with Quarkus and MicroProfile

John (lingan
Ken Finnigan

/lll MANNING

Bank application architecture overview

Minikube Kubernetes cluster

Observability namespace

Keycloak namespace

Monitoring namespace

Jaeger

leg - - -

Keycloak

Grafana

Kafka namespace

Kafka ----}--

—

Overdraft fee
___topic
—
e

Update fee
L topic |

—

Overdraft

L topic]

| 1 - -

Default namespace

Prometheus

1SJUBAS BB 1 - i
|

- -----=-=

1

RS

°<

Transaction
service

e

Account

~—/uaxol gom Nosr /(@

'

©

R S I

service

!

Overdraft
service

"erep soel

1

1. Instrumented services traces
forwarded to Jaeger

2. JSON Web Tokens retrieved from Keycloak
and propagated between services

3. Metrics data pulled from instrumented
services by Prometheus and graphed with
Grafana

4. Overdraft events exchanged between

Kafka topics and Bank microservices

Kubernetes Native
Microservices with

Quarkus and
MaucroProfile

JOHN CLINGAN
AND KEN FINNIGAN

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Development editor: Elesha Hyde
Technical development editor: Raphael Villela

/I/I Manning Publications Co. Review editor: Aleksandar Dragosavljevic
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Pamela Hunt
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Mladen Knezi¢
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617298653
Printed in the United States of America

www.manning.com

contents

preface ix

acknowledgments xi

about this book xii

about the authors xv

about the cover illustration xvi

PART 1 INTRODUCTION .cceeveeeescceesccessccessccessscessccsssccsssscnsl

Introduction to Quarkus, MicroProfile, and Kubernetes 3

1.1

1.2

1.3

1.4

1.5

What is a microservice? 4

The rise of microservices 6 = Microservices architecture 7
The need for microservices specifications 8

MicroProfile 8

History of MicroProfile 9 = MicroProfile community core
principles 10

Quarkus 11

Developer joy 12 = MicroProfile support 13 = Runtime
efficiency 13

Kubernetes 14
Introduction to Kubernetes 14

Kubernetes-native microservices 18

iii

iv CONTENTS

Your first Quarkus application 20
2.1 Creating a project 21
2.2 Developing with live coding 27
2.3 Writing a test 35
2.4 Creating a native executable 40
2.5 Running in Kubernetes 43

Generating Kubernetes YAML 44 = Packaging an application 46
Deploying and running an application 47

PART 2 DEVELOPING MICROSERVICES .cccveeeescccesccensccnsceed]

Configuring microservices 53
3.1 MicroProfile Config architecture overview 54
3.2 Accessing a configuration 55
3.3 The Bank service 55

Creating the Bank service 56 = Configuring the Bank service
name field 57

3.4 Configuration sources 59

3.5 Configuring the mobileBanking field 62

3.6 Grouping properties with @ConfigProperties 62
3.7 Quarkus-specific configuration features 64

Quarkus configuration profiles 64 = Property expressions 65
Quarkus ConfigMapping 66 = Run-time vs. build-time
properties 67

3.8 Configuration on Kubernetes 69

Common Kubernetes configuration sources 69 = Using a
ConfigMap for Quarkus applications 70 = Editing a
ConfigMap 71 = Kubernetes Secrets 72

Database access with Panache 76
4.1 Datasources 77
4.2 JPA 78
4.3 Simplifying database development 84

Active record approach 84 = Data repository approach 87
Which approach to use? 89

4.4 Deployment to Kubernetes 90
Deploying PostgreSQL 90 = Package and deploy 91

CONTENTS

Clients for consuming other microservices 93
5.1 What is MicroProfile REST Client? 94
5.2 Service interface definition 95

CDI REST client 97 = Programmatic REST client 101
Choosing between CDI and a programmatic APl 103
Asynchronous response types 103

5.3 Customizing REST clients 105
Client request headers 105 = Declaring providers 109

Application health 115
6.1 The growing role of developers in application health 116
6.2 MicroProfile Health 117

Liveness vs. readiness 118 = Determining liveness and readiness
status 118

6.3 Getting started with MicroProfile Health 119

Account service MicroProfile Health liveness 121 = Creating an
Account service liveness health check 122 = Account service
MicroProfile Health readiness 123 = Disabling vendor readiness
health checks 124 = Creating a readiness health check 124
Quarkus health groups 128 = Displaying the Quarkus

Health UL 129

6.4 Kubernetes liveness and readiness probes 129

Customizing health check properties 131 = Deploying to
Kubernetes 131 = Testing the readiness health check in
Kubernetes 133

Resilience strategies 137
7.1 Resilience strategies overview 137
7.2 Executing a method under a separate thread
with @Asynchronous 138
7.3 Constraining concurrency with bulkheads 138
7.4 Updating a TransactionService with a bulkhead 140
7.5 Exception handling with fallbacks 142
7.6 Defining execution timeouts 143
7.7 Recovering from temporary failure with @Retry 146
7.8 Avoiding repeated failure with circuit breakers 147

MicroProfile Fault Tolerance: @CircuitBreaker 148 = How a
circuit breaker works 148 = Updating the TransactionService to
use @CircuitBreaker 150 = Testing the circuit breaker 152

CONTENTS

7.9 Overriding annotation parameter values using
properties 154
7.10 Deploying to Kubernetes 155

Reactive in an imperative world 158

8.1 Reactive example 159

8.2 What is Reactive Streams? 160
Publisher, Subscriber, and Processor 161 = The importance of back
pressure 161

8.3 Reactive Messaging in Quarkus 163

Bridging from imperative to reactive with emitters 164 = What
about blocking? 167 = Testing “in memory” 169

8.4 How does it work? 172
MicroProfile Reactive Messaging specification 172 = Message
content and metadata 173 = Messages in the stream 176
8.5 Deploying to Kubernetes 177
Apache Kafka in Minikube 177 = Putting it all together 179

Developing Spring microservices with Quarkus 183

9.1 Quarkus/Spring API compatibility overview 184

9.2 Spring dependency injection and configuration
compatibility 185
Setting up the Spring Cloud Config Server 185 = Using the Spring

Config Server as a configuration source 186 = Converting the
Bank service to use Spring Configuration APIs 187

9.3 Quarkus/Spring Web API compatibility 188

9.4 Quarkus/Spring Data JPA compatibility 192

9.5 Deploying to Kubernetes 196

9.6 How Quarkus implements Spring API compatibility 197

9.7 Common Quarkus/Spring compatibility questions 197

9.8 Comparing the Spring Boot and Quarkus startup
processes 198

CONTENTS vii

PART 3 OBSERVABILITY, API DEFINITION, AND
SECURITY OF MICROSERVICES.....ccccetecencecanceceess 201

] Capturing metrics 203

10.1 The role of metrics in a microservices architecture 204
10.2 Getting started with MicroProfile Metrics 204

Graphing metrics with Prometheus and Grafana 206
MicroProfile Metrics 211 = Instrumenting the Account

service 216 = Instrumenting the TransactionService 217
Creating business metrics 223 = MicroProfile Fault Tolerance and
JAX-RS integration with MicroProfile Metrics 226 = Micrometer
melrics 228 = Simulating a busy production system 230

]1 Tracing microservices 232

11.1 How does tracing work? 233
11.2 Jaeger 234

Trace sampling 235 = Selting wp the Minikube environment 235
Installing Jaeger 235 = Microservice tracing with Jaeger 237

11.3 Tracing specifications 242

OpenTracing 242 = What is MicroProfile OpenTracing? 243
OpenTelemetry 243

11.4 Customizing application tracing 244

Using @Traced 244 = Injecting a tracer 245 = Tracing
database calls 245 = Tracing Kafka messages 249

] 2 API visualization 257

12.1 Viewing OpenAPI documents with Swagger Ul 258
Enabling OpenAPI 258 = Swagger Ul 261
12.2 MicroProfile OpenAPI 263

Application information 263 = Customizing the schema
output 265 = Defining operations 266 = Operation

responses 267 = Tagging operations 271 = Filtering

OpenAPI content 272

12.3 Design-first development 273
OpenAPI file base 273 = Mixing the file and annotations 274
12.4 Code first or OpenAPI first? 275

CONTENTS

Securing a microservice 277

13.1
13.2
13.3

13.4

13.5

13.6

13.7

Authorization and authentication overview 278

Using file-based authentication and authorization 279

Authentication and authorization with OpenID
Connect 284

Introduction to OpenID Connect (OIDC) 284 = OIDC and
Keycloak 284 = Accessing a protected resowrce with OpenID
Connect 286 = Testing the Code Authorization Flow 289

Json Web Tokens (JWT) and MicroProfile JWT 292

JWT header 292 = JWT payload 293 = JWT signature 295

Securing the Transaction service using
MicroProfile JWT 297

Propagating the JWT 299
Secure an Account service endpoint 299 = Propagating J[WT from
the Transaction service to the Account service 300

Running the services in Kubernetes 301

index 303

preface

We, the authors, have been involved in the Enterprise Java industry for more than a
decade. We started working together at Red Hat in 2016, during the founding of
MicroProfile to create Java microservices specifications, and with WildFly Swarm, now
called Thorntail, as a runtime to implement those specifications.

Since then, Kubernetes has continued to grow as a container orchestration plat-
form. Given Red Hat’s integral involvement with Kubernetes and OpenShift—its
enterprise distribution—our job was to facilitate Thorntail deployments on Kuberne-
tes. We also worked with the MicroProfile community, who also recognized the growth
of Kubernetes, to evolve its specifications to add support for Java microservices deploy-
ments on Kubernetes.

We also recognized the limitations of Java and runtimes like Thorntail deployed to
Kubernetes, consuming hundreds of megabytes of RAM for each microservice
instance. Resource utilization can put Java at a considerable disadvantage, compared
with other runtimes like Node.js or Golang, for shared deployment environments like
Kubernetes clusters. To address this, Red Hat introduced Supersonic Subatomic
Java—in other words, Quarkus!

