.

Form Presents a web form (e.g., HTML) to obtain user credentials.

Mutual TLS Authenticates users based on their X.509 certificate.

OpenID Connect
(OIDC)*

An industry standard authentication layer that builds on OAuth 2.0. Delegates
authentication to an OpenID Connect provider like Keycloak. Quarkus supports
the OIDC Authorization Code and Implicit Flows.

MicroProfile JWT* Supports a JSON Web Token (JWT) bearer token containing a verified user identity.

LDAP LDAP server requests user credentials.

Table 13.2 Quarkus authorization mechanisms

Mechanism Description

OAuth 2.0 An industry standard protocol for granting a third-party authorization to access a
user’s protected resources

Configuration* Specifies application authorization rules using configuration properties

Annotations* Specifies application authorization rules using security-related annotations from
the Jakarta Annotations specification’s (https://eclipse-ee4j.github.io/common-
annotations-api/apidocs/) @PermitAll and @RolesAllowed

The getBalance() method
authorizes access only to users
assigned the customer role.

https://eclipse-ee4j.github.io/common-annotations-api/apidocs/
https://eclipse-ee4j.github.io/common-annotations-api/apidocs/

280 CHAPTER 13 Securing a microservice

e

.

cd transaction-service
mvn quarkus:add-extension -Dextensions=quarkus-elytron-security-properties-file

Next, create a method in TransactionResource.java to be secured by file security as
shown next.

@GET
@Path("/config-secure/{acctnumber}/balance")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public Response secureConfigGetBalance(@PathParam("acctnumber") Long

accountNumber) {
 return getBalance(accountNumber);
}

The Quarkus built-in HTTP request authorization implementation uses configuration
properties. Add the properties in the following listing to the Transaction service
application.properties.

Security using Quarkus built-in policy controls

quarkus.http.auth.permission.customer.paths=/transactions/config-secure/*
quarkus.http.auth.permission.customer.methods=GET
quarkus.http.auth.permission.customer.policy=authenticated

Security - Embedded users/roles (File realm)

%dev.quarkus.security.users.embedded.enabled=true
%dev.quarkus.security.users.embedded.plain-text=true
%dev.quarkus.security.users.embedded.users.duke=duke
%dev.quarkus.security.users.embedded.roles.duke=customer
%dev.quarkus.security.users.embedded.users.quarkus=quarkus
%dev.quarkus.security.users.embedded.roles.quarkus=teller

Enable HTTP basic authentication, which this application uses
only during development

%dev.quarkus.http.auth.basic=true

Listing 13.2 Adding the quarkus-elytron-security-properties-file extension

Listing 13.3 Adding a new method to TransactionResource.java

Listing 13.4 Configuring the HTTP policy and file users

secureConfigGetBalance() has the sam
functionality and method signature
as getBalance() but is available at a
different REST subpath that will be
secured using configuration properties

Defines a customer
permission that defines

an endpoint to secure

Authorizes GET
requests on the
endpoint

Refines the customer permission to allow only
authenticated users to access the secured endpoint

Enables embedded users and roles. Defining users, roles, and
passwords using properties is useful when in development mode.

Enables clear-text passwords. If set to false or omitted, then
the password is assumed to be an MD5 password hash. Only
clear-text and MD5 hashed passwords are currently supported.

Creates user duke with
a password of duke

Assigns user duke
the customer role

Creates user
quarkus with
a password
of quarkus

Assigns user quarkus the bank teller role

Enables HTTP basic authentication.
The user is prompted to provide a
username and password when using
a web browser. When using the curl
command, user credentials are
provided using the --user command
line option, like --user duke:duke.

281Using file-based authentication and authorization

NOTE Using configuration files is generally too limiting for production but is
useful during development and testing.

Before testing authentication and authorization, start the required services as shown
in the following listing.

minikube start

kubectl apply -f postgresql_kubernetes.yml
kubectl port-forward service/postgres 5432:5432

mvn quarkus:dev
mvn clean quarkus:dev -Ddebug=5006

Manually test the endpoint using curl as shown in the next listing, with the output
shown in the subsequent listing.

TRANSACTION_URL=http:/ /localhost:8088

curl -i \
 -H "Accept: application/json" \
 $TRANSACTION_URL/transactions/config-secure/444666/balance

HTTP/1.1 401 Unauthorized
www-authenticate: basic realm="Quarkus"
content-length: 0

Test the endpoint with an authenticated user using curl as shown in the following list-
ing, with the output in listing 13.9.

curl -i \
 -H "Accept: application/json" \
 --user duke:duke \
 $TRANSACTION_URL/transactions/config-secure/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Listing 13.5 Starting the database, Account service, and Transaction service

Listing 13.6 Testing a secured endpoint using built-in permissions

Listing 13.7 Testing a secured endpoint output without specifying a user

Listing 13.8 Testing a secured endpoint with an authenticated user

Listing 13.9 Validating user output

Starts minikube From the chapter top-level directory,
deploys the Postgres database to
Kubernetes if it is not already running

Proxies the Postgres database
to localhost so it can be used
by local services

In a new window, starts the Account
service from the account-service
subdirectory

In a new window, starts the
Transaction service from the

transaction-service subdirectory

Accesses the secured endpoint
without specifying a user

The result is HTTP/1.1 401 Unauthorized
when no authenticated user is provided.

Specifies user duke with a password of duke. Because duke
is an authenticated user defined using file configuration
properties, the method call is allowed (listing 13.9).

Grants access and returns a result when
an authenticated user, duke, is provided

282 CHAPTER 13 Securing a microservice
Test the endpoint with second authenticated user using curl as shown in listing 13.10
with the output in listing 13.11.

curl -i \
 -H "Accept: application/json" \
 --user quarkus:quarkus \
 $TRANSACTION_URL/transactions/config-secure/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

To limit access to customers in a specific role, replace the authenticated authoriza-
tion policy with the one shown in the following listing.

quarkus.http.auth.policy.customer-policy.roles-allowed=customer
quarkus.http.auth.permission.customer.paths=/transactions/config-secure/*
quarkus.http.auth.permission.customer.methods=GET
quarkus.http.auth.permission.customer.policy=customer-policy
quarkus.http.auth.permission.customer.policy=authenticated

Manually test customer-policy by using curl to invoke the endpoint with a user in
the customer role and a user in the teller role, as shown in the next code, with the
expected output in listing 13.14.

curl -i \
 -H "Accept: application/json" \
 --user quarkus:quarkus \
 $TRANSACTION_URL/transactions/config-secure/444666/balance

curl -i \
 -H "Accept: application/json" \
 --user duke:duke \
 $TRANSACTION_URL/transactions/config-secure/444666/balance

Listing 13.10 Testing a secured endpoint using built-in permissions with embedded users

Listing 13.11 Testing secured endpoint output with second authenticated user

Listing 13.12 Testing a secured endpoint output

Listing 13.13 Testing a secured endpoint output

Specify user quarkus with
a password of quarkus.

User quarkus is also an
authenticated user, and
access is allowed.

Creates a policy, customer-policy, that grants access
to users that are assigned the customer role

Applies the customer-policy policy
to the customer permission

Comments
out the prior
authenticated
policy

Tests with user quarkus, who is assigned the teller
role. The request returns an HTTP Forbidden response
(listing 13.14) because user quarkus is assigned the
teller role and not the customer role.

Tests with user duke, who is assigned the customer role. The HTTP
OK response and the account balance (listing 13.14) is returned
because user duke is assigned the customer role.

283Using file-based authentication and authorization

d
in

t
HTTP/1.1 403 Forbidden
content-length: 0

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Using curl is a convenient way of testing code while making rapid iterative changes
during development. However, Quarkus makes testing secured endpoints easy as well.
Quarkus supports testing secured endpoints by defining users and roles with the
@TestSecurity annotation. To use the @TestSecurity annotation, add the quarkus-
test-security dependency in the test scope to the Transaction service pom.xml as
follows.

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-test-security</artifactId>
 <scope>test</scope>
</dependency>

Create SecurityTest.java in the transaction-service/test/java/io/quarkus/transactions
directory to be used to test the Transaction service security. See the next listing.

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.containsString;

@QuarkusTest
@QuarkusTestResource(WiremockAccountService.class)
@TestSecurity(user = "duke", roles = { "customer" })
public class SecurityTest {
 @Test
 public void built_in_security() {
 given()
 .when()
 .get("/transactions/config-secure/{acctNumber}/balance", 121212)
 .then()
 .statusCode(200)
 .body(containsString("435.76"));
 }
}

Listing 13.14 Testing a secured endpoint output

Listing 13.15 Adding a dependency to Transaction service pom.xml

Listing 13.16 Testing roles and security

SecurityTest uses the mocke
AccountService, introduced
an earlier chapter, to return
predefined values for Accoun
service HTTP endpoints.

@TestSecurity defines a user, duke, in the customer role. Because it is applied to
the TestSecurity class, it will be applied to all test methods in the class. This duke
user applies only when running tests, whereas the embedded duke user defined
in application.properties applies only during development.

Gets the balance using
the config-secure

endpoint

Validates
the balance

284 CHAPTER 13 Securing a microservice
Stop the Account service to avoid a port conflict with WireMockAccountService by
pressing CTRL-C to stop the Account service running in development mode. Next,
follow the steps shown in the next listing.

mvn test \
 -Dtest=SecurityTest

13.3 Authentication and authorization with OpenID Connect
In this section, we use OpenID Connect (OIDC) to access new secure REST endpoints
in the Bank service.

13.3.1 Introduction to OpenID Connect (OIDC)

OAuth 2.0 is an industry standard authorization protocol for how a third-party appli-
cation can obtain limited access to another application.

OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 focuses on
client developer simplicity while providing specific authorization flows for web
applications, desktop applications, mobile phones, and living room devices.

—OAuth2 website

Although Quarkus supports OAuth 2.0, detailed coverage is beyond the scope of this
chapter. OIDC adds an identity layer on OAuth 2.0 that supports authentication and
controlled access to user identity. Historically, a service might have to present the
user’s login information, like a username and password, to a third-party service to gain
access to its user data and functionality. This would result in the third-party service
having the user credentials and coarse-grained access to the user’s data provided by
that service. Imagine having a third-party payment-processing service requiring a
user’s Bank service username and password!