Quarkus is a unique runtime. It supports MicroProfile and other industry-leading
specifications and frameworks, helping developers become productive quickly. Kuber-
netes is a first-class deployment platform for Quarkus, with builtin tooling that
reduces native compilation and Kubernetes deployment to a single command. We
have to say that working together with a couple of dozen other Red Hat employees
crammed into a conference room in Neuchatel, Switzerland, on Quarkus’s “launch
day” was one of the most memorable and rewarding days of our professional careers.

PREFACE

We recognize that plenty of books are available for MicroProfile, Kubernetes, and,
more recently, Quarkus. We set out to write a book that reflects how the three used
together are greater than the sum of their parts. Deploying to Kubernetes is not an
afterthought; it is integral to each chapter. We wanted to go beyond developing an
application locally by deploying it (implemented as a collection of microservices) to
Kubernetes as it evolves throughout the book. We wanted to show how MicroProfile-
based APIs interoperate with backend services while running in a Kubernetes cluster,
like Prometheus and Grafana, Jaeger, and Kafka. We wanted a balance between
demonstrating the step-by-step Quarkus live coding iterative development style with
MicroProfile and Quarkus APIs like JUnit 5 and WireMock for automated testing of
MicroProfile applications.

The challenge is to bring microservices development with Quarkus, MicroProfile,
and Kubernetes together in a single book and make it feel like the natural experience
it truly is. Hopefully, we have met this challenge, and you learn as much from reading
this book as we did in writing it. Happy reading (and coding)!

acknowledgments

We would like to thank Elesha Hyde, our development editor, for being so under-
standing of our delays in finishing the writing. In addition, we’d like to thank all the
reviewers: Alain Lompo, Alessandro Campeis, Andres Sacco, Asif Igbal, Daniel Cortés,
David Torrubia Inigo, DeUndre’ Rushon, John Guthrie, Kent R. Spillner, Krzysztof
Kamyczek, Michat Ambroziewicz, Mladen Knezi¢, Ramakrishna Chintalapati, Sergio
Britos, and Yogesh Shetty. Their suggestions helped make this a better book.

Also, a thank-you goes to the entire Manning team for all their efforts on the proj-
ect: Raphael Villela, technical development editor; Aleksander Dragosavljevi¢, review
editor; Keri Hales, production editor; Pamela Hunt, copyeditor; Mladen Knezi¢, tech-
nical proofreader; Katie Tennant, proofreader; as well as the rest of the production
team. It’s been greatly appreciated, and the book wouldn’t be here today without them.

JOHN CLINGAN: I’d like to thank my wife, Tran, and daughters, Sarah and Hailey, who
had a part-time spouse and father, respectively, while working on this book in the
home office, car, and hotel during many weekend soccer tournaments. I also thank
my coauthor, Ken, as an experienced author and friend, for his patience and guid-
ance while authoring my first book.

KEN FINNIGAN: I will be forever indebted to Erin, my wife, for her continued under-
standing and support throughout the process. I would also like to thank my sons,
Lorcan and Daire, for understanding their dad disappearing to work on the book in
the evenings or weekends.

about this book

Over the last couple of years, Quarkus has exploded in popularity as a framework
for developing microservices, and Eclipse MicroProfile is continuing to grow as a set
of APIs for developing microservices with Java. This book details how to create,
build, debug, and deploy Quarkus microservices with MicroProfile and Spring APIs
to Kubernetes.

Building and deploying a microservice is not the end of the story. To that end, this
book also covers related aspects of microservices on Kubernetes, such as application
health, monitoring and observability, security, and visualizing endpoints.

Who should read this book?

The audience for the book includes Java EE and Jakarta EE developers with a few
years of experience who may have some knowledge of microservices but are looking
for guidance on best practices and the latest developments. Developers will gain
insight into Eclipse MicroProfile and how to use the APIs within Quarkus, as well as
how to deploy their Quarkus microservices to Kubernetes.

How this book is organized: A road map

Chapter 1 introduces the reader to microservices by covering what they are, what a
microservices architecture is, and why specifications for microservices are needed.
Then it introduces Eclipse MicroProfile, Quarkus, and Kubernetes. Lastly, it intro-
duces some characteristics of Kubernetes-native microservices.

ABOUT THIS BOOK xiii

Chapter 2 delves deeper into Quarkus, starting with how to create a Quarkus proj-
ect. It covers important topics such as live coding, writing tests, native executables,
and how to package a Quarkus application and deploy it to Kubernetes.

Chapter 3 introduces configuration with Eclipse MicroProfile in Quarkus, includ-
ing how to set and retrieve it. Then it covers how to use a ConfigSource to define a
new source of configuration for Quarkus.

Chapter 4 covers database interactions with Panache. It explains how data sources
work in Quarkus before covering three different patterns for database access with
Panache: JPA, active record, and data repository. Lastly, it explains how to deploy a
PostgreSQL database to Kubernetes.

Chapter 5 introduces how Quarkus enables the consumption of external services
with MicroProfile by using the REST Client and defines type-safe representations for
them. It explains how to use CDI or a programmatic API to use the REST Client, and
how it can be mocked for testing. Lastly, it covers how to add headers to the client
request, or additional filters and providers used in processing the request.

Chapter 6 introduces the concept of application health and how MicroProfile Health
integrates with the Kubernetes Pod life cycle. It covers how to combine similar checks
into a custom group and how to see the checks in a convenient manner in the UL

Chapter 7 covers all the resilience strategies offered by MicroProfile Fault Toler-
ance, including bulkheads, fallbacks, retries, and circuit breakers. It then covers how
to override the settings of each strategy through properties.

Chapter 8 introduces reactive streams, explaining what they are and how they are
constructed from publishers, subscribers, and processors. It then explains how to create
Reactive Streams in Quarkus with Reactive Messaging, as well as bridging imperative
and reactive code with an emitter. Lastly, it covers deploying Apache Kafka to Kuberne-
tes and deploying a reactive system consisting of microservices using it as a backbone.

Chapter 9 covers how existing Spring developers can convert their applications to
Quarkus with minimal changes. It then explains how to use the Spring Config Server
as a ConfigSource in Quarkus. Lastly, it details what is compatible between Spring and
Quarkus, without modification, for web and data access.

Chapter 10 explains the importance of metrics in monitoring applications, espe-
cially in microservices architectures. It covers how to use Prometheus and Grafana for
visualizing metrics, whether from MicroProfile Metrics or Micrometer.

Chapter 11 introduces how to trace microservices with MicroProfile and Open-
Tracing. It then explains how to deploy Jaeger to Kubernetes, send traces from micro-
services to Jaeger, and view them in the UL Next, it covers how to customize span
names and inject a tracer to create custom spans. Lastly, the chapter covers how to
trace database calls and messages sent to or from Apache Kafka.

Chapter 12 examines API visualization with MicroProfile OpenAPI and how to
view the generated documents with Swagger Ul Then it covers how to customize the
OpenAPI document with application information, schema information, and specific
details of the operations for REST endpoints. Lastly, it covers a design-first approach
and how to use an existing OpenAPI document.

ABOUT THIS BOOK

Chapter 13 explains authentication and authorization for microservices, first with
file-based authentication and also when using OpenID Connect with Keycloak. Then
it covers protecting specific resources and how to test the authorization flow. Next, it
explains JSON Web Tokens (JWT) and the APIs included for retrieving different parts
of the token. Lastly, it covers how to secure a microservice with JWT and propagate
tokens between microservices.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (=). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

All the code from the book can be found in the source code accompanying the
book. You can get executable snippets of code from the liveBook (online) version of
this book at https://livebook.manning.com/book/kubernetes-native-microservices-with-
quarkus-and-microprofile. The complete source code can be downloaded free of charge
from the Manning website at https://www.manning.com/books/kubernetes-native-
microservices-with-quarkus-and-microprofile and is also available via the GitHub reposi-
tory at https://github.com/jclingan/manning-kube-native-microservices. The sample
code is structured as a series of Maven modules for each chapter, or part of a chapter.

liveBook discussion forum

Purchase of Kubernetes Native Microservices with Quarkus and MicroProfile includes free
access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive dis-
cussion features, you can attach comments to the book globally or to specific sections or
paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions,
and receive help from the author and other users. To access the forum, go to https://
livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-
microprofile/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://www.manning.com/books/kubernetes-native-microservices-with-quarkus-and-microprofile
https://www.manning.com/books/kubernetes-native-microservices-with-quarkus-and-microprofile
http://livebook.manning.com/book/kubernetes-native-microservices-with-quarkus-and-microprofile
https://github.com/jclingan/manning-kube-native-microservices
http://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
https://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion
http://livebook.manning.com/book/kubernetes-native-microservices-with-quarkus-and-microprofile

about the authors

JOHN CLINGAN has more than 30 years of experience in the
enterprise software industry as a developer, system administra-
tor, consultant, technical sales engineer, and product manager.
He has been a product manager for Java EE and the GlassFish
reference implementation and is a founding member of Micro-
Profile. He is currently an active member of the Jakarta EE and
MicroProfile communities and a member of the Quarkus team,
where he focuses on the Quarkus community and its partners.

KEN FINNIGAN has been a consultant and software engineer for
more than 20 years with enterprises throughout the world. Ken
has a history of delivering projects on time and on budget
across many industries, providing key customer value. Ken is
currently focused on all things observability, while also looking
to innovate with Kubernetes-native development. Ken is part of
the team developing Quarkus to be Supersonic Subatomic Java.
He has previously served as the project lead for SmallRye,
Thorntail, and LiveOak, with more than 10 years of experience
contributing to open source. Ken is an author of several books
in the tech space, including Enterprise Java Microservices (Man-
ning, 2018).

XV

about the cover illustration

The figure on the cover of Kubernetes Native Microservices with Quarkus and MicroProfileis
captioned “Femme insulaire de Minorque,” or islander woman of Menorca. The illus-
tration is taken from a collection of dress costumes from various countries by Jacques
Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de tous les peuples con-
nus, published in France in 1788. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in life
was just by their dress.

The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xvi

Part 1

Introduction

-» » hat are microservices? When should I use Quarkus? Why is Kubernetes

so important? These are a few of the questions we will address in part 1.
Part 1 also takes the reader through creating their first Quarkus application

and describes some key features of Quarkus, such as live reload and deployment
to Kubernetes.