 For the remainder of the chapter, we focus on using OIDC to authenticate a user
and provide enough user identity—and their role, in particular—to access secure
endpoints.

13.3.2 OIDC and Keycloak

OIDC is a layer on OAuth 2.0 that adds authentication flows. This chapter focuses on
the following flows:

 Authorization Code Flow—An unauthenticated user trying to access a protected
resource is first redirected to an OpenID Connect provider to authenticate.

 Implicit Flow—A service accesses an OpenID Connect provider directly to obtain
a token to access protected resources.

Listing 13.17 Running the security test

Only runs SecurityTest to speed up the testing.
Optionally, run all tests by omitting this line.

285Authentication and authorization with OpenID Connect
In preparation for securing services using OIDC, let’s review the following points:

 First, this chapter uses Keycloak as an identity provider. Running Keycloak
alongside services supporting other chapters, like Prometheus and Grafana,
requires at least 5 GB of memory.

 The two options follow:
– Start Minikube with more memory as shown in the next listing.

minikube delete
minikube start --memory=5120

– If the desktop does not have enough memory to allocate 5 GB of memory,
delete the monitoring namespace created in chapter 10, as shown in list-
ing 13.19. Metrics are still available by accessing a service’s /q/metrics end-
point directly. The monitoring namespace can be recreated by following the
steps in chapter 10.

kubectl delete ns monitoring

After ensuring enough memory is available, install Keycloak using the Keycloak Oper-
ator (https://github.com/keycloak/keycloak-operator) as shown in listing 13.20. A
Kubernetes Operator manages the life cycle of a service, and the Keycloak Operator
manages the Keycloak life cycle. The installation uses version 14.0.0 of the Keycloak
Operator.

echo "$(minikube ip) keycloak.local" | sudo tee -a /etc/hosts
scripts/install_keycloak.sh

NOTE Installing Keycloak can take several minutes depending on RAM, pro-
cessor speed, and internet connection. Several “pods keycloak-0 not found”
messages may appear during installation. Explaining the Keycloak installation
is beyond the scope of this chapter, but the script is heavily commented.

Also beyond the scope of this chapter, Keycloak console access can be useful when
problems occur. The console is available at http://keycloak.local/auth/admin/. The
username is admin. To obtain the password, run the command in the next code.

Listing 13.18 Starting Minikube with more memory

Listing 13.19 Deleting the monitoring namespace

Listing 13.20 Installing Keycloak into the Kubernetes keycloak namespace

Deletes the current Minikube
cluster, which also deletes any
work done in previous chaptersStarts Minikube with

5 GB of memory

Adds the host keycloak.local to /etc/hosts so Keycloak host
lookups resolve to the Minikube IP address. The hosts file on

Windows 10 is at C:\Windows\System32\drivers\etc\hosts.

Runs this command from the top-level chapter13
directory. The script is heavily commented.

https://github.com/keycloak/keycloak-operator
http://keycloak.local/auth/admin/

286 CHAPTER 13 Securing a microservice
kubectl get secret credential-bank-keycloak \
 -n keycloak \
 -o go-template='{{range $k,$v := .data}}{{printf "%s: " $k}}
 ➥ {{if not $v}}{{$v}}{{else}}{{$v | base64decode}}{{end}}
 ➥ {{"\n"}}{{end}}'

The Keycloak bank realm defines four users and their assigned roles as outlined in
table 13.3.

13.3.3 Accessing a protected resource with OpenID Connect

OIDC Authorization Code Flow defers user authentication to an authentication server,
Keycloak, in this case. Figure 13.2 explains the flow.

 To explain with more detail:

1 The user accesses a protected resource, perhaps protected by the built-in HTTP
security policy or @RolesAllowed.

2 The Bank service will redirect the user to the OIDC provider specified with the
quarkus.oidc.auth-server-url property. The OIDC provider used in this chap-
ter is Keycloak.

3 The OIDC provider presents the user with an authentication form to enter a
username and password. This step is covered in more detail later.

4 Upon successful authentication, Keycloak returns a JWT token and an HTTP
redirect to the originally requested resource. We explain JWT’s role in the
authorization shortly.

5 The browser is redirected to the protected resource.
6 The service successfully returns the resource contents.

To use OIDC with Quarkus, add the Quarkus OIDC extension to the Bank service and
start the service as follows.

cd bank_service
mvn quarkus:add-extension -Dextensions="quarkus-oidc"

Listing 13.21 Getting the Keycloak admin password

Table 13.3 Quarkus authorization mechanisms

Username Password Role

admin admin bankadmin

duke duke customer

jwt jwt customer

quarkus quarkus teller

Listing 13.22 Adding the OIDC extension and starting the Bank service

Adds the OIDC
extension

287Authentication and authorization with OpenID Connect

The UR
Keyclo
an Op

ide
provid
produc
After adding the OIDC extension, configure the Bank service to interoperate with the
OIDC server (Keycloak) as shown in the next code listing.

Security

quarkus.oidc.enabled=true
quarkus.oidc.tls.verification=none
quarkus.oidc.token.issuer=https:/ /keycloak.local/auth/realms/bank
%dev.quarkus.oidc.auth-server-url=https:/ /keycloak.local/auth/realms/bank
%prod.quarkus.oidc.auth-server-url=https:/ /keycloak:8443/auth/realms/bank
quarkus.oidc.client-id=bank

Listing 13.23 Bank service application.properties

OpenID Connect uthorization odeA C

User

(browser)

Bank service

OIDC provider

(Keycloak)

Return JWT

L.

and redirect UR

Authenticate user.

Return contents.

Access resource.

Send redirect for authentication.
Request protected resource.

Figure 13.2 Authorization Code Flow

Enables OIDC
authentication

Disables TLS verification of
the self-signed certificate
installed by the Keycloak
Operator

The OIDC extension will compare the token issuer with this issuer,
ensuring the token came from the proper, trusted source.

The URL for Keycloak as an
OIDC authorization server

when running locally. The bank
realm is specified in the URL.

L for
ak as
enID
ntity
er in
tion.

The OIDC client ID. An OIDC client ID typically has
an associated client secret (e.g., password),

the credentials for a client to access an
identity provider. To keep things simple, the

bank client does not have a client secret.

288 CHAPTER 13 Securing a microservice
quarkus.oidc.application-type=web-app
username=admin
password=secret

Update the Bank service to add a BankResource.getSecureSecrets() method to
secure access to the /bank/secure/secrets endpoint so only an administrator can
view them, as shown here.

@RolesAllowed("bankadmin")
@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/secure/secrets")
public Map<String, String> secureGetSecrets() {
 return getSecrets();
}

Start the Bank service as shown in the next listing.

mvn quarkus:dev -Ddebug=5008 -Dquarkus.http.port=8008

With the Bank service up and running, browse to http:/ /localhost:8008/bank/secure/
secrets. As shown in figure 13.3, attempting to access /bank/secure/secrets will redi-
rect the browser to Keycloak to obtain user credentials.

Listing 13.24 Securing the existing BankResource.getSecureSecrets() method

Listing 13.25 Starting the Bank service

Uses the Authorization Code Flow
(web app). The OIDC extension
redirects the user to a Keycloak-
provided login screen.The Bank service, copied from chapter 3, requires the

username and password properties to be defined.
These properties are not used in this example.

Secures the endpoint with @RolesAllowed so
only users in the bankadmin role can access
the /bank/secure/secrets endpoint

Creates a new method
named secureGetSecrets()The method calls the

existing getSecrets
method.

Starts the Bank service. The mvn command specifies the debug and HTTP ports to
avoid potential port conflicts with the Account service and Transaction service.

1. Redirected to Keycloak.

Log in with username admin, password admin.

Figure 13.3 Redirect
to Keycloak for user
authentication

289Authentication and authorization with OpenID Connect
After logging in with a username (admin) and password (admin), Keycloak redirects
the browser back to the original /bank/secure/secrets endpoint to display the
secrets as shown next.

{"password":"secret","db.password":"secret","db.username":"admin","username":
"admin"}

IMPORTANT The browser will likely not trust the Keycloak self-signed certifi-
cate. However, the self-signed certificate must be trusted by “agreeing to pro-
ceed” to test Keycloak authentication and access the secured REST endpoint.
This is the final browser-related exercise, so feel free not to trust the certifi-
cate and skip testing this functionality.

Having to run Keycloak to unit test the Code Authorization Flow is heavy and tedious.
The following section introduces the OidcWiremockTestResource to replace Keycloak
as an OIDC authorization server for unit testing.

13.3.4 Testing the Code Authorization Flow

Keycloak has been the authentication and authorization server behind supporting the
OIDC Code Authorization Flow. Quarkus offers an OIDC WireMock that can replace
a Keycloak instance during a test of the Bank service. To use the OIDC WireMock, add
the dependency shown in the next listing to pom.xml.

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-test-oidc-server</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>net.sourceforge.htmlunit</groupId>
 <artifactId>htmlunit</artifactId>
 <version>2.36.0</version>
 <scope>test</scope>
</dependency>

Listing 13.26 Output of the /bank/secure/secrets endpoint

Listing 13.27 The Bank service pom.xml WireMock dependency

Adds JUnit5
testing support

Tests REST endpoints
using the RESTassured
framework

The dependency that
includes the Quarkus
OIDC WireMock server

UI-less web browser. The testing
uses HtmlUnit to browse through
the Keycloak login UI.

290 CHAPTER 13 Securing a microservice

s
o
e

u

G

JSO
it
Next, add a src/test/java/io/quarkus/bank/BankTest.java class to the Bank ser-
vice to test the Code Authorization Flow as follows.

import static org.junit.jupiter.api.Assertions.assertTrue;

@QuarkusTest
@QuarkusTestResource(OidcWiremockTestResource.class)
public class BankTest {
 @Test
 public void testGetSecrets() throws IOException {
 try (final WebClient webClient = createWebClient()) {
 webClient.getOptions().setRedirectEnabled(true);
 HtmlPage page =
 webClient.getPage("http:/ /localhost:8081/bank/secure/secrets");

 HtmlForm loginForm = page.getForms().get(0);

 loginForm.getInputByName("username").setValueAttribute("admin");
 loginForm.getInputByName("password").setValueAttribute("admin");

 UnexpectedPage json = loginForm.getInputByValue("login").click();

 Jsonb jsonb = JsonbBuilder.create();
 HashMap<String, String> credentials =
 jsonb.fromJson(json.getWebResponse().getContentAsString(),
 HashMap.class);
 assertTrue(credentials.get("username").equals("admin"));
 assertTrue(credentials.get("password").equals("secret"));
 }
 }

 private WebClient createWebClient() {
 WebClient webClient = new WebClient();
 webClient.setCssErrorHandler(new SilentCssErrorHandler());
 return webClient;
 }
}

The application needs to be configured properly to use the mocked OIDC server.
The next code listing updates the test configuration to properly utilize the mocked
server.

Listing 13.28 src/test/java/io/quarkus/bank/BankTest.java

Utilizes the OidcWiremockTestResource class to simulate an
OIDC authorization server like Keycloak. The life cycle of the
WireMock is bound to the life cycle of the BankTest.java class.

Creates a
WebClient,
which is the
entry point
into HtmlUnit

Enables HTTP
redirect in the
WebClient for
OIDC web
authentication

Accesses the /bank/secure/secret
endpoint, which results in a redirect t

the WireMocked Keycloak login pag

Loads the
Keycloak

login page

Sets the
sername
as admin

Sets the
password
as admin

Clicks the Submit button, which has a form
value parameter of login. The result is of type

UnexpectedPage because the response is JSON
and not an HTML page.

ets the result
as a string,
parses it as

N, and stores
in a HashMap

Asserts the returned username is admin

Asserts the returned password is secret

Returns an HtmlUnit WebClient as the
entry point into the HtmlUnit framework

291Authentication and authorization with OpenID Connect
%test.quarkus.oidc.auth-server-url=${keycloak.url}/realms/quarkus

Run the test as shown in the following listing.

mvn test \
 -Dquarkus.test.oidc.token.admin-roles="bankadmin" \
 -Dquarkus.test.oidc.token.issuer=https:/ /keycloak.local/auth/realms/bank

Test should pass

Listing 13.30 shows the OidcWiremockTestResource settings that can be overridden
using system properties. Table 13.4 shows the overridable OidcWiremockTestResource
properties. These properties must be set as system properties and are not currently
configurable using MicroProfile Config.

OidcWiremockTestResource also defines two users. The first is user admin, with a pass-
word of admin and assigned role of admin. The second is user alice, with a password
of alice and assigned role of user. Listing 13.30 overrides the default admin roles with
bankadmin, which is required by the /bank/secure/secrets endpoint. The default
token issuer is https://server.example.com and is overridden in listing 13.30 with
https://keycloak.local/auth/realms/bank.

 The OIDC Code Authorization Flow uses a JSON Web Token (JWT) for authenti-
cation and authorization. The following section discusses JWT, the MicroProfile JWT
API, and how JWT allows access to the secured endpoint.

Listing 13.29 The Bank service application.properties

Listing 13.30 Running the test

Table 13.4 OidcWiremockTestResource properties

Property Default Value

quarkus.test.oidc.token.user-roles user

quarkus.test.oidc.token.admin-roles user, admin

quarkus.test.oidc.token.issuer https:/ /server.example.com

quarkus.test.oidc.token.audience https:/ /server.example.com

Directs the test framework to the mocked OIDC server. OidcWiremockTestResource.class
replaces ${keycloak.url} with the host and port of the mocked OIDC server.

OidcWiremockTestResource.class also preconfigures a quarkus realm.

Sets the role to be stored in the generated token. The role
is set to bankadmin because that is the role required to

access the /bank/secure/secrets endpoint.

Defines the token issuer, overriding
the default value (see table 13.4)

https://server.example.com
https://keycloak.local/auth/realms/bank

292 CHAPTER 13 Securing a microservice
13.4 Json Web Tokens (JWT) and MicroProfile JWT
Like the Bank example used throughout this book, a microservices architecture often
revolves around REST APIs, which in turn require REST security. REST microservices
tend to be stateless, so they benefit from the stateless security approach offered by
JWT. The security state is encapsulated in lightweight JSON Web Tokens (JWT)
defined in RFC 7519 (https://datatracker.ietf.org/doc/html/rfc7519). Because JWTs
are lightweight, they are propagated efficiently through a chain of REST service calls.

 A JWT contains three sections—a header, a payload, and a signature—with a dot
separating each section (“.”). For example, a sample token is shown in listing 13.31 in
the raw form. The italicized text is the JWT header, the bold text is the JWT payload,
and the underlined text is the JWT signature, which, if valid, verifies that the token
has not been tampered with.

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJHNjZaUWxsTmNoOWVLVVB3VGp
nVWJTcTB1eTN6aFJmeFZiOUItTUxNOG9FIn0.eyJleHAiOjE2MjM1NTM5MjIsImlhdCI6MTYyM
zU1MzYyMiwiYXV0aF90aW1lIjoxNjIzNTUzNjE3LCJqdGkiOiI3NWI5MmZhZi02ZTVkLTRlMjItY
WFlYi02NWYyOTJjMzU2YWMiLCJpc3MiOiJodHRwczovL2tleWNsb2FrLmxvY2FsL2F1dGgvcmVhb
G1zL2JhbmsiLCJzdWIiOiJlZGJiMzlkMC1jNmZhLTQyMTEtYTc1Yy03MGQ5MzQwMzE2MjAiLCJ0e
XAiOiJCZWFyZXIiLCJhenAiOiJiYW5rIiwic2Vzc2lvbl9zdGF0ZSI6IjJjYTJiNGYwLWE0NjAtN
DliMi04MTkzLWI0YzNlYTg3ZTAxYSIsImFjciI6IjEiLCJhbGxvd2VkLW9yaWdpbnMiOlsiaHR0c
DovLzEyNy4wLjAuMTo4MDA4IiwiaHR0cDovL2xvY2FsaG9zdDo4MDA4IiwiaHR0cDovL2xvY2Fsa
G9zdDo4MDgxIiwiaHR0cDovLzEyNy4wLjAuMTo4MDgxIiwiaHR0cDovLzEyNy4wLjAuMTo4MDg4I
iwiaHR0cDovL2xvY2FsaG9zdDo4MDg4Il0sInJlYWxtX2FjY2VzcyI6eyJyb2xlcyI6WyJjdXN0b
21lciJdfSwic2NvcGUiOiJvcGVuaWQgcHJvZmlsZSBtaWNyb3Byb2ZpbGUtand0IGVtYWlsIHBob
25lIiwidXBuIjoiZHVrZSIsImJpcnRoZGF0ZSI6IkZlYnJ1YXJ5IDMwLCAyMDAwIiwiZW1haWxfd
mVyaWZpZWQiOnRydWUsIm5hbWUiOiJEdWtlIEN1c3RvbWVyIiwiZ3JvdXBzIjpbImN1c3RvbWVyI
l0sInByZWZlcnJlZF91c2VybmFtZSI6ImR1a2UiLCJnaXZlbl9uYW1lIjoiRHVrZSIsImZhbWlse
V9uYW1lIjoiQ3VzdG9tZXIiLCJlbWFpbCI6ImR1a2VAYWNtZTIuY29tIn0.QrM
Su9_9VE47xih2J9t-LhSDC-JPN2ptKip0OMCE3wl_bT3-IQoaX_TPuHz9elGrUQUYNjpnUuML8D2
yQmvt5QNaXjMvmxTFyEQgob2pxzbLkrQqIHhg7eSXKPLeJZtko3uWoiWDghYHFE_QBOk6iIZFY4c
YUQgxOiFTk4M73L2lkcy94fyv6Mgr4y5UQnTJqERVTfOQCybPy-B2nuRcpAcwB0eRTMgVsXAUsEI
camVjwwe1rkaHAdJvV6Z5Y8ouafSqdDMxRElmzkwnvWOfeNthVduiqba8YK0rkmvJhj0WS7Ehq74
UTtmHe5fMPvciVCSIMPVfDGKyVc45LYC2sA

13.4.1 JWT header

Each JWT section is Base64-encoded, including the header, so any tool that can
decode a Base64 representation can view the header contents.

IMPORTANT Because JWTs are not encrypted, it is highly recommended that
JWTs are transferred over a secure transport layer, like HTTPS.

The base64 command in listing 13.31 decodes the header matching JWT italicized text
shown earlier to prove this point. Listing 13.32 shows the decoded header claims. A
claim is a key-value pair that makes a statement about the entity (e.g., the user or
token). The header claims are explained in table 13.5.

Listing 13.31 Sample Base64-encoded JWT

https://datatracker.ietf.org/doc/html/rfc7519

293Json Web Tokens (JWT) and MicroProfile JWT
echo "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJHNjZaUWxsTmNoOWVLVV

➥ B3VGpnVWJTcTB1eTN6aFJmeFZiOUItTUxNOG9FIn0" | base64 -d

{"alg":"RS256",
 "typ" : "JWT",
 "kid" : "G66ZQllNch9eKUPwTjgUbSq0uy3zhRfxVb9B-MLM8oE"

13.4.2 JWT payload

A JWT payload consists of a collection of standardized claims defined by RFC 7519.
MicroProfile JWT extends these standardized claims, and developers can also add cus-
tom claims if needed.

 To view the token claims returned from Keycloak, add TokenResource.java to the
Bank service as shown in the next listing.

@Authenticated
@Path("/token")
public class TokenResource {
 /**
 * Injection point for the Access Token issued
 * by the OpenID Connect Provider
 */
 @Inject
 JsonWebToken accessToken;

 @GET
 @Path("/tokeninfo")
 @Produces(MediaType.APPLICATION_JSON)
 public Set<String> token() {
 HashSet<String> set = new HashSet<String>();
 for (String t : accessToken.getClaimNames()) {

Listing 13.32 Displaying the contents of the JWT header

Listing 13.33 Decoded JWT header (formatted)

Table 13.5 JWT header claims (all three required by MicroProfile JWT)

Claim Description

alg The cryptographic algorithm used to sign the JWT. MicroProfile JWT requires this to be
RS256, which uses a public/private key pair to verify the token contents have not been
tampered with.

typ Media type, MicroProfile JWT requires this header claim to be defined as JWT.

kid Hint indicating the key used to secure the JWT. This claim is useful when multiple keys are
available to choose from, or to recognize if a key has changed between requests.