Introduction to
Quarkus, MicroProfile,
and Kubernetes

This chapter covers

Microservices overview

Overview and history of MicroProfile
Quarkus introduction

Kubernetes introduction

Entire books are available on Quarkus, microservices, MicroProfile, Spring, and
Kubernetes. However, they tend to focus only on each specific topic. This book
covers how to combine these topics into an effective and integrated development
and deployment stack. Kubernetes-native microservices utilize and integrate with
Kubernetes features naturally and efficiently. The result is a productive developer
experience that is consistent with the expectations of Kubernetes platform
administrators.

This chapter begins by defining microservices and how and why they have
evolved over the last decade as a popular enterprise software architecture. We then
provide a brief history and overview of MicroProfile and its growth into a signifi-
cant collection of microservices-related specifications. With a baseline understand-
ing of microservices and MicroProfile, we introduce Quarkus as a Java runtime that

11

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

supports these technologies. Last, we introduce some core Kubernetes concepts and
why they make Kubernetes an ideal microservice deployment platform.

NOTE A “runtime” is an execution environment that includes a collection of
packaged frameworks that collectively support a developer’s application logic.
Java EE (now Jakarta EE [https://jakarta.ee/]) application servers, Spring
Boot, and Quarkus are all examples of Java runtimes: each is a Java execution
environment with Java frameworks that support application logic.

What is a microservice?

An internet search will result in hundreds of microservice definitions. There is no
industry consensus on a single definition, but some common and well-understood
principles exist. We are using a definition that aligns with those principles but with a
particular emphasis on one principle—isolation. As defined in Enterprise Java Microser-
vices (https://livebook.manning.com/book/enterprise-java-microservices), a micro-
service consists of a single deployment executing within a single process, isolated from
other deployments and processes, that supports the fulfillment of a specific piece of
business functionality.

We are going to put a bit more emphasis on the runtime aspect of isolation than
most other writings. With Kubernetes as the target deployment platform, we have an
opportunity for optimizing code and the Java runtime itself. Although a microservice
is isolated business functionality, it nearly always interacts with other microservices.
That is the basis of many code examples for this book. There are a couple of useful
points to make when breaking down the selected definition.

First, a microservice implements a specific piece of business functionality, known as a
bounded context (as explained by Eric Evans; https://www.amazon.com/Domain-Driven-
Design-Tackling-Complexity-Software /dp/0321125215), which is a logical separation of
multiple business problem domains within an enterprise. By logically breaking down a
business domain into multiple bounded contexts, each bounded context more accu-
rately represents its specific view of the business domain and becomes easier to model.

As represented in figure 1.1, the set of bounded contexts for a small business
accounting application may include accounts receivable, accounts payable, and invoic-
ing. A traditional monolithic application would implement all three bounded contexts.
Multiple bounded contexts within in a single monolith can result in “spaghetti code” as
a result of unnecessary interdependencies and unplanned intermixing of contexts. In
a microservices architecture, each of these capabilities is modeled individually as a
bounded context and implemented as a microservice that addresses each specific
bounded context.

Next, a microservice executes within a single isolated process. Although this is not
a concrete requirement, it has become a preferred architectural approach. There are
some practical reasons behind this, based on more than a decade of experience of
deploying applications to Java EE application servers and servlet containers like
Apache Tomcat. We refer to these synonymously as “application servers.”

https://jakarta.ee/
https://livebook.manning.com/book/enterprise-java-microservices
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Monolithic application

// R // A
| Accounts \) | Accounts
\\ receivable ‘\ payable
\\ // . ~ s
-7 ~ O~
/ \
/ \
i .
\ Invoicing |
\ /
\ /
~ 7

"+ Bounded context

What is a microservice?

Microservice
/// IEREN \\

/
| Accounts

0 ceet |
3 receivable y

Microservice
/ v - A N
1 Accounts

‘\ payable

\

I

Microservice

-

~

7
’ AN
/ \
| a-A
\ Invoicing
\ /
N\ /
N 7

Figure 1.1 Bounded
context: monolith vs.
microservices

From a technical perspective, application servers can host multiple microservices. How-

ever, this deployment model has fallen out of favor for the following reasons:

Resource management—One microservice can starve other microservices of
resources. The Java Virtual Machine (JVM) does not have built-in resource

management to limit resource consumption by different applications within the

same JVM instance.

Patching/upgrading—Patching or upgrading an application server negatively
impacts the availability of all hosted microservices simultaneously.

Versioning—Each microservice development team may want to evolve at a dif-

ferent pace, causing an application server versioning-requirements mismatch.

Some may want to leverage new features of the latest version, whereas others

may prefer to avoid introducing risk because the current version is stable in

production.

Stability—One poorly written microservice can cause stability issues for the

entire application server, impacting the availability of the remaining stable

applications.

Control—Developers rightfully cede control of shared infrastructure, like appli-

cation servers, to a separate DevOps team. This limits developer options like

JDK version, tuning for a specific microservice’s optimal performance, applica-

tion server version, and more.

Figure 1.2 shows that these issues have driven the industry toward adopting a single-

application stack for microservices, which is a one-to-one mapping between a microser-
vice application and its runtime. This began nearly a decade ago by deploying a single
microservice per application server, and shortly thereafter evolved into specialized

microservice runtimes like Dropwizard, Spring Boot, and, more recently, Quarkus to

111

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

Single-application stack

Accounts payable

microservice
Application server | Java EE |
Accounts payable | Java Virtual Machine I
microservice
(Java EE)

Single-application stack

Accounts receivable

microservice Accounts receivable
(Spring) microservice
— | Spring I
Invoicing
microservice | Java Virtual Machine |
(Spring)

Single-application stack
Java Virtual Machine

Invoicing
microservice

| Spring |
| Java Virtual Machine |

Figure 1.2 Application servers vs. single-application stacks

improve the developer and administrator experience. We refer to these single-applica-
tion stacks as Java microservice runtimes and cover this concept in more detail later in
the chapter. Note that with microservices, it is easier to split out and optimize the stack
for a particular runtime like Java EE or Spring. An added benefit of the single-application
stack is that it can also be implemented in non-Java technologies like Node js or Golang,
although this is out of scope of this discussion.

The rise of microservices

Early microservices tended to directly communicate with one another, an approach
sometimes referred to as “smart services with dumb pipes.” A possible downside to this
approach is the encoding within each service of the knowledge of what happens next.
Tightly coupling this knowledge into the code makes it inflexible to dynamic change—
and a potentially tedious task for engineers if it experiences regular change. If the knowl-
edge around what happens next changes frequently, consider implementing the func-
tionality using a business rules engine or utilizing events as part of an event-driven
architecture. We will use both approaches in the example application.

With the popularity of Netflix, with its thousands of microservices, and other uni-
corns like them, the popularity and thrall of microservices exploded. Microservices
became the thing everyone wanted to develop for their next project.

112

What is a microservice? 7

The rise of microservices led to perceived benefits in delivery speed, better utiliza-
tion of resources with smaller teams, and shifting of operational concerns to the team
developing the code. This last item we now refer to as DevOps.

However, microservices were not the panacea that everyone hoped they would
be. The benefits we mentioned previously don’t come automatically by virtue of devel-
oping a microservice. It takes organizational change for all the benefits to be achieved.
It’s often forgotten that not all implementation patterns, such as microservices, are
right for every organization, team, or even group of developers. Sometimes we must
acknowledge that although microservices are not appropriate for a given situation,
they would be perfect for another. As with everything in software engineering, do
your homework, and don’t blindly adopt a pattern because it’s cool. That is the path
to disaster!

Microservices architecture

So, what is a microservices architecture, and what does it look like?

Figure 1.3 shows just one example of many possible architectures that are applica-
ble when developing microservices. We can have microservices calling databases,
microservices calling other microservices, microservices communicating with external
services, or microservices passing messages, or events, to brokers and streaming ser-
vices. For example, to add a user experience, a frontend web UI microservice has
been added whose purpose is to add, update, delete, and view relevant information in
the accounts payable and accounts receivable microservices. The freedom of archi-
tecting microservices in any desired manner offers limitless options, which is also its
downside. It becomes difficult to chart a path toward a meaningful microservices
architecture. The key is to start with the smallest possible piece of functionality and
begin building out from there. When it’s the first time a team is developing micro-
service architectures, it’s even more critical to not create a “big picture” up front. Tak-
ing the time to create that big picture without previous experience of microservices
architecture design will consume time when it’s likely the final architecture will actu-
ally be very different. During the process of gaining experience with microservices,
the architecture will shift over time toward a more appropriate one.

Create, update,
delete operation Accounts
- " —> payable

microservice

. ul receivable
microservice microservice

Frontend web Accounts l I

Figure 1.3 Microservices architecture: collaborating microservices

113

1.2

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

NOTE An alternative approach is to develop a monolith of loosely coupled
components that can then be extracted out into microservices, strangling the
monolith if deemed necessary down the road.

In short, a microservices architecture can be almost anything that incorporates the
coordination of services into a cohesive application that meets business requirements.
Granted, with a limitless set of options for what can constitute a microservices
architecture, architects and developers can benefit tremendously from having pat-
terns and recommendations for how they can be designed.
This is where microservices specifications come to the aid of enterprise Java
developers.

The need for microservices specifications

Java EE has been the standard-bearer for Enterprise Java specifications for roughly 20
years. However, Java EE has been traditionally focused on three-tier monolithic archi-
tecture with a steady, measured evolution and a strong focus on backward compatibil-
ity. Java EE stopped evolving between 2014 and 2017, just as the industry began to
heavily adopt microservices.

During that pause, the Java EE community began to experiment and deliver early
microservices APIs. The risk of API fragmentation across Java runtimes that had been
known for application portability increased. In addition, there was a risk of losing
reusable skills. For example, Java EE APIs like JPA and JAX-RS are used with non-Java
EE platforms like Spring and Dropwizard, making it easier to switch to a Java runtime
that better meets business criteria. To avoid fragmentation and loss of reusable skills,
the community decided to collaborate on microservice specifications.