Listing 13.34 Viewing the contents of a token returned from OIDC Authorization Flow

Decodes the JWT header. Not all systems have base64 preinstalled. The following
section decodes the entire JWT using a website, so installing base64 is not necessary.

A Quarkus-specific annotation that allows access only to an
authenticated user. This annotation, and any protective
security annotation, will trigger the Authorization Code
Flow and token creation for a successful authentication.

Injects the token into a
MicroProfile JsonWebToken
instance

Returns the token contents
as a JSON object

Token contents will
be added to a Java
collection (set)

294 CHAPTER 13 Securing a microservice
 set.add(t + " = " + accessToken.getClaim(t));
 }
 return set;
 }
}

Next, access the token endpoint in a browser using http:/ /localhost:8008/token/
tokeninfo, and log in using username duke and password duke. Use of an incognito
window is recommended to ensure a prior cookie is not used.

TIP Keycloak uses cookies to track the Authorization Code Flow. Browser
incognito or private windows will delete cookies when closed, which makes test-
ing code as simple as closing and opening a new incognito browser window.

The (formatted) output will be a JSON token similar to the next listing.

[
 "realm_access = {\"roles\":[\"customer\"]}",
 "preferred_username = duke",
 "jti = 75b92faf-6e5d-4e22-aaeb-65f292c356ac",
 "birthdate = February 30, 2000",
 "iss = https:/ /keycloak.local/auth/realms/bank",
 "scope = openid profile microprofile-jwt email phone",
 "upn = duke",
 "principal = duke",
 "typ = Bearer",
 "name = Duke Customer",
 "azp = bank",
 "sub = edbb39d0-c6fa-4211-a75c-70d934031620",
 "email_verified = true",
 "raw_token = <too long to list>",
 "family_name = Customer",
 "exp = 1623553922",
 "session_state = 2ca2b4f0-a460-49b2-8193-b4c3ea87e01a",
 "groups = [customer]",
 "acr = 1",
 "auth_time = 1623553617",
 "iat = 1623553622",
 "allowed-origins = [\"http:/ /127.0.0.1:8008\",\"http:/ /localhost:8008\",
 ➥ \"http:/ /localhost:8081\",\"http:/ /127.0.0.1:8081\",\"http:/ /127.0.0.
 ➥ 1:8088\",\"http:/ /localhost:8088\"]",
 "email = duke@acme2.com",
 "given_name = Duke"
]

Table 13.6 explains the claims that are shown in listing 13.35.
 The groups claim is the only one of interest to the application functionality

because its value determines method access.

Listing 13.35 Decoded JWT header (formatted for readability)

Adds each claim
and its value to
the collectionReturns the

claims

The raw token is too long
to list but is identical to the
token listed in listing 13.31.

295Json Web Tokens (JWT) and MicroProfile JWT
13.4.3 JWT signature

Each JWT is signed using the algorithm defined in the header alg claim to ensure it has
not been tampered with. An easy way to view the token header claims and payload
claims and verify the signature is to paste the contents of the raw_token claim in list-
ing 13.35 into the form available at https://jwt.io/#encoded-jwt, as shown in figure 13.4.

1 Paste the JWT into the encoded form. The JWT header and payload sections
display the claim values.

2 JWT header. The header claims, although not necessarily their values, will
match claims in listing 13.33.

3 JWT payload. The claims, although not necessarily their values, will match the
claims in listing 13.35.

4 The signature is not validated because the public key has not been provided.

To obtain the public key, run the command in the next listing, which should result in
an output similar to that shown in listing 13.37.

scripts/createpem.sh

Table 13.6 Payload JWT claims (*required by MicroProfile JWT)

Claim Description

typ Declares the token media type.

iss* Issuer of the MicroProfile JWT.

sub* Identifies the principal that is the subject of the JWT.

exp* JWT expiration time, at which point the JWT is considered invalid, in seconds since
January 1, 1970.

iat* The time a JWT was issued, in seconds since January 1, 1970.

jti* JWT unique identifier; can be used to prevent a JWT from being replayed.

upn* A human-readable MicroProfile JWT custom claim that uniquely identifies the subject or user
principal of the token across all services that will access the token. This claim is the user prin-
cipal name in java.security.Principal. JsonWebToken extends java.security
.Principal, so it can be used by existing frameworks that support java.security
.Principal. If this claim is missing, MicroProfile JWT will fall back to the preferred_
username claim. If preferred_username is missing, the sub claim is used.

groups* MicroProfile JWT custom claim that lists the groups the principal belongs to.

unlisted
here

The remaining claims have been configured by the Keycloak administrator and are not
directly relevant to MicroProfile JWT.

Listing 13.36 Getting the public key

Prints the public key in Privacy-
Enhanced Mail (PEM) format

https://jwt.io/#encoded-jwt

296 CHAPTER 13 Securing a microservice
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAjJ/GYpCkgfYT1HYpa96AP8djbKiv25Yh
VlZcHcIt2QX4VZPJM/qntF2m7ubPSz3zHHNQUOWYl+3xIo4EFfCcTPTBgL0aSlCsuT5+0RuajsFj
ejLGa19p3eKuBjtB0buqI4SbxpitvZj4L4beBdFj+r2NZZNxeFFMrd9lORW3b4cUmk8tS6ZrgbTK
Ij3adjlVMYHOkGQNNGBf1KJkdbi8UQtXaATuyFHiQCCYY/ENWGGomu+dXqvqnRRsdWBndsUcCNe+
NPwT1z3lbfYoXkldWFVvXjBnNme/f8mCMWuKBz4fGZUkt7Sdc5FPnFpsbT+0inarxIov3puDxHbB
gNJ9xwIDAQAB
-----END PUBLIC KEY-----

Paste the public key into the jwt.io form public key field as shown in figure 13.5.

IMPORTANT The public key in listing 13.37 validates the token in listing 13.31.
The token and public key for any other installation will differ. Attempting to
use the public key in listing 13.37 to validate a token from another installation
will fail.

In the next section, we utilize a JWT to secure a Transaction service REST endpoint.

Listing 13.37 Public key

Figure 13.4 jwt.io decoded JWT

2. Token header

3. Token payload

1. Paste token here.

4. Missing public key

297Securing the Transaction service using MicroProfile JWT
13.5 Securing the Transaction service using
MicroProfile JWT
With a firm understanding of JWT and the MicroProfile JWT API, the next step is to
secure the Transaction service with MicroProfile JWT. Before writing code, add the
quarkus-smallrye-jwt extension as shown next.

cd transaction_service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-jwt"

If the transaction service is not running, start it
mvn clean quarkus:dev -Ddebug=5006

The next step is to update application.properties with the public key, as shown in the
following code snippet.

Configure MicroProfile JWT

mp.jwt.verify.publickey=<INSERT PUBLIC KEY HERE>
mp.jwt.verify.issuer=http:/ /keycloak.local/auth/realms/bank

Add the method in listing 13.40 to TransactionResource.java. This method adds a
secure REST method endpoint intended to test that the JWT allows method access.

@GET
@RolesAllowed("customer")

Listing 13.38 Adding MicroProfile JWT support to the Transaction service

Listing 13.39 Configuring the MicroProfile JWT

Listing 13.40 Adding jwtGetBalance() to TransactionResource.java

Paste public key here.

Token signature verified

Figure 13.5 Verified JWT

Adds the Quarkus extension that supports MicroProfile
JWT. If the Transaction service is already running, an error message

likely appears because two required MicroProfile JWT properties are missing.

Pastes the public key obtained in listing 13.36,
without the BEGIN PUBLIC KEY and END PUBLIC

KEY lines (the Base64-encoded string only)

Verifies the trusted token issuer is Keycloak

Only users in the customer role are
allowed access to the method.

298 CHAPTER 13 Securing a microservice

e

@Path("/jwt-secure/{acctnumber}/balance")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public Response jwtGetBalance(
 @PathParam("acctnumber") Long accountNumber) {
 return getBalance(accountNumber);
}

Finally, access the endpoint to verify access as shown here.

Start the account service in a new terminal window if it
is not running

cd account-service
mvn quarkus:dev

In a new window from the chapter top-level directory,
restart the Transaction service

cd transaction-service
mvn clean quarkus:dev -Ddebug=5006

In a new window from the chapter top-level directory

TOKEN=`scripts/gettoken.sh`
TRANSACTION_URL=http:/ /localhost:8088

curl -i \
 -H "Accept: application/json" \
 -H "Authorization: Bearer "${TOKEN} \
 $TRANSACTION_URL/transactions/jwt-secure/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Accessing the endpoint without a valid bearer token, or using an expired token, will
result in an HTTP/1.1 401 Unauthorized message as shown next.

HTTP/1.1 401 Unauthorized
www-authenticate: Bearer {token}
content-length: 0

Listing 13.41 Testing endpoint access

Listing 13.42 Testing endpoint access output

Listing 13.43 Testing endpoint access

Specifies a URL for the
endpoint intended to be
accessed using a JWT

Calls the existing
getBalance() method

Gets a token from Keycloak,
simulating the OIDC Implicit
Flow. The token will be valid
for five minutes. To manually
refresh the token after five
minutes, rerun the command.
The gettoken.sh script is
heavily documented.

Specifies the top-level
Transaction service
URL

Passes the token to the Transaction service using the Authorization header.
The quarkus-smallrye-jwt extension recognizes and parses the token,
creating a security context.

Accesses the
/jwt-secure/
endpoint to print
the account balanc

299Propagating the JWT
The Transaction service is now successfully using a JWT to access a secured endpoint.
The following section propagates the token to the Account service to authorize access
to a secured Account service endpoint.

13.6 Propagating the JWT
A request may travel across multiple secured microservices. The security context can
travel with the request using a JWT to enable access to those secured microservices.
The remainder of the JWT discussion switches from the OIDC Code Authorization
Flow to the OIDC Implicit Flow, where the JWT is obtained directly from Keycloak
and is propagated with HTTP requests. Before propagating the token, in the next sec-
tion, we add a secured endpoint to the Account service.

13.6.1 Secure an Account service endpoint

The process for securing an Account service endpoint is the same as for securing a
Transaction service endpoint.

 First, a few Account service preparation steps are required, as shown next.

cd account_service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-jwt"

The next step is to update the application.properties as follows.

Configure MicroProfile JWT

mp.jwt.verify.publickey=<INSERT PUBLIC KEY HERE>
mp.jwt.verify.issuer=http:/ /keycloak.local/auth/realms/bank

Next, add a secured method to get the bank balance, as shown in the next listing.

@RolesAllowed("customer")
@GET
@Path("/jwt-secure/{acctNumber}/balance")
public BigDecimal getBalanceJWT(
 @PathParam("acctNumber") Long accountNumber) {
 return getBalance(accountNumber);
}

In the next section, we update the Transaction service to access the new secured
endpoint.

Listing 13.44 Adding MicroProfile JWT support to the Account service

Listing 13.45 Configuring the MicroProfile JWT

Listing 13.46 AccountResource.java: adding the secured endpoint

Adds the Quarkus extension that supports MicroProfile JWT. If the Account
service is already running, an error message will likely appear because

two required MicroProfile JWT properties are missing.

Pastes the public key obtained in listing 13.36, without
the BEGIN PUBLIC KEY and END PUBLIC KEY lines

Verifies the trusted token issuer

Only users in the customer role are
allowed access to the method.

Specifies a URL for the
endpoint intended to be
accessed using a JWT

Invokes the existing, unsecured,
getBalance() method

300 CHAPTER 13 Securing a microservice
13.6.2 Propagating JWT from the Transaction service to
the Account service

The Transaction service uses the MicroProfile REST Client (via AccountService.java)
to access the Account service. Therefore, add a new method to AccountService.java to
invoke the new Account service secured endpoint as shown here.

@GET
@Path("/jwt-secure/{acctNumber}/balance")
BigDecimal getBalanceSecure(@PathParam("acctNumber") Long accountNumber);

With the new MicroProfile REST Client method in place, update Transaction-
Resource.jwtGetBalance() to invoke the new secure endpoint as follows.

@GET
@RolesAllowed("customer")
@Path("/jwt-secure/{acctnumber}/balance")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public Response jwtGetBalance(
 @PathParam("acctnumber") Long accountNumber) {
 String balance =
 accountService.getBalanceSecure(accountNumber).toString();

 return Response.ok(balance).build();
}

One last step is required for the Transaction service to access the Account Service
securely. The JWT contains the user identity information, including the user’s role.
Therefore, the JWT must be propagated from the Transaction service to the Account
service on each request, so the role is available to AccountService.getBalanceJWT().
This is as easy as updating the Transaction service application.properties to pass the
Authorization header as shown in the following listing.

org.eclipse.microprofile.rest.client.propagateHeaders=Special-
Header,Authorization

To test JWT propagation, run the commands in the next listing to receive the output
in listing 13.51.

Listing 13.47 Transaction service: AccountService.java

Listing 13.48 Transaction service: AccountService.java

Listing 13.49 Propagate the Authorization header

Only users in the customer
role are allowed access to
the method.

Invokes the secured
Account service endpoint

using the REST Client

Returns the balance
in JSON format

Appends Authorization to the org.eclipse.microprofile.rest.client.propagateHeaders
property, so the Authorization header containing the JWT (bearer)

token is passed along with the REST calls

301Running the services in Kubernetes

Specifie
top

Transa
servic

Deploys
Transac

ser

Gets
If the account service is not running, start it
cd account-service
mvn clean quarkus:dev

TOKEN=`../scripts/gettoken.sh`
TRANSACTION_URL=http:/ /localhost:8088

curl -i \
 -H "Accept: application/json" \
 -H "Authorization: Bearer "${TOKEN}
 $TRANSACTION_URL/transactions/jwt-secure/444666/balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

13.7 Running the services in Kubernetes
To deploy the services to Kubernetes, run the commands in the following listing to
obtain the output shown in listing 13.53.

cd account-service
eval $(minikube -p minikube docker-env)
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

cd ../transaction-service
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

export TRANSACTION_URL=`minikube service transaction-service --url`
export TOKEN=`../scripts/gettoken.sh`

curl -i \
 -H "Accept: application/json" \
 -H "Authorization: Bearer "${TOKEN} \
 $TRANSACTION_URL/transactions/jwt-secure/444666/balance

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue at https://github.com/quarkusio/
quarkus/issues/19701 for updates on a resolution. We can work around the

Listing 13.50 Testing JWT propagation

Listing 13.51 Testing JWT propagation

Listing 13.52 Deploying to Kubernetes

Starts the Account service.
The Transaction service
should already be running.

Gets a token from Keycloak, simulating the
OIDC Implicit Flow. The token will be valid for
five minutes. To manually refresh the token
after five minutes, rerun the command. The
gettoken.sh script is heavily documented.

s the
-level
ction

e URL

Passes the token to the Transaction service using the
Authorization header. The quarkus-smallrye-jwt extension
recognizes and parses the token, creating a security context.

Accesses the
/jwt-secure/
endpoint to print
the account balance

Updates environment variables
to point to the Docker engine

running in Minikube
Deploys the

Account
service

 the
tion
vice

Gets the
Transaction

service
Minikube URL

 the
JWT

Gets the account balance
by invoking the secured
endpoint. The balance
should be 3499.12.

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

302 CHAPTER 13 Securing a microservice
problem by removing the application first with kubectl delete -f /target/
kubernetes/minikube.yaml.

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

At this point, the Bank service is using the OIDC Code Authorization Flow, and the
Transaction service is using the OIDC Implicit Flow and propagating the token to the
Account service.

Summary
 Authentication and authorization are necessary security strategies for web

applications.
 Quarkus supports many authentication and authorization mechanisms.
 Defining users and authorization strategies in application.properties is a pro-

ductive development approach.
 Quarkus offers productive features to simplify testing secured applications.
 OIDC Code Authorization Flow typically obtains user identity using a web form

and returns a JWT.
 JWTs propagate user identity across services using the OIDC Implicit Flow.
 Quarkus enhances the OIDC testing experience with a WireMock OIDC autho-

rization server.

Listing 13.53 Deploying to Kubernetes

index
Symbols

@APIResponse 267, 269
@ApplicationScoped 31
@Asynchronous 138–139
@Blocking 167, 169
@Bulkhead 139, 226–227
@Callback 271
@Channel 165
@CircuitBreaker 148, 150–151,

226–227
@CircuitBreaker skipOn

parameter 156
@ClientHeaderParam 106, 108
@ConcurrentGauge 222–223
@ConfigMapping 66–67
@ConfigProperties 62–64, 66
@ConfigProperty 55, 58, 187
@ConfigurationProperties 187
@CookieValue 188
@DeleteMapping 188
@ExceptionHandler 188
@Fallback 142, 151, 154, 226
@Header 271
@HeaderParam 106
@Inject 55
@Link 271
@Liveness 124
@NamedQuery 88–89
@OpenAPIDefinition 271
@QuarkusTestResource 78, 83
@Readiness 124
@RegisterClientHeaders

106–107
@RegisterClientHeaders(MyHea

derClass.class) 107

@RegisterProvider(MyProvider
.class) 109

@RegisterRestClient 96
@RequestBody 270
@RequestScoped 31
@RestControllerAdvice 188,

190
@Retry 146–147, 154, 226
@SchemaProperty 269
@Singleton 31
@Tag 271
@TestMethodOrder(Order

.class) 37
@TestSecurity 283
@Timed 220–221
@Timeout 143–144, 154, 226
@Traced 243–245
@Value 187
/metrics end point 205
/q/health/live end point

117–118
/q/health/ready end

point 117–118, 134
/q/health end point 118
/q/metrics/ end point 205
/q/metrics end point 212, 229,

285
%dev property 64
%prod production profile 100
%prod property 64

A

Accept HTTP request
header 260

Account class 79–80, 192, 273

account-fee topic 179–180, 182,
255

AccountHealthReadinessCheck
class 124

Account instance 32, 38
AccountRepository

interface 192
AccountResource class 273
AccountResourceTest class 89
AccountResource.withdrawal()

method 247
Account service 300–301

instrumenting 216–217
securing 299

account-service instance 135
AccountService interface 96,

103, 105
Account service MicroProfile

Health liveness
121–123

Account service MicroProfile
Health readiness 123–124

AccountServiceProgrammatic
interface 103

account-service span 239, 241,
244

ack method 173
add-extensions maven goal 56
Agroal extension 77
All Configuration Properties Guide,

Quarkus 198
Annotated Metrics naming

convention 213
annotation parameter

values 154–155
annotation substitution 197
303

INDEX304
AOT (ahead-of-time)
compilation 41, 199

Apache Kafka in Minikube
177–179

API visualization
code first or OpenAPI

first 275
design-first development

273–274
mixing the file and

annotations 274
OpenAPI file base 273–274

MicroProfile OpenAPI
263–273

application information
263–265

customizing schema
output 265–266

defining operations
266–267

filtering OpenAPI
content 272–273

operation responses
267–270

tagging operations 271
viewing OpenAPI docu-

ments with Swagger
UI 258–262

application/json HTTP request
header 212

application health
Kubernetes liveness and readi-

ness probes 129–135
customizing health check

properties 131
deploying to Kubernetes

131–133
testing readiness health

check in Kubernetes
133–135

MicroProfile Health
specification 117–129

Account service liveness
health check,
creating 122–128

Account service Micro-
Profile Health liveness
121–122

Account service Micro-
Profile Health
readiness 123–124

determining liveness and
readiness status 118–119

disabling vendor readiness
health checks 124

liveness vs. readiness 118
Quarkus health

groups 128–129
Quarkus Health UI,

displaying 129
role of developers in 116–117

application.properties 45, 69,
82–83, 91, 100,
102–103, 107, 125, 246, 249,
263–265,
271–274, 280, 300

application tracing,
customizing 244–255

injecting tracers 245
tracing database calls 245–248
tracing Kafka messages

249–255
using @Traced 244–245

asynchronous response
types 103–105

authenticated authorization
policy 282

authentication, defined 278
authentication and authoriza-

tion with OIDC (OpenID
Connect)

accessing protected resource
with OIDC 286–289

Keycloak and 284–286
overview 284
testing Code Authorization

Flow 289–291
authorization, defined 278
Authorization Code Flow 284

B

back pressure 161–163
Bank service 55–58

creating 56–57
name field 57–58

base64 command 292
base metrics 214
baseUri parameter 97
bounded context 4
builder.register(MyProvider