MicroProfile

To avoid Java API fragmentation and to leverage the collective vendor and community
knowledge and resources, IBM, London Java Community (IJC), Payara, Red Hat, and
Tomitribe founded MicroProfile in June 2016. The tagline, “Optimizing Enterprise
Java for a Microservices Architecture,” recognizes that Java offers a solid foundation
for building microservices. MicroProfile extends that foundation through the cre-
ation and evolution of Java API specifications for well-understood microservices pat-
terns and cloud-related standards. These common APIs can be used by multiple
frameworks and implementations or runtimes.

Today, 12 specifications have been developed by the MicroProfile community,
listed in table 1.1 and table 1.2. Most of the specifications in table 1.1 will be covered
in future chapters.

NOTE MicroProfile has grown to include 12 specifications. Some are con-
cerned that including too many specifications in the overall platform is a bar-
rier to entry for new implementations. For this reason, any new specification is
outside the existing platform and referred to as a “standalone” specification.

121

MicroProfile

1=}

The MicroProfile community plans to review how to organize specifications in
the future.

Table 1.1 MicroProfile platform specifications

Config Externalizes application configuration

Fault Tolerance Defines multiple strategies to improve application robustness

Health Expresses application health to the underlying platform

JWT RBAC Secures RESTful endpoints

Metrics Exposes platform and application metrics

Open API Java APlIs for the OpenAPI specification that documents RESTful endpoints
OpenTracing Defines behaviors and an API for accessing an OpenTracing-compliant Tracer object
REST Client Type-safe invocation of REST endpoints

Table 1.2 MicroProfile standalone specifications

Specification Description
Context propagation Propagates contexts across units of work that are thread-agnostic
GraphQL Java API for the GraphQL query language
Reactive Streams Allows two different libraries that provide asynchronous streaming to be able to
operators stream data to and from each other
Reactive Streams Provides asynchronous messaging support based on Reactive Streams
messaging

History of MicroProfile

MicroProfile is unique in the industry. Whereas specification organizations tend to
evolve in an intentionally slow and measured manner, MicroProfile delivers industry
specifications that evolve rapidly. In four short years, MicroProfile has released 12
specifications with nearly all having multiple updates and some having major updates.
These updates deliver new features that work across multiple implementations in the
hands of developers up to three times per year. In other words, MicroProfile keeps
pace with changes in the industry.

Figure 1.4 puts this in perspective. MicroProfile 1.0 was released in September
2016, adopting three Java EE specifications to define its core programming model,
specifically, Java API for RESTful Services (JAX-RS) 2.0, Contexts and Dependency
Injection (CDI) 1.2, and JSON Processing (JSON-P) 1.0. The MicroProfile founders
looked to expand the vendor and community members, while also beginning specifica-
tion development. The community immediately recognized that hosting MicroProfile

10 CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes
MicroProfile 3.0 wicroprofile 4.0
MicroProfile release history MicroProfile 2.2
Metrics 2.0 N
Health Check 2.0
MicroProfile 1.2 MicroProfile 1.4 MicroProfile 2.2 REST Client 1.3
MicroProfile 1.1 MicroProfile 1.3 MicroProfile 2.0.1
Config 1.1 Config 1.3 Fault Tolerance 2.0
Fault Tolerance 1.0 Fault Tolerance 1.1 OpenAPI 1.1
Health 1.0 JWT RBAC 1.1 OpenTracing 1.3
Metrics 1.0 OpenTracing 1.1 REST Client 1.2 . .
JWT RBAC 1.0 REST Glient 1.1 VicroProfile 3.3
MicroProfile 3.1, 3.2 MicroProfile 3.2
MicroProfile 3.0 Config 1.4
Metrics 2.2 Metrics 2.3
MicroProfile 2.1 Health Check 2.1 Fault Tolereance 2.1
MicroProfile 1.0 MicroProfile 2.0 Health 2.2
JAX-RS 2.0 OpenTracing 1.2 REST Client 1.4
CDI 1.2
JSON-P 1.0 MicroProfile 2.0.1

i . MicroProfile 1.4
MicroProfile 1.3 JAX-RS 2.1

MicroProfile 1.2 CDI 2.0

Config 1.2 JSON-P 1.1
MicroProfile 1.1 Metrics 1.1 JSON-B 1.0
MicroProfile 1.1 OpenAPI 1.0
Config 1.0 OpenTracing 1.0

REST Client 1.0

Figure 1.4 MicroProfile releases

1.2.2

in a vendor-neutral foundation would facilitate these goals. After considering the
options, the Eclipse Foundation became the home of MicroProfile in December 2016.
Over the next four years, MicroProfile released three major releases and nine minor
releases that adopted JSON-B from Java EE and defined 12 “homegrown” specifica-
tions outlined in table 1.1 and table 1.2.

MicroProfile community core principles

As an Eclipse Foundation working group, MicroProfile follows some of the Founda-
tion’s core tenets like open source, vendor neutrality, and community engagement
and collaboration. The MicroProfile Working Group Charter (https://www.eclipse.org/
org/workinggroups/microprofile-charter.php) extends those tenets with the following
additional principles:

Limited processes—MicroProfile uses the Eclipse Development Process and the
MicroProfile Specification Process. Any additional processes specific to Micro-
Profile are created only when necessary.

Experiment and innovate—MicroProfile as a community provides an industry
proving ground to incubate and experiment with well-established problems need-
ing cross-Java-runtime APIs, gather user feedback, and adapt and iterate at a fast
pace.

No backward-compatibility guarantee—Major versions of a specification developed
within MicroProfile may break backward compatibility.

https://www.eclipse.org/org/workinggroups/microprofile-charter.php
https://www.eclipse.org/org/workinggroups/microprofile-charter.php
https://www.eclipse.org/org/workinggroups/microprofile-charter.php

1.3

Quarkus 11

Implementation first—MicroProfile specifications are released only after an imple-
mentation has been created and both the specification and implementation
have had sufficient time for community review.

Encourage brand adoption—Define guidelines that would allow usage of the Micro-
Profile brand without charge.

Openness—Transparency, inclusiveness, and eliminating barriers to participate
are highly valued principles. Public meetings and lists are preferred. Lists are
favored for key decisions. Specifications have been managed in a way that pro-
vides open access to all MicroProfile committers.

Low barrier to entry—It is MicroProfile’s intent to operate a low-cost working
group. Budget will be evaluated annually and as membership changes for
opportunities to maintain low fees and costs.

These tenets make MicroProfile somewhat different from most organizations that cre-
ate specifications. For example, MicroProfile considers itself an agile project and is
willing to break backward compatibility. This willingness results from a rapid-moving
specification project, and any breaking changes are well thought out with strong justi-
fication and as narrow a scope as possible.

Quarkus

Quarkus is a Java microservice runtime. Does the industry really benefit from yet
another Java microservice runtime? Yes! To understand why, let’s take a look at some
inherent problems with existing runtimes.

Most Java microservice runtimes use existing frameworks that were developed for
shared environments like application servers, where each application has its own set
of requirements. These frameworks are mature and still relevant but haven’t funda-
mentally changed since the mid-2000s and continue to rely heavily on dynamic run-
time logic using Java reflection. More specifically, no substantive optimizations have
been made to these frameworks for Java microservice runtimes. The result is high
RAM utilization and slower startup time due to a large amount of work at applica-
tion startup.

Another pain point is that developer productivity often suffers with Java microser-
vice runtimes. Every time a developer makes a change, they have to save the file,
rebuild the application, restart the application, and refresh the browser. This can take
tens of seconds, significantly impacting the productivity of the developer. Multiply
that by the number of developers in a team over time, and it quickly equates to a large
sunk resource cost for an enterprise.

Developers and DevOps teams began to feel the pain of developing and deploying
Java microservices and have been increasingly considering alternatives like Node.js
and Golang due to their reduced RAM requirements and fast startup time. These
alternatives can also achieve a 5- to 10-times deployment density on the same hard-
ware, significantly reducing cost.

12

13.1

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

Quarkus is a Java runtime that takes a fresh look at the needs of the modern Java
microservice developer. It is designed to be as productive as Node.js for developers
and consume as few resources as Golang. To many developers, Quarkus feels both new
and familiar at the same time. It includes a lot of new, impactful features while sup-
porting the APIs that developers are already familiar with.

When developing microservices, runtimes often do not consider the target envi-
ronment. Most runtimes are deployment-environment agnostic to be broadly rele-
vant. Although Quarkus is used in a wide variety of deployment environments, it has
specific enhancements and optimizations for Linux containers and Kubernetes. For
this reason, Quarkus is referred to as Kubernetes-native Java.

Developer joy

Developer joy is a top priority for Quarkus. Developers are rightfully enamored with
the productivity of dynamic language runtimes like Node.js, and Quarkus is driving to
deliver that experience, even though Java is a “static” (precompiled) language.

The top developer joy feature is live coding, where code changes are detected,
recompiled, and reloaded without having to restart the JVM. Live coding is enabled
when Quarkus is started in developer mode using mvn quarkus:dev. Specifically,
Quarkus checks for code changes when it receives external events like HT'TP requests
or Kafka messages. The developer simply makes code changes, saves the file, and
refreshes the browser for near-instant updates. Live coding even works with pom.xml
changes. The Quarkus Maven plugin will detect pom.xml changes and restart the
JVM. It is not uncommon for Quarkus developers to start Quarkus in developer mode
and then minimize the terminal window, never having to restart the JVM during a cod-
ing session.

NOTE Quarkus supports both Maven and Gradle. This book references Maven
commands and features, but equivalent capabilities are available with Gradle.

Another developer joy feature is a unified configuration. Quarkus supports APIs and
concepts from multiple ecosystems like Java EE, Eclipse Vert.x, and even Spring. Each
of these ecosystems defines its own collection of configuration files. Quarkus unifies
configuration so that all configuration options can be specified in a single application
.properties configuration file. Quarkus supports MicroProfile Config, an API specifi-
cation that includes support for multiple configuration sources. Chapter 3, “Configur-
ing microservices,” discusses this in more detail.

Future chapters discuss additional developer joy features as they are used. For
example, chapter 4, “Database access with Panache,” discusses how to replace boiler-
plate database access code with a simplified data access API layered on the Java Per-
sistence API (JPA) and Hibernate.

1.3.2

133

Quarkus 13

MicroProfile support

Quarkus is a Java runtime with a focus on developing microservices to run on Kuber-
netes. MicroProfile is a collection of Java specifications for developing microservices.
Therefore, it is a natural fit for Quarkus to implement MicroProfile specifications to
facilitate microservices development. Also, developers can rehost their existing Micro-
Profile applications on Quarkus for improved productivity and runtime efficiency.
Quarkus is continually evolving to stay current with MicroProfile releases. At the time
of this writing, Quarkus supports MicroProfile 4.0 as described in section 1.2, Micro-
Profile, and all standalone MicroProfile specifications. Besides CDI and MicroProfile
Config, which are included in the Quarkus core, each MicroProfile specification is
available as a Quarkus extension that can be included using Maven dependencies.

Runtime efficiency

Quarkus has become known for its fast startup time and low memory usage, earning
its “Supersonic, Subatomic Java” marketing tagline. Quarkus can run applications on
the JVM. It can also compile the application to a native binary using GraalVM Native
Image (https://graalvm.org/). Table 1.3 compares Quarkus startup times with a tradi-
tional cloud-native Java stack, packaged and run as uber-JARs.

Table 1.3 Startup plus time to first HTTP response (seconds)

Traditional cloud-native

Java stack Quarkus JVM Quarkus native
REST application 4.3 .943 .016
CRUD application 9.5 2.03 .042

The REST application replies to HT'TP REST requests, and the CRUD application cre-
ates, updates, and deletes data in a database. This table demonstrates that Quarkus
can start significantly faster than traditional Java runtimes. Next, let’s look at the mem-
ory usage, as shown in table 1.4.

Table 1.4 Memory usage (megabytes)

Traditional cloud-native
Java stack

Quarkus JVM Quarkus native

REST application 136 73 12
CRUD application 209 145 28

Quarkus achieves compelling RAM and startup time improvements over traditional
cloud-native Java runtimes. It achieves this by rethinking the problem. Traditional cloud-
native Java runtimes do a lot of work when they boot. Each time an application boots, it

https://graalvm.org/

14

14

14.1

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

scans configuration files, scans for annotations, and instantiates and binds annota-
tions to build an internal metamodel before executing application logic.

Quarkus, on the other hand, executes these steps during compilation and records
the results as bytecode that executes at application startup. In other words, Quarkus
executes application logic immediately upon startup. The result is rapid startup time
and lower memory utilization.

Kubernetes

During the 2000s, virtual machines were the go-to platform for hosting Java applica-
tion servers, which in turn often hosted dozens of monolithic applications. This was
sufficient until the adoption of microservices within the enterprise, which caused an
explosion in the number of application instances to hundreds, thousands, and up to
tens of thousands for large organizations. Virtual machines use too many compute
and management resources at this scale. For example, a virtual machine contains an
entire operating system image, consuming more RAM and CPU resources than needed
by the microservice, and must be tuned, patched, and upgraded. This was typically
managed by a team of administrators, leaving little flexibility to developers.

These limitations led to the popularity of Linux containers, in part due to their
balanced approach to virtualization. Containers, like virtual machine images, include
the capability of packaging an entire application stack in container images. These
images can be run on any number of hosts and instantiated any number of times to
achieve horizontal scalability for service reliability and performance. Linux containers
are significantly more efficient than virtual machines because all containers running
on the same host share the same Linux operating system kernel.

Although containers offer efficient execution of microservices, managing hun-
dreds to thousands of container instances and ensuring proper distribution across
container hosts to ensure scalability and availability is difficult without help from an
orchestration platform for containers. Kubernetes has become that platform, and it
is available from popular cloud providers and can also be installed locally within
a datacenter.

This also redraws the boundary between developers and those who manage the
Kubernetes clusters. Developers are no longer required to utilize the Java version,
application server version, or even the same runtime that had been dictated to them
in the past. Developers now have the freedom to choose their own stack, as long as it
can be containerized.

Introduction to Kubernetes

Kubernetes is a container orchestration platform that offers automated container
deployment, scaling, and management. It originated at Google in various forms as a
means to run internal workloads, was publicly announced in mid-2014, and version
1.0 was released mid-2015. Coinciding with the 1.0 release, Google worked with the
Linux Foundation to form the Cloud Native Computing Foundation (CNCF), with

Kubernetes 15

Kubernetes being its first project. Today, Kubernetes has more than 100 contributing
organizations and well over 500 individual contributors. With such large, varied, and
active contributions, Kubernetes has become the de facto standard enterprise con-
tainer orchestration platform. It is quite broad in functionality, so we’ll focus on the
underlying Kubernetes features and concepts that are most relevant when developing
and deploying a microservice.

Kubernetes was not available before 2015, so early microservice deployments had
to not only manage microservices but also manage infrastructure services to support
a microservices infrastructure. Kubernetes offers some of these infrastructure ser-
vices out of the box, making Kubernetes a compelling microservices platform.
Although we are focusing on Java microservices, the following built-in features are
runtime agnostic:

Service discovery—Services deployed to Kubernetes are given a stable DNS name
and IP address. For a microservice to consume another microservice, it only has
to locate the service by a DNS name. Unlike early microservice deployments,
Kubernetes does not need a third-party service registry to act as an intermediary
to locate a service.

Horizontal scaling—Applications can be scaled out and scaled in manually or
automatically based on metrics like CPU usage.

Load balancing—Kubernetes load-balances across application instances. This
removes the need for clientside load balancing that became popular during
the early days of microservices.

Self-healing—Kubernetes restarts failing containers and directs traffic away from
containers that are temporarily unable to serve traffic.

Configuration managemeni—Kubernetes can store and manage microservice
configuration. Configurations can change without updating the application,
removing the need for external configuration services used by early micro-
service deployments.

The Kubernetes architecture enables these features and is outlined next in figure 1.5,
illustrating this summary of each architectural component:

Cluster—A Kubernetes cluster abstracts hardware or virtual servers (nodes) and
presents them as a pool of resources. A cluster consists of one or more adminis-
tration (“master”) servers used to manage the cluster and any number of worker
nodes used to run workloads (pods). The administration server exposes an API
server used by administration tools, like kubectl, to interact with the cluster.
When a workload (pod) is deployed to the cluster, the scheduler schedules the
pod to execute on a node within the cluster.

Namespace—A means to divide cluster resources between projects or teams. A
namespace can span multiple nodes in a cluster, so the diagram is a bit oversim-
plified for readability. Names defined within a namespace must be unique but
can be reused across namespaces.

16

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

kubectl Internet

Kubernetes cluster

ada 2 |

’ II A 2 |
Administration Node 3
server I: I:
> API server | kubelet | | kube-proxy |
eted IMH
Namesnace
Scheduler | | Namespace
Replication [
controller L [Pod
| Pod
| H] e

Figure 1.5 Kubernetes architecture

Pod—A pod is one or more containers that share the same storage volumes, net-
work, namespace, and life cycle. Pods are atomic units, so deploying a pod
deploys all containers within that pod to the same node. For example, a micro-
service may use a local out-of-process cache service. It may make sense to place
the microservice and the caching service in the same pod if they are tightly cou-
pled. This ensures they are deployed to the same node and have the same life
cycle. The pods in the exercises consist of one container per pod, so it will “feel”
as if a pod is the same thing as a container, but that is not the case. A pod is
ephemeral, meaning a pod’s state is not maintained between destruction and
any subsequent creation.

Replication controller—Ensures the number of running pods matches the speci-
fied number of replicas. Specifying more than one replica improves availability
and service throughput. If a pod is killed, then the replication controller will
instantiate a new one to replace it. A replication controller can also conduct a
rolling upgrade when a new container image version is specified.
Deployment—A deployment is a higher-level abstraction that describes the state
of a deployed application. For example, a deployment can specify the container
image to be deployed, the number of replicas for that container image, health
check probes used to check pod health, and more.

Kubernetes 17

Service—A stable endpoint used to access a group of like pods that brings stabil-
ity to a highly dynamic environment.

Microservices are deployed within pods, and pods come and go, each with
their own IP address. This is reflected in figure 1.6. For example, the replication
controller scales the number of pods, either up or down, to meet the specified
number of replicas (running pods). The Accounts Payable service has three rep-
licas. The pod at IP address 172.17.0.4 is failing and needs to be replaced with
a new pod. The pod at IP address 172.17.0.5 is running and receiving traffic.
The pod at IP address 172.17.0.6 is starting and will be able to serve traffic once
booted. This example shows quite a bit of instability with pods, each with its
own IP address, failing and starting. Any service, such as the Frontend Web Ul
microservice described earlier, needs a stable IP address to connect to. A service
creates a single IP address and a DNS name within the cluster so other micros-
ervices can access the service in a consistent manner, and requests are proxied
to one of the replicas.

Service
(DNS: accounts-payable-service)
(IP: 192.168.64.8)

(o] Pod Pod
(IP; 472.17.0.4) (IP: 172.17.0.5) (IP: 172.17.0.6)
Failing pod Running pod Starting pod Figure 1.6 Kubernetes service

ConfigMap—Used to store microservice configuration, separating configuration
from the microservice itself. ConfigMaps are clear text. As an option, a Kuber-
netes Secret can be used to store confidential information.

With the exception of the cluster, each of these concepts is represented by a Kuberne-
tes object. Kubernetes objects are persistent entities that collectively represent the cur-
rent state of the cluster. We can manipulate the cluster by creating, manipulating, and
deleting Kubernetes objects. By manipulating the state, we are defining what we want
the desired state to be. We manipulate objects by invoking APIs on the Kubernetes API
server running on an administration server. The three most popular means of invok-
ing the API server is by using a web Ul such as the Kubernetes Dashboard, by using
the kubectl CLI to directly manipulate state, or by defining the state in YAML and
applying the desired state with kubectl apply.