.class) 109
BulkheadException.class 156
bulkheads

constraining concurrency
with 138–139

updating TransactionService
with 140–142

business metrics, creating
223–226

C

CDI (Contexts and Dependency
Injection) 9, 55

CDI REST client 97–101
deploying to Kubernetes

99–101
mocking external service

98–99
CircuitBreakerException 148,

150
CircuitBreakerOpenException

219
circuit breakers, avoiding

repeated failures with
how circuit breaker works

148–150
MicroProfile Fault Tolerance

148
testing circuit breaker

152–153
updating TransactionService

to use @CircuitBreaker
150

CLASS_METHOD 267
ClientRequestFilter 109, 111
ClientResponseFilter 109, 111
clients for consuming other

microservices
customizing REST clients

105–113
client request headers

105–108
declaring providers 109–113

MicroProfile REST Client
94–95

service interface definition
95–105

asynchronous response
types 103–105

CDI REST client 97–101
choosing between CDI and

programmatic API 103
programmatic REST

client 101–103
clusters, Kubernetes 15
CNCF (Cloud Native Computing

Foundation) 14, 212
Code Authorization Flow

289–291
collector 233
CompletableFuture type 96
CompletionStage type 96
concurrency, constraining with

bulkheads 138–139

INDEX 305
configKey parameter 97
ConfigMap 17
Config object 55
configuring microservices

69–74
accessing a configuration 55
Bank service 55–58

creating 56–57
name field 57–58

configuration sources 59–61
configuring mobileBanking

field 62
grouping properties with

@ConfigProperties
62–64

Kubernetes
common configuration

sources 69
ConfigMap, Editing 71–72
ConfigMap, using for

Quarkus applications
70–71

Kubernetes Secrets 72–74
MicroProfile Config architec-

ture overview 54–55
Quarkus-specific configura-

tion features 64–68
@ConfigMapping 66–67
configuration profiles

64–65
property expressions 65
runtime vs. build-time

properties 67–68
constant sampler 235
Contexts and Dependency Injec-

tion (CDI) 9, 55
contract-first development 273
controller pattern 17
Counter metric 216
CRDs (custom resource

definitions) 206, 236
CRUD application 13
curl command 141, 181, 212
custom health group 128

D

database access with Panache
datasources 77–78
deployment to

Kubernetes 90–92
deploying PostgreSQL

90–91
package and deploy 91–92

JPA 78–84

simplifying database
development 84–90

active record approach
84–86

data repository
approach 87–89

which approach to use
89–90

database calls, tracing 245–248
data repository approach 77
dead code elimination

process 40
default tag 265
Deployment object 209
design-first development 273
DevOps 7
dev profile 64
Dev Services, Quarkus 82
-Dextensions property 56
docker images function 47

E

EntityManager 79
entityManager 80
enum field 266
enum status 265
environment variables 69
equals() method 85
ErrorResponse type 268
eval command 47
event-driven architecture 160
exception handling 142–143
ExceptionMapper 216
execution timeouts 143–146
externalized configuration 54

F

failures
repeated, avoiding with circuit

breakers 147–153
how circuit breaker

works 148–150
MicroProfile Fault

Tolerance 148
testing circuit breaker

152–153
updating Transaction-

Service to use
@CircuitBreaker 150

temporary, recovering from
with @Retry 146–147

FallbackHandler class 150
fallbackMethod 142–143, 151

fallback metric 217
Fault Tolerance 226–228
Fowler, Martin 85, 87
From_overdrawn span 251
Future type 96

G

GATEWAY_TIMEOUT HTTP
status code 150

getKey method 173
getMetadata method 173
getMobileBanking() method 62
getName() method 57
getPayload method 173
getTimestamp method 173
getTopic method 173
Grafana, graphing metrics

with 206–211
greeting property 55
GreetingResource class 25
GreetingResourceTest class 26
greeting variable 55
grouping properties, with

@ConfigProperties 62–64
groups claim 294

H

handling failed applications
116

hashCode() method 85
health end points 117
health groups 128
hidden methods 266
horizontal scaling 15
HttpHostConnectException

148
HTTP response payload 117
HTTP REST requests 13
HTTP status code 117

I

identity provider 278
imperative programming 164
Implicit Flow 284
incognito windows 294
incoming channels 166
incoming connection 166
initial-delay setting 132
in-memory connector 169
io.quarkus.arc.config.Config-

Properties 63
isolation 4

INDEX306
J

Jaeger 234–242
installing 235–237
setting up Minikube

environment 235
trace sampling 235
tracing microservices

with 237–242
jaeger-operator 236
Jakarta Annotations

specification 279
java.security.Principal 295
java.security.Principal.

JsonWebToken 295
JAX-RS (Java API for RESTful

Services) 9, 226–228
JMX (Java Management

Extensions) 211
JPA (Java Persistence API) 12,

78–84
JSON-P (JSON Processing) 9
JVM (Java Virtual Machine) 5,

40
JWT (JSON Web Tokens)

292–296
header 292–293
payload 293–294
propagating 299–301

from Transaction service
to Account service
300–301

securing Account service
end point 299

signature 295–296

K

Kafka
in Minikube 177–179
tracing Kafka messages

249–255
kafka-console-consumer.sh

script 180
Keycloak 284–286
kubectl get pods function 100,

120
kubectl get pods -n monitoring

function 209
kubectl get pods -w command

132
kubectl logs <POD_NAME>

commands 132
kubectl port-forward …

command 127

Kubernetes 14–18, 154–155
deploying CDI REST client

to 99–101
deploying database to 90–92

deploying PostgreSQL
90–91

package and deploy 91–92
deploying Reactive Messaging

to 177–182
Apache Kafka in Minikube

177–179
putting it all together

179–182
deploying Spring microser-

vices to 196–197
deploying updated Transac-

tionService to 154–155
liveness and readiness

probes 129–135
customizing health check

properties 131
deploying to Kubernetes

131–133
testing readiness health

check in Kubernetes
133–135

microservices, Kubernetes-
native 18–19

overview 14–18
running first Quarkus applica-

tion in 43–48
deploying and running

application 47–48
generating Kubernetes

YAML 44–46
packaging application

46–47
running services in 301–302

Kubernetes client API 19
Kubernetes ConfigMap 69
Kubernetes-native Java 12
Kubernetes Secret 72

L

leaky bucket rate limiter 235
literals 73
live coding 20, 27–35
load balancing 15, 116

M

MessageBodyReader provider
type 109

Message interface 173, 176

methods, executing under sepa-
rate thread with
@Asynchronous 138

METHOD strategy 267
MetricID 217
MetricRegistry 217
metrics

MicroProfile Metrics 204–230
Account service,

instrumenting 216–217
Annotated Metrics naming

convention 213
business metrics, creating

223–226
Fault Tolerance 226–228
JAX-RS integration

with 226–228
Micrometer metrics

228–230
output formats 212–213
scopes 214
simulating busy production

system 230
supported types 215–216
TransactionService,

instrumenting 217–223
Prometheus and Grafana,

graphing metrics
with 206–211

role of in microservices
architecture 204

metrics/scripts/run_all.sh
command 230

MetricUnits class 215
MicroProfile 8–11

community core
principles 10–11

history of 9–10
MicroProfile Config

architecture 54–55
MicroProfile Fault

Tolerance 148
MicroProfile Health

specification 117–129
Account service liveness

health check,
creating 122–123

Account service MicroProfile
Health liveness 121–122

Account service MicroProfile
Health readiness 123–124

creating readiness health
check 124–128

determining liveness and readi-
ness status 118–119

INDEX 307
MicroProfile Health specifica-
tion (continued)

disabling vendor readiness
health checks 124

liveness vs. readiness 118
Quarkus health groups

128–129
Quarkus Health UI,

displaying 129
MicroProfile Metrics 204–230

Account service, instrument-
ing 216–217

Annotated Metrics naming
convention 213

business metrics, creating
223–226

Fault Tolerance 226–228
JAX-RS integration with

226–228
Micrometer metrics 228–230
output formats 212–213
scopes 214
simulating busy production

system 230
supported types 215–216
TransactionService,

instrumenting 217–223
MicroProfile OpenAPI 263–273

application information
263–265

customizing schema output
265–266

defining operations 266–267
filtering OpenAPI content

272–273
operation responses 267–270
tagging operations 271
viewing OpenAPI documents

with Swagger UI 258–262
MicroProfile REST Client 94–95
microprofile.rest.client.dis-

able.default.mapper config-
uration property 111

microservices 4–8
architecture 7–8
configuring 69–74

accessing a configuration 55
Bank service 55–58
configuration sources

59–61
configuring mobileBank-

ing field 62
grouping properties with

@ConfigProperties
62–64

Kubernetes 69–74
MicroProfile Config archi-

tecture overview 54–55
Quarkus-specific configura-

tion features 64–68
rise of 6–7
specifications, need for 8
See also clients for consuming

other microservices
Minikube

Apache Kafka in 177–179
setting up 235

minikube service list function
48, 71, 92, 100, 179

minikube start function 47
minimize operating system

threads 18
mobileBanking field,

configuring 62
monitoring namespace 209
monitor telemetry and generate

alerts 204
MP_Fault_Tolerance_Metrics_

Enabled 227
MP_Fault_Tolerance_Non-

Fallback_Enabled 154
mp.messaging properties 249
mp.openapi.scan.disable

configuration 274
mvn clean install function 44
mvn package 208
mvn package function 264
mvn quarkus:dev function 187
mvn test function 40
mvn verify function 175
MyHeaderClass 107
my-topic topic 179