Once a desired state is defined, a Kubernetes cluster updates its current state to
match the desired state. This is done by using the controller pattern. Controllers monitor
the state of the cluster, and when a controller is notified of a state change, it reacts to

18

1.5

CHAPTER 1 Introduction to Quarkus, MicroProfile, and Kubernetes

that change by updating the current state to match the desired state. For example, if a
replication controller sees a change to a ReplicationController object from a cur-
rent state of three replicas to a desired state of two replicas, the replication controller
will kill one of the pods.

Defining Kubernetes objects using YAML and applying object state with kubectl is
very popular among administrators, but not all Java developers have embraced YAML.
Luckily, we can avoid YAML by using the Quarkus Kubernetes extension that lets us
define the desired state using a property file. When building the application, the Kuber-
netes deployment YAML is generated automatically. The YAML can be applied automati-
cally as a part of the Quarkus build process, or it can be applied manually using kubect1.

Kubernetes-native microservices

What does it mean to develop Kubernetes-native microservices? It’s developing a
microservice with the understanding that Kubernetes is the underlying deployment
platform and is facilitated by having a Kubernetes runtime like Quarkus. How is this
different from any other microservice, or the frequently mentioned “cloud-native
Java”? Some differentiating characteristics follow:

Low memory consumption—A Kubernetes cluster is a shared infrastructure, and
organizations want to extract as much value out of their Kubernetes investment
by consolidating as many services across as many departments on a Kubernetes
cluster as possible. Reduced memory consumption is a gating factor. Until run-
times like Quarkus, organizations were considering leaving Java runtimes for
Node.js or Golang to better utilize their Kubernetes clusters.

Fast startup—Kubernetes can automatically create new microservice instances to
meet demand. Without fast startup, existing instances can become overloaded
and fail before new instances come online, impacting overall application stabil-
ity. This potential complication can also impact rolling upgrades when a new
version of a service is incrementally deployed to replace an existing one.
Minimize operating system threads—A Kubernetes node may be running hundreds
of microservice instances, each of which may have up to hundreds of threads. It
is not uncommon for a thread to consume a megabyte of memory. In addition,
the operating system scheduler works increasingly harder as the number of
threads increases. Quarkus runs its asynchronous, reactive, and (by default) tra-
ditional thread-blocking imperative APIs on an event loop, which significantly
reduces the number of threads.

Consume Kubernetes ConfigMaps—Services deployed to Kubernetes can be config-
ured using a Kubernetes ConfigMap. A ConfigMap is a file that is typically
mounted to a pod filesystem. However, Quarkus can seamlessly use the Kuber-
netes client API to access a ConfigMap without mounting the filesystem in the
pod, simplifying configuration.

Expose health endpoints—A service should always expose its health so Kuberne-
tes can restart an unhealthy service or redirect traffic away from a pod that

Summary 19

is temporarily unavailable. In addition to supporting custom health checks,
Quarkus has built-in data source and messaging client (ActiveMQ and Kafka)
readiness health checks to automatically pause traffic when those backend ser-
vices are unavailable.

Support CNCF projects—CNCF is the Cloud-Native Computing Foundation, which
is responsible for the evolution of Kubernetes and related projects like Pro-
metheus monitoring (using the OpenMetrics format) and Jaeger (using Open-
Tracing/OpenTelemetry).

Inherent Kubernetes deployment support—Quarkus has built-in support for deploy-
ing to Kubernetes. It enables a developer to compile, package, and deploy a
microservice to Kubernetes using a one-line Maven (or Gradle) command. In
addition, Quarkus requires no Kubernetes YAML expertise. Kubernetes YAML
is generated automatically and can be customized using Java properties.
Kubernetes client API—Quarkus includes a Java-friendly API for interacting with a
Kubernetes cluster, enabling programmatic access to any Kubernetes capability
to extend or tailor it for enterprises needs.

Summary
A microservice models and implements a subset of business functionality called
a bounded context.
A microservices architecture is a collection of evolving, collaborating micro-
services.
MicroProfile is a collection of microservice specifications that facilitate the cre-
ation of portable microservices across multiple implementations.
Microservices have evolved from running in a shared environment, like an
application server, to running on a single-application stack.
Kubernetes has replaced the application server as the shared application
environment.
Quarkus is a Java single-application stack that can efficiently run MicroProfile
applications on Kubernetes.

Your first Quarkus
application

This chapter covers

= Creating a Quarkus project
= Developing with Quarkus live coding
= Writing tests for a Quarkus microservice

= Deploying and running a microservice to
Kubernetes

Throughout the book we will use the domain of banking to create microservice
examples, highlighting key concepts from each chapter. The example will be an
Account service. The purpose of the Account service is to manage bank accounts,
holding information like customer name, balance, and overdraft status. In develop-
ing the Account service, the chapter will cover the ways to create Quarkus projects,
developing with live coding for real-time feedback, writing tests, building native exe-
cutables for an application, how to package an application for Kubernetes, and
how to deploy to Kubernetes.
There’s a lot to cover; let’s dive into creating the Account service!

20

2.1

Creating a project 21

Creating a project

We can create a microservice using Quarkus in the following ways:

With the project generator at https://code.quarkus.io/

In a terminal with the Quarkus Maven plugin

By manually creating the project and including the Quarkus dependencies and
plugin configuration

Of these options, option 3 is the more complicated and prone to errors, so we won’t
cover it in this book.

NOTE Examples work with JDK 11 and Maven 3.8.1+.
Option 2 would use a command such as the following:

mvn io.quarkus:quarkus-maven-plugin:2.1.3.Final:create \
-DprojectGroupId=quarkus \
-DprojectArtifactId=account-service \
-DclassName="quarkus.accounts.AccountResource" \
-Dpath="/accounts"

For the Account service, we will use option 1, using the project generator at https://
code.quarkus.io/.

Figure 2.1 is a view of the Quarkus project generator, at the time the screenshot
was taken. The top left of the page contains fields for customizing project informa-
tion, such as the group and artifact ids, and the build tool for the project.

The bottom of the page shows all the possible extensions that can be selected for
the application.

TIP The Quarkus project generator lists hundreds of extensions. Use the
search box to filter the list of available extensions to more quickly locate a
particular set of extensions.

Select the RESTEasy JAX-RS extension, and leave Starter Code set to Yes.

Figure 2.2 shows all the changes we’ve made to the generator for the Account
service. The group has been set to quarkus, the artifact to account-service, and the
RESTEasy JAX-RS extension selected. Also notice the number next to Generate Your
Application. The number shows how many extensions are selected, and hovering over
the rocket displays a pop-up with them listed.

Once the changes have been made, hover over the arrow next to Generate Your
Application, as seen in figure 2.3.

https://code.quarkus.io/
https://code.quarkus.io/
https://code.quarkus.io/
https://code.quarkus.io/

22 CHAPTER 2 Your first Quarkus application

@ QUARKUS ‘2 o <Backtoquarkus4io

CONFIGURE YOUR APPLICATION

Group org.acme Version 1.0.0-SNAPSHOT

Artifact code-with-quarkus Starter Code Yes

Build Tool Maven O clost €0 nerate your applicati J

Web

[0 RESTEasy JAX-RS | cODE
REST endpoint framework implementing S and more
RESTEasy Jackson
Jackson ation support for RESTEasy
RESTEasy JSON-B
JSON-B serializatio rt for RESTEasy
Eclipse Vert.x GraphQL
Query the API using GraphQL
gRPC | EXPERIMENTAL | | CODE
Serve and consume C st
Hibernate Validator
Validate object properties (fi getter) and method parameters for your beans (REST, CDI, JPA)
JAX-RS Client Reactive RIMENTAL
Consume JAX-RS resources reactively
Mutiny support for REST Client | PREVIEW
Enable Mutiny for the REST client

Reactive HTTP and WebSocket Connector |EXPERIMENTAL

Connect to HTTP or Web Socket and expose HTTP or Web Socket endpoints for Reactive M

Figure 2.1 Quarkus project generator

QUARKUS 1.,

CONFIGURE YOUR APPLICATION

Group quarkus Version 1.0.0-SNAPSHOT
Artifact account-service Starter Code Yes

Build Tool Maven
ey e . TS, - o W TN & CLOSE 1

Generate your application (X + +J)

WG

RESTEasy JAX-RS | cooe|

REST endpoint framework implementing JAX-RS and more

Figure 2.2 Quarkus project generator: selected extension

Creating a project 23

() QUARKUS 21 ..

CONFIGURE YOUR APPLICATION

Group quarkus Version 1.0.0-SNAPSHOT

Artifact account-service Starter Code Yes

Il Too NIMa VD N Wh. © - R nlclosE #1 Generateyour application (X +<J) A

& Download as a zip
Q © Push to GitHub

Web

RESTEasy JAX-RS [cooe

REST endpoint fra | n and more

Figure 2.3 Quarkus project generator: generate application

Figure 2.3 highlights the following options we have for generating the project:

Download as a Zip
Push to GitHub

Select Download as a Zip, and a zip file containing the project source will be created
and downloaded.

Once the zip file has downloaded, extract the contents into a directory. We
explain the generated contents shortly, but first open a terminal window and
change into the directory where the zip file was extracted. In that directory, run the
following command:

mvn quarkus:dev

Maven artifacts and their dependencies must be downloaded the first time a particu-
lar version of Quarkus is used, as shown in listing 2.1.

Listing 2.1 contains the console output when Quarkus starts the project. The out-
put includes the version used, in this case 2.1.3.Final, and installed features include
cdi and resteasy.

Listing 2.1 Quarkus startup

-~/ _ N/ /NN

A A S A A V R A AV AV AV AN

SN NN\ S NN I
INFO [io.quarkus] (Quarkus Main Thread) account-service 1.0.0-SNAPSHOT on
JVM (powered by Quarkus 2.1.3.Final) started in 1.653s. Listening on:

http://localhost:8080

INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding
activated.

24 CHAPTER 2 Your first Quarkus application

INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi, resteasy,
smallrye-context-propagation]

Once started, the application can be accessed at http://localhost:8080, as shown in
figure 2.4.

Your new Cloud-Native application is ready!

Congratulations, you have created a new Quarkus cloud application. Application
Groupld: quarkus
What is this pGQE? Artifactld: account-service

Version: 1.0.0-SNAPSHOT

This page is served by Quarkus. The source is in src/main/resources/META-INF/resources/index. html. Quarkus Version: 2.1.3. Final

What are your next steps? Do you like Quarkus?

If not already done, run the application in dev mode using: . /mvnw compile quarkus:dev. Go give it a star on GitHub.

* Your static assets are located in src/main/resources/META-INF/resources.

« Configure your application in src/main/resources/application.properties. Selected extensions gUldeS

* Quarkus now ships with a Dev Ul (available in dev mode only)

RESTEasy JAX-RS guide

* Play with the provided code located in src/main/java:

RESTEasy JAX-RS More reading

Easily start your RESTful Web Services

Setup your IDE

Getting started

@l h:
@Path: /hello All guides

Related guide section... Quarkus Web Site

Figure 2.4 Quarkus default index page

The default page of the generated application provides some pointers on what can be
done next for creating REST endpoints, servlets, and static assets.

In addition to the default index page, open http://localhost:8080/hello to be
greeted by the generated JAX-RS resource. With the generated application run-
ning, take a look through what the project includes from the generation process as
shown in figure 2.5. Open up the project in an editor or whatever tool might be
preferred.

The project root contains the build file, in this case pom.xml, a README.md with
information on how to run the project, and Maven wrappers for those who may not
have Maven installed already.

Looking in src/main, we see directories for Docker files, Java source files, and
other resources. In the docker directory are Dockerfiles for the JVM, native execut-
able, native executable with a distroless base image, and legacy-jar format. Native exe-
cutables will be discussed in “Creating a native executable,” section 2.4.

Creating a project 25

Vv I3 generated [account-service]
v Dasrc
v [main
v docker
& Dockerfile.jvm
& Dockerfile.legacy-jar
& Dockerfile.native
& Dockerfile.native-distroless
v [java
v quarkus
(© GreetingResource
Vv [Zresources
v META-INF.resources
i index.html
i1application.properties
v [test
v [ljava
Vv [quarkus
@ GreetingResourceTest
@ NativeGreetingResourcelT
> [target
flmaccount-service.iml
mvnw
2 mvnw.cmd
17 pom.xml

‘ Figure 2.5 Quarkus-generated
README.md

project structure

Each of the Docker files uses the Red Hat Universal Base Image (UBI) as their base.
Full details on the image content can be found here: http://mng.bz/J6WQ.

Within the Java source directory, src/main/java, is the quarkus package. Inside the
package is the GreetingResource class, containing a JAX-RS resource endpoint, as
shown in the next listing.

Listing 2.2 GreetingResource

@Path ("/hello")
public class GreetingResource

Defines the JAX-RS
resource to respond
at /hello-resteasy

@GET
@Produces (MediaType.TEXT PLAIN) The method responds to
public String hello() { an HTTP GET request.

return "Hello RESTEasy";

J Responds to the browser
} Returns "Hello RESTEasy" to set the content type
as the HTTP GET response to TEXT_PLAIN

http://mng.bz/J6WQ

26

CHAPTER 2 Your first Quarkus application

Take a look at the next directory, src/main/resources. The first file is applica-
tion.properties. This is where any configuration packaged within the application
should be placed. Configurations can also reside outside the application, but these
are restricted to aspects we can configure at runtime.

NOTE We discuss the different types of configuration in chapter 3, including
the ability to use application.yaml instead of a properties file.

Currently, there is no configuration in application.properties, but we will add that soon.

Also in src/main/resources is the META-INF /resources directory. Any static assets
for the application should be placed in this directory. Inside the directory is the static
index.html that created the page seen in figure 2.4.

Moving on from what was generated in src/main/, next is src/test. Here there are
two classes, GreetingResourceTest and NativeGreetingResourceIT. The first uses
@QuarkusTest to run a unit test on the JVM, verifying the endpoint returns hello as
expected, as shown in the next listing.

Listing 2.3 GreetingResourceTest

@Qua?kuSTeSt) < Tells JUnit to use the Quarkus
public class GreetingResourceTest { extension, which starts the
@Test application for the test
public void testHelloEndpoint () {
given () .
_when () .get ("/hello") A regular JUnit test
method marker
.then ()
.statusCode (200)
.body (is ("Hello RESTEasy")) ; Uses RestAssured
} to access the /hello-

Verifies the response had a body resteasy URL
that contained Hello RESTEasy

—

NativeGreetingResourcelIT runs the same tests, but with the native executable of the
application, as shown next.

Listing 2.4 NativeGreetingResourceIT

@Nat%veImageTestl . < Te"sjUnktouse
public class NativeGreetingResourceIT
extends GreetingResourceTest {

// Execute the same tests but in native mode.

the Quarkus-native
executable extension

Extends from the JUnit
unit tests to reuse them
NOTE It’s not required to run the same set of tests with a native executable
and the JVM. However, it is a convenient means of testing on the JVM and a
native executable with a single set of common tests.

Having looked through what the project generator creates, all Java source files—and
the index.html file—can be deleted. Don’t modify the Dockerfiles, application.prop-
erties, or Java packages for now.

2.2

Developing with live coding 27

Developing with live coding

With a blank application, it’s time to develop the Account service. For developing the
service, we use the live coding functionality of Quarkus.

Using live coding enables us to update Java source, resources, and configuration of
a running application. All changes are reflected in the running application automati-
cally, enabling developers to improve the turnaround time when developing a new
application.

Live coding enables hot deployment via background compilation. Any changes to
the Java source, or resources, will be reflected as soon as the application receives a
new request from the browser. Refreshing the browser or issuing a new browser
request triggers a scan of the project for any changes to then recompile and redeploy
the application. If any issues arise with compilation or deployment, an error page pro-
vides details of the problem.

To begin, create a minimal JAX-RS resource as shown here.

Listing 2.5 AccountResource

@Path ("/accounts")
public class AccountResource {

}

There’s not much there right now, just a JAX-RS resource that defines a URL path of
/accounts. There are no methods to respond to any requests, but restart live coding if
it had been stopped as follows:

mvn quarkus:dev

TIP Live coding handles the deletion and creation of new files without issue
while it’s still running.

In the terminal window, output similar to the following appears.

Listing 2.6 Account service startup

Listening for transport dt_socket at address: 5005

-~/ _ N/ /NN

=/ N < NN

SN NN SN I
INFO [io.quarkus] (Quarkus Main Thread) chapter2-account-service
1.0.0-SNAPSHOT on JVM (powered by Quarkus 2.1.3.Final) started in 1.474s.
Listening on: http://localhost:8080
INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding
activated.
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi, resteasy,
smallrye-context-propagation]

28

CHAPTER 2 Your first Quarkus application

Notice the first line indicates that a debugger has been started on port 5005. This is an
added benefit to using live coding—Quarkus opens the default debug port for the
application.

Figure 2.6 shows the result of opening a browser to http://localhost:8080.

404 - Resource Not Found

Resources overview

REST resources

No REST resources discovered
Additional endpoints

[g/arc — CDI Overview

[g/arc/beans — Active CDI Beans
[g/arc/observers — Active CDI Observers
[g/arc/removed-beans — Removed CDI Beans

lq/dev — Dev Ul

Figure 2.6 Account service no resources

Don’t be concerned with the error: it makes sense because the JAX-RS resource
defined a URL path and no methods to process HT'TP requests. If we access http://
localhost:8080/accounts, the same error message is in the browser.

Notice some additional endpoints are available, even without application code.
These endpoints are provided by the installed extensions of the application. Most of
the endpoints are related to Arc, the CDI container for Quarkus, which provides
information about CDI Beans and CDI in general.

The last endpoint for Dev Ul contains extension-specific behavior, such as editing
configuration, and links to the guides for each installed extension. The Dev UI for the
application can be seen in figure 2.7.

Now it’s time to start developing some code. While live coding is still running,
create the Account POJO to represent a bank account in the system, as shown in list-
ing 2.7.

Developing with live coding 29

Configuration a ArC =]

[Config Editor Build time CDI dependency
injection
@ Beans 17
© Observers 1
@ Fired Events
" Invocation Trees

@ Removed Beans 45

RESTEasy JAX-RS =] SmallRye Context a8
Propagation

REST endpoint framework

implementing JAX-RS and Propagate contexts between
more managed threads in reactive
applications

K O Tests not running

Figure 2.7 Quarkus Dev Ul

Listing 2.7 Account

public class Account {
public Long accountNumber;
public Long customerNumber;
public String customerName;
public BigDecimal balance;
public AccountStatus accountStatus = AccountStatus.OPEN;

public Account ()

}

public Account (Long accountNumber, Long customerNumber, String
customerName, BigDecimal balance) {
this.accountNumber = accountNumber;
this.customerNumber = customerNumber;
this.customerName = customerName;
this.balance = balance;

public void markOverdrawn () {
accountStatus = AccountStatus.OVERDRAWN;

30

CHAPTER 2 Your first Quarkus application

public void removeOverdrawnStatus() {
accountStatus = AccountStatus.OPEN;

}

public void close()
accountStatus = AccountStatus.CLOSED;
balance = BigDecimal.valueOf (0) ;

}

public void withdrawFunds (BigDecimal amount) {
balance = balance.subtract (amount) ;

}

public void addFunds (BigDecimal amount) {
balance = balance.add (amount) ;

}

public BigDecimal getBalance() {
return balance;

}

public Long getAccountNumber () {
return accountNumber;

}

public String getCustomerName () {
return customerName;

}

public AccountStatus getAccountStatus() {
return accountStatus;

}
}

Account has some fields to hold data about the account: account number, customer
number, customer name, balance, and account status. It has a constructor that takes
values to populate the fields, except for the account status because that defaults to
OPEN. After are methods for setting and clearing the overdrawn status, closing the
account, adding and withdrawing account funds, and, lastly, some getters for balance,
account number, and customer name.

Not a lot to it, but it’s a foundation to build from. Right now it won’t compile,
because AccountStatus needs to be created, as shown in the next code listing.