N

nack() method 173
name field, Bank service 57–58
name property 70
namespace 15
NativeGreetingResourceIT

class 26
native profile 42
newTransactionAsync return

type 107
newTransaction method 215
newTransaction return type 107
newTransactionWithAPI()

method 142
newTransactionWithApi()

method 140, 151

O

OAS (OpenAPI
specification) 258

OIDC (OpenID Connect)
accessing protected resource

with 286–289
Keycloak and 284–286
overview 284
testing Code Authorization

Flow 289–291
OidcWiremockTestResource

properties 291
OpenAPI specification 257
OpenTelemetry 243–244
OpenTracing 242–243
operationId name 267
operationIdStrategy setting 267
Optional type 62
org.eclipse.microprofile.con-

fig.inject.Config-
Properties 63

org.eclipse.microprofile.rest.cli-
ent.propagateHeaders
key 106

outgoing channels 166
outgoing connection 166

P

PACKAGE_CLASS_METHOD
267

Panache, database access with
datasources 77–78
deployment to Kubernetes

90–92
deploying PostgreSQL

90–91
package and deploy 91–92

JPA 78–84
simplifying database

development 84–90
active record approach

84–86
data repository approach

87–89
which approach to use

89–90
ParamConverter provider

type 109
password property 73
Patterns of Enterprise Architecture

(Fowler) 85, 87
persistence.xml file 83–84
Pod object 209

INDEX308
pods 16
pom.xml parent 121
POST end point 262
PostgreSQL, deploying 90–91
POSTGRES_USER environ-

ment variable 69
POST method 269
POST_PROCESSING

option 173
prefix parameter 63
PRE_PROCESSING option 174
private windows 294
probabilistic sampler 235
probes 117
Processor 161
prod profile 64
profiles, Quarkus 64
programmatic API 55
programmatic REST client

101–103
Prometheus, graphing metrics

with 206–211
properties

grouping, with @Config-
Properties 62–64

overriding annotation
parameter values
using 154–155

proxy database requests 189
Publisher 161

Q

Quarkus 11–14
developer joy features 12
first application

creating native executable
40–43

creating project 21–26
developing with live

coding 27–35
running in Kubernetes

43–48
writing test 35–40

health groups 128–129
Health UI, displaying 129
Quarkus-specific configura-

tion features 64–68
@ConfigMapping 66–67
configuration profiles 64–65
property expressions 65
runtime vs. build-time

properties 67–68
Reactive Messaging in

163–172

blocking execution loop,
avoiding 167–169

bridging imperative to
reactive with emitters
164–167

testing “in memory”
169–172

runtime efficiency 13–14
Spring microservices, develop-

ing with
Common Quarkus/Spring

compatibility questions
197–198

comparing Spring Boot
and Quarkus startup
processes 198–199

deploying to Kubernetes
196–197

how Quarkus implements
Spring API compatibil-
ity 197

Quarkus/Spring API com-
patibility overview 184

Quarkus/Spring Data JPA
compatibility 192–196

Quarkus/Spring Web API
compatibility 188–192

Spring dependency injec-
tion and configuration
compatibility 185–188

support 13
Quarkus—All Configuration

Guide 68
Quarkus ConfigMapping Guide 66
quarkus.datasource.jdbc.driver

property 68
quarkus.datasource.jdbc.url

property 68
quarkus.http.port 67
quarkus.kubernetes.name

property 208
quarkus-micrometer-registry-

prometheus dependency
229

quarkus-mp:account-service
image 47

quarkus package 25
QUARKUS_PROFILE environ-

ment variable 65
quarkus.profile system

property 65
quarkus-resteasy dependency

30
quarkus-smallrye-fault-tolerance

extension 140

quarkus-smallrye-health
extension 121

quarkus.smallrye-health.ui
.always-include 129

quarkus.smallrye-metrics.jaxrs
.enabled 227

quarkus-smallrye-opentracing
dependency 242

quarkus.swagger-ui.always-
include 261

quarkus-test-h2 dependency 78
quarkus-test-security

dependency 283

R

rate limiting 235
raw_token claim 295
Reactive Messaging

deploying to Kubernetes
177–182

Apache Kafka in Minikube
177–179

putting it all together
179–182

example 159–160
how works 172–177

message content and
metadata 173–176

messages in the stream
176–177

MicroProfile Reactive Mes-
saging specification
172–173

in Quarkus 163–172
blocking execution loop,

avoiding 167–169
bridging imperative to

reactive with emitters
164–167

testing “in memory”
169–172

Reactive Streams 160–163
back pressure 161–163
Processor 161
Publisher 161
Subscriber 161

reactive streams 158
reactive systems 160
ReaderInterceptor provider

type 109
readiness health check,

creating 124–128
Red Hat Universal Base Image

(UBI) 25

INDEX 309
remove-extension goal 56
Replication Controller 16
ReplicationController object 18
resilience strategies

avoiding repeated failure with
circuit breakers 147–153

how circuit breaker works
148–150

MicroProfile Fault
Tolerance 148

testing circuit breaker
152–153

updating Transaction-
Service to use
@CircuitBreaker 150

constraining concurrency with
bulkheads 138–139

deploying to Kubernetes
155–156

exception handling with
fallbacks 142–143

executing method under
separate thread with
@Asynchronous 138

execution timeouts,
defining 143–146

overriding annotation
parameter values using
properties 154–155

overview 137–138
recovering from temporary

failure with @Retry
146–147

updating TransactionService
with bulkheads 140–142

resource management 5
responsive microservices 158
REST client

CDI REST client 97–101
deploying to Kubernetes

99–101
mocking external service

98–99
choosing between CDI and

programmatic API 103
programmatic REST

client 101–103
RESTEasy Reactive 138
REST end point 128
RMI (Remote Method

Invocation) 98
roles and responsibilities

117
RSS (resident set size) 40
run_all.sh script 230

S

sampling rate 234
securing microservices

authentication and authoriza-
tion with OIDC 284–291

accessing protected
resource with
OIDC 286–289

Keycloak and 284–286
overview 284
testing Code Authorization

Flow 289–291
authorization and authentica-

tion overview 278–279
Json Web Tokens (JWT)

and MicroProfile JWT
292–296

header 292–293
payload 293–294
signature 295–296

propagating JWT 299–301
from Transaction service

to Account service
300–301

securing Account service
end point 299

running services in
Kubernetes 301–302

securing Transaction service
using MicroProfile
JWT 297–299

using file-based authentica-
tion and authorization
279–284

security context 278
separation of concerns 89
Service definition 46
service discovery 15
service interface definition

95–105
asynchronous response

types 103–105
CDI REST client 97–101

deploying to Kubernetes
99–101

mocking external service
98–99

choosing between CDI
and programmatic
API 103

programmatic REST client
101–103

service-name value 242
Service object 209

SERVICE_UNAVAILABLE
HTTP status code 150

single-application stack 5
single responsibility

principle 89
smallrye-kafka connector 169
spans 234
Special-Header 108
Spring-aware extensions 197
Spring microservices, develop-

ing with Quarkus
Common Quarkus/Spring

compatibility questions
197–198

comparing Spring Boot
and Quarkus startup
processes 198–199

deploying to Kubernetes
196–197

how Quarkus implements
Spring API compatibility
197

Quarkus/Spring API compati-
bility overview 184

Quarkus/Spring Data JPA
compatibility 192–196

Quarkus/Spring Web API
compatibility 188–192

Spring dependency injection
and configuration
compatibility 185–188

converting Bank service to
use Spring Configura-
tion APIs 187–188

setting up Spring Cloud
Config server
185–186

using Spring Config server
as configuration
source 186–187

staging profile 64
Subscriber 161
summary message 266
supportConfig.email 63
support.email 65
Swagger specification 257
Swagger UI 258–262
system properties 69

T

testGetAccount() test 37
test profile 64
testRetrieveAll() method 37
test scope 169

INDEX310
TOO_MANY_REQUESTS
HTTP status code 150

tracing microservices
customizing application

tracing 244–255
injecting tracers 245
tracing database calls

245–248
tracing Kafka messages

249–255
using @Traced 244–245

Jaeger 234–242
installing Jaeger 235–237
setting up Minikube

environment 235
trace sampling 235
tracing microservices

with 237–242
overview 233–234
tracing specifications

242–244
OpenTelemetry 243–244
OpenTracing 242–243

transact() method 104
TransactionResource class 154
TransactionResource.getBal-

ance() method 154
TransactionResource.newTrans-

action() method 223
TransactionResource.newTrans-

actionWithAPI()
method 140

TransactionService 300–301
instrumenting 217–223
updating to use

@CircuitBreaker 150
updating with

bulkheads 140–142
TransactionServiceFallback-

Handle.handle()
method 220

TransactionServiceFallback-
Handler class 150

transaction-service Pod 209
Transaction Service properties

125

transaction-service span
heading 240

U

UBI (Red Hat Universal Base
Image) 25

UP status 135
username property 73

V

vendor readiness health checks,
disabling 124

versioning 5

W

wait command 178
WebApplicationException 219
withdrawal method 244
WriterInterceptor provider

type 109

MicroProfile Config architecture

CDI Injection

Accessed

by
Config

Integer

Boolean

Array

Custom

Converted

by
System

parameter

Kubernetes

ConfigMap

Environment

variable

Property file

Stored in

Application
ConverterConfigSource

The application accesses the
configuration either by using a
programmatic API or by using
a dependency injection.

The config class
contains all converted
key-value pairs.

A converter converts
from a string to a
type-safe Java object.

A ConfigSource stores
properties as string
key-value pairs.

Programmatic API

@Inject
@ConfigProperty(

name = "greeting")
String greeting

String greeting =
config.get("greeting",

String.class)

Back pressure helps a service to not become overloaded with too many events in a
reactive system.

Service A

How many messages can you handle?

Five, please.

Three more, please.

Service B

Clingan ● Finnigan

ISBN: 978-1-61729-865-3

B
uild microservices effi ciently with modern Kubernetes-fi rst
tools! Quarkus works naturally with containers and Kuber-
netes, radically simplifying the development and deploy-

ment of microservices. Th is powerful framework minimizes
startup time and memory use, accelerating performance and
reducing hosting cost. And because it’s Java from the ground up,
it integrates seamlessly with your existing JVM codebase.

Kubernetes Native Microservices with Quarkus and MicroProfile
teaches you to build microservices using containers, Kubernetes,
and the Quarkus framework. You’ll immediately start develop-
ing a deployable application using Quarkus and the MicroProfi le
APIs. Th en, you’ll explore the startup and runtime gains Quarkus
delivers out of the box and also learn how to supercharge
performance by compiling natively using GraalVM. Along the
way, you’ll see how to integrate a Quarkus application with
Spring and pick up pro tips for monitoring and managing your
microservices.

What’s Inside
● Deploy enterprise Java applications on Kubernetes
● Develop applications using the Quarkus runtime framework
● Compile natively using GraalVM for blazing speed
● Take advantage of MicroProfi le specifi cations

For intermediate Java developers comfortable with Java EE,
Jakarta EE, or Spring. Some experience with Docker and Kuber-
netes required.

John Clingan is a senior principal product manager at Red Hat,
where he works on enterprise Java standards and Quarkus.
Ken Finnigan is a senior principal software engineer at Workday,
previously at Red Hat working on Quarkus.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Kubernetes Native Microservices
with Quarkus and MicroProfile

JAVA/SOFTWARE ENGINEERING

M A N N I N G

“Quick, concise, just enough
of everything. I enjoyed every

part of this book.”—Mladen Knežić, CROZ

“Condenses in one
fantastic learning resource
the key functionalities of

Quarkus, and how to apply
its microservices patterns

implementation on a
 Kubernetes cluster.”

—David Torrubia Iñigo, Lookiero

“Covers the Kubernetes-
Quarkus MicroProfi le stack

in great depth.
 I recommend it 100%.”

—Daniel Cortés, BBVA

“A fi ne book on Quarkus—
both for someone getting
started with this exciting
technology as well as an
 experienced hand.”

—Yogesh Shetty, ING

See first page

	Kubernetes Native Microservices with Quarkus and MicroProfile
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1—Introduction
	1 Introduction to Quarkus, MicroProfile, and Kubernetes
	1.1 What is a microservice?
	1.1.1 The rise of microservices
	1.1.2 Microservices architecture
	1.1.3 The need for microservices specifications

	1.2 MicroProfile
	1.2.1 History of MicroProfile
	1.2.2 MicroProfile community core principles

	1.3 Quarkus
	1.3.1 Developer joy
	1.3.2 MicroProfile support
	1.3.3 Runtime efficiency

	1.4 Kubernetes
	1.4.1 Introduction to Kubernetes

	1.5 Kubernetes-native microservices
	Summary

	2 Your first Quarkus application
	2.1 Creating a project
	2.2 Developing with live coding
	2.3 Writing a test
	2.4 Creating a native executable
	2.5 Running in Kubernetes
	2.5.1 Generating Kubernetes YAML
	2.5.2 Packaging an application
	2.5.3 Deploying and running an application

	Summary

	Part 2—Developing microservices
	3 Configuring microservices
	3.1 MicroProfile Config architecture overview
	3.2 Accessing a configuration
	3.3 The Bank service
	3.3.1 Creating the Bank service
	3.3.2 Configuring the Bank service name field

	3.4 Configuration sources
	3.5 Configuring the mobileBanking field
	3.6 Grouping properties with @ConfigProperties
	3.7 Quarkus-specific configuration features
	3.7.1 Quarkus configuration profiles
	3.7.2 Property expressions
	3.7.3 Quarkus ConfigMapping
	3.7.4 Run-time vs. build-time properties

	3.8 Configuration on Kubernetes
	3.8.1 Common Kubernetes configuration sources
	3.8.2 Using a ConfigMap for Quarkus applications
	3.8.3 Editing a ConfigMap
	3.8.4 Kubernetes Secrets

	Summary

	4 Database access with Panache
	4.1 Data sources
	4.2 JPA
	4.3 Simplifying database development
	4.3.1 Active record approach
	4.3.2 Data repository approach
	4.3.3 Which approach to use?

	4.4 Deployment to Kubernetes
	4.4.1 Deploying PostgreSQL
	4.4.2 Package and deploy

	Summary

	5 Clients for consuming other microservices
	5.1 What is MicroProfile REST Client?
	5.2 Service interface definition
	5.2.1 CDI REST client
	5.2.2 Programmatic REST client
	5.2.3 Choosing between CDI and a programmatic API
	5.2.4 Asynchronous response types

	5.3 Customizing REST clients
	5.3.1 Client request headers
	5.3.2 Declaring providers

	Summary

	6 Application health
	6.1 The growing role of developers in application health
	6.2 MicroProfile Health
	6.2.1 Liveness vs. readiness
	6.2.2 Determining liveness and readiness status

	6.3 Getting started with MicroProfile Health
	6.3.1 Account service MicroProfile Health liveness
	6.3.2 Creating an Account service liveness health check
	6.3.3 Account service MicroProfile Health readiness
	6.3.4 Disabling vendor readiness health checks
	6.3.5 Creating a readiness health check
	6.3.6 Quarkus health groups
	6.3.7 Displaying the Quarkus Health UI

	6.4 Kubernetes liveness and readiness probes
	6.4.1 Customizing health check properties
	6.4.2 Deploying to Kubernetes
	6.4.3 Testing the readiness health check in Kubernetes

	Summary

	7 Resilience strategies
	7.1 Resilience strategies overview
	7.2 Executing a method under a separate thread with @Asynchronous
	7.3 Constraining concurrency with bulkheads
	7.4 Updating a TransactionService with a bulkhead
	7.5 Exception handling with fallbacks
	7.6 Defining execution timeouts
	7.7 Recovering from temporary failure with @Retry
	7.8 Avoiding repeated failure with circuit breakers
	7.8.1 MicroProfile Fault Tolerance: @CircuitBreaker
	7.8.2 How a circuit breaker works
	7.8.3 Updating the TransactionService to use @CircuitBreaker
	7.8.4 Testing the circuit breaker

	7.9 Overriding annotation parameter values using properties
	7.10 Deploying to Kubernetes
	Summary

	8 Reactive in an imperative world
	8.1 Reactive example
	8.2 What is Reactive Streams?
	8.2.1 Publisher, Subscriber, and Processor
	8.2.2 The importance of back pressure

	8.3 Reactive Messaging in Quarkus
	8.3.1 Bridging from imperative to reactive with emitters
	8.3.2 What about blocking?
	8.3.3 Testing “in memory”

	8.4 How does it work?
	8.4.1 MicroProfile Reactive Messaging specification
	8.4.2 Message content and metadata
	8.4.3 Messages in the stream

	8.5 Deploying to Kubernetes
	8.5.1 Apache Kafka in Minikube
	8.5.2 Putting it all together

	Summary

	9 Developing Spring microservices with Quarkus
	9.1 Quarkus/Spring API compatibility overview
	9.2 Spring dependency injection and configuration compatibility
	9.2.1 Setting up the Spring Cloud Config Server
	9.2.2 Using the Spring Config Server as a configuration source
	9.2.3 Converting the Bank service to use Spring Configuration APIs

	9.3 Quarkus/Spring Web API compatibility
	9.4 Quarkus/Spring Data JPA compatibility
	9.5 Deploying to Kubernetes
	9.6 How Quarkus implements Spring API compatibility
	9.7 Common Quarkus/Spring compatibility questions
	9.8 Comparing the Spring Boot and Quarkus startup processes
	Summary

	Part 3—Observability, API definition, and security of microservices
	10 Capturing metrics
	10.1 The role of metrics in a microservices architecture
	10.2 Getting started with MicroProfile Metrics
	10.2.1 Graphing metrics with Prometheus and Grafana
	10.2.2 MicroProfile Metrics
	10.2.3 Instrumenting the Account service
	10.2.4 Instrumenting the TransactionService
	10.2.5 Creating business metrics
	10.2.6 MicroProfile Fault Tolerance and JAX-RS integration with MicroProfile Metrics
	10.2.7 Micrometer metrics
	10.2.8 Simulating a busy production system

	Summary

	11 Tracing microservices
	11.1 How does tracing work?
	11.2 Jaeger
	11.2.1 Trace sampling
	11.2.2 Setting up the Minikube environment
	11.2.3 Installing Jaeger
	11.2.4 Microservice tracing with Jaeger

	11.3 Tracing specifications
	11.3.1 OpenTracing
	11.3.2 What is MicroProfile OpenTracing?
	11.3.3 OpenTelemetry

	11.4 Customizing application tracing
	11.4.1 Using @Traced
	11.4.2 Injecting a tracer
	11.4.3 Tracing database calls
	11.4.4 Tracing Kafka messages

	Summary

	12 API visualization
	12.1 Viewing OpenAPI documents with Swagger UI
	12.1.1 Enabling OpenAPI
	12.1.2 Swagger UI

	12.2 MicroProfile OpenAPI
	12.2.1 Application information
	12.2.2 Customizing the schema output
	12.2.3 Defining operations
	12.2.4 Operation responses
	12.2.5 Tagging operations
	12.2.6 Filtering OpenAPI content

	12.3 Design-first development
	12.3.1 OpenAPI file base
	12.3.2 Mixing the file and annotations

	12.4 Code first or OpenAPI first?
	Summary

	13 Securing a microservice
	13.1 Authorization and authentication overview
	13.2 Using file-based authentication and authorization
	13.3 Authentication and authorization with OpenID Connect
	13.3.1 Introduction to OpenID Connect (OIDC)
	13.3.2 OIDC and Keycloak
	13.3.3 Accessing a protected resource with OpenID Connect
	13.3.4 Testing the Code Authorization Flow

	13.4 Json Web Tokens (JWT) and MicroProfile JWT
	13.4.1 JWT header
	13.4.2 JWT payload
	13.4.3 JWT signature

	13.5 Securing the Transaction service using MicroProfile JWT
	13.6 Propagating the JWT
	13.6.1 Secure an Account service endpoint
	13.6.2 Propagating JWT from the Transaction service to the Account service

	13.7 Running the services in Kubernetes
	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