Listing 2.8 AccountStatus

public enum AccountStatus {
OPEN,
CLOSED,
OVERDRAWN

There’s nothing there yet, but open up http://localhost:8080/accounts to show the
error page. With live coding running, open pom.xml and change the quarkus-resteasy

setup()
prepopulates

Developing with live coding 31

dependency to quarkus-resteasy-jsonb. Doing this adds support for returning JSON
objects in the endpoints.

NOTE Instead of quarkus-resteasy-jsonb, quarkus-resteasy-jackson could
also be used.

IMPORTANT Modifying dependencies in pom.xml can be done with live cod-
ing, but the delay before restarting is complete is longer if new dependencies
need to be downloaded.

To begin creating the Account service, open up AccountResource and add the follow-
ing code.

Listing 2.9 AccountResource

@Path ("/accounts")

public class AccountResource { Indicates .
the response is
@GET
converted to JSON

@Produces (MediaType.APPLICATION JSON)
public Set<Accounts> allAccounts() { QT

return Collections.emptySet () ;
1

Returns a Set of
Account objects

}

To add some data, add the code snippet shown in the next listing to AccountResource.

Listing 2.10 AccountResource

@Path ("/accounts™") Creates a Sft of
public class AccountResource { ?C‘i:“‘lzttzble:t:
Set<Account> accounts = new HashSet<>(); © ho e state

@PostConstruct indicates the method should
@PostConstruct o .
)) be called straight after creation of the CDI Bean.
public void setup() {

accounts.add (new Account (123456789L, 987654321L, "George Baird", new
BigDecimal ("354.23"))) ;

some data accounts.add (new Account (121212121L, 888777666L, "Mary Taylor", new
into the list BigDecimal ("560.03"))) ;
of accounts. accounts.add (new Account (545454545L, 222444999L, "Diana Rigg", new

BigDecimal ("422.00"))) ;

NOTE Though the JAX-RS resource does not specify a CDI Scope annotation,
Quarkus defaults JAX-RS resources to @Singleton. The JAX-RS resource can
utilize whatever is the preferred CDI Scope: @Singleton, @Application-
Scoped, or @RequestScoped.

Right now allAccounts () returns an empty Set. Change it to return the accounts
field, as shown next.

32

CHAPTER 2 Your first Quarkus application

Listing 2.11 AccountResource

@Path (" /accounts")
public class AccountResource {

@GET
@Produces (MediaType.APPLICATION JSON)

public Set<Account> allAccounts() {
return accounts;
}

Refresh the browser window open to http://localhost:8080/accounts, as shown in fig-
ure 2.8. The page has reloaded to show all the accounts that are stored in the service.

{
"accountNumber": 121212121,
"customerNumber": 888777666,
"customerName": "Mary Taylor",
"balance": 560.03,
"accountStatus": "OPEN"

Y

{
"accountNumber": 123456789,
"customerNumber": 987654321,
"customerName": "George Baird",
"balance": 354.23,
"accountStatus": "OPEN"

e

{
"accountNumber": 545454545,
"customerNumber": 222444999,
"customerName": "Diana Rigg",
"balance": 422,
"accountStatus": "OPEN"

}

Figure 2.8 Account service:
all accounts

NOTE Figure 2.8 uses the JSON Formatter extension for Chrome to format

the JSON response. Such

an extension provides a better means of viewing the

structure of the JSON document.

Listing 2.12 creates a method for retrieving a single Account instance.

Developing with live coding 33

Listing 2.12 AccountResource

@Path ("/accounts") @PathP
public class AccountResource { athFaram maps
Defines the name the accountNumber

ééﬁT of the parameter URL parameter into
@Path ("/{ tNumber} ") on the URL path the accountNumber

: geconnumher method parameter.

@Produces (MediaType.APPLICATION_ JSON)

Returns a public Account getAccount (@PathParam("accountNumber") Long accountNumber) {
NotFound- Optional<Account> response = accounts.stream()
Exception if .filter (acct -> acct.getAccountNumber () .equals (accountNumber))
no matchin .findFirst () ;
account i§ Streams the accounts, filters by accountNumber,
nd finds the fir nt, if there is on
present return response.orElseThrow (() and finds the first account, if there is one
-> new NotFoundException ("Account with id of " + accountNumber + "

does not exist."));

}

With these changes, open http://localhost:8080/accounts/121212121 in a browser to
see the account details in a JSON document.

Quarkus has a nice feature with live coding for showing available URLs when
accessing a URL that doesn’t exist. This feature isn’t present when running the appli-
cation with java -jar. Open http://localhost:8080/accounts/5 in a browser. The

error page is shown in figure 2.9.

404 - Resource Not Found

Resources overview

REST resources

/accounts

o GET /accounts
o Produces: application/json

o GET /accounts/{accountNumber}
o Produces: application/json

Figure 2.9 Quarkus error page

34

CHAPTER 2 Your first Quarkus application

Not finding an account number, the response is an HTTP 404, but the page offers use-
ful information about what endpoints are available. In this case, there is the main
/accounts/ URL path, and the two URL paths within it that have been created.

Because the endpoint we accessed was valid, but the requested record was not
found, there is a nicer 404 response that we can create to provide more details.
Instead of getAccount () throwing a NotFoundException when no record is found,
change it to WebApplicationException and pass 404 as the response code, as shown
in the next listing.

Listing 2.13 AccountResource.getAccount ()

return response.orElseThrow(()
-> new WebApplicationException ("Account with id of " + accountNumber + "
does not exist.", 404));

To convert the exception into a meaningful response, create a JAX-RS exception map-
per in AccountResource, as shown in listing 2.10 and in figure 2.10.

{

i "exceptionType": "javax.ws.rs.WebApplicationException",
"code": 404,
"error": "Account with id of 5 does not exist."

}

Figure 2.10 Account not found

Listing 2.14 AccountResource

@path ("/accounts") @Provider indicates the Implements

public class AccountResource { class is an autodiscovered ExceptionMapper for
ce. JAX-RS Provider all Exception types
@Provider

public static class ErrorMapper implements ExceptionMapper<Exceptions {

public Response toResponse (Exception exception) method for converting the

@Override Overrides the toResponse
{
exception to a Response

int code = 500;
if (exception instanceof WebApplicationException) {
code = ((WebApplicationException)
exception) .getResponse () .getAccountStatus () ;

}

Checks for WebApplicationException,
and extracts the HTTP status code;
otherwise defaults to 500

If there is a
message,
adds it to
the JSON

object

2.3

Writing a test 35

JsonObjectBuilder entityBuilder = Json.createObjectBuilder () B —
.add ("exceptionType", exception.getClass() .getName ())
.add ("code", code) ; Uses builder to
construct JSON-
if (exception.getMessage() != null) { formatted_d?ta
i i n " ; containing
entityBuilder.add ("error", exception.getMessage()) ; .

} exception type
and HTTP

status code
return Response.status (code) Returns a Response

.entity(entityBuilder.build()) with the HTTP status
sbuild () ; code and JSON object

As an exercise for the reader, add methods to AccountResource for creating accounts,
withdrawing funds, depositing funds, and deleting accounts. The full code for
AccountResource is in /chapter2/accountservice.

Writing a test

The Account service has methods for the following tasks:

Retrieving all accounts
Retrieving a single account
Creating a new account
Updating an account
Deleting an account

However, no verification exists that what has been coded actually works. Only retrieving
all accounts and retrieving a single account have been verified, by accessing specific
URL:s from a browser to trigger HITP GET requests. Even with manual verification, any
additional changes that might be made are not verified, unless manual verification fol-
lows every change.

It’s important to ensure the developed code has been tested and verified appropri-
ately against expected outcomes. For that, we must add, at a minimum, some level of
tests for the code.

Quarkus supports running JUnit 5 tests with the addition of @QuarkusTest onto a
test class. @QuarkusTest informs JUnit 5 of the extension to use during the test. The
extension performs the necessary augmentation of the service being tested, equiva-
lent to what happens during compilation with the Quarkus Maven or Gradle plugin.
Prior to running the tests, the extension starts the constructed Quarkus service, just as
if it was constructed with any build tool.

To begin adding tests to the Account service, add the following dependencies in
the pom.xml:

<dependency>
<groupld>io.quarkus</groupIds>

36 CHAPTER 2 Your first Quarkus application

<artifactId>quarkus-junit5</artifactIds>
<scopes>test</scope>

</dependency>

<dependency>
<grouplds>io.rest-assured</groupIlds>
<artifactIdsrest-assured</artifactIds>
<scope>test</scope>

</dependency>

If we generate the project from https://code.quarkus.io, the Account service already
includes the testing dependencies.

NOTE rest-assured is not a required dependency for testing, but it offers a
convenient means of testing HI'TP endpoints. It would be possible to use dif-
ferent testing libraries for the same purpose, but the examples that follow all
use rest-assured. In addition, using rest-assured has a dependency on
Hamcrest for asserting and matching test data.

The project generator also sets up the Maven Surefire plugin for testing, as shown next:

<plugin> .
. . . . Sets to a version of the
<artifactIdsmaven-surefire-plugin</artifactId> Surefire plugin that works
<vers%on>${éureflre—plugln.ver51on}</ver51on> with JUnit 5. A minimum of
<configuration> 3.0.0-M5 is required.
<systemPropertyVariables>
<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util

-logging.manager> Sets a system property

</systemPropertyVariables> to ensure the tests use
</configuration> the correct log manager
</plugin>

A test case to verify retrieving all accounts returns the expected result, as shown in the
next listing.

Listing 2.15 AccountResourceTest

@QuarkusTest Declares the method
public class AccountResourceTest { as a test method
@Test

void testRetrieveAll() { With JUnit 5, test methods
Response result = don’t need to be public.

given ()
.when () .get ("/accounts") Issues an HTTP GET
-then() request to /accounts URL
Verifies the .statusCode (200)
response had -body i i
P containsString ("George Baird") Verifies the body contains
a 200 status : tng g ’ all customer names
code,meaMng containsString("Mary Taylor"),
it returned containsString("Diana Rigg")
without problem)
.extract () Extracts the

.response () ; response

https://code.quarkus.io

Verifies

the account
response
object with
expected
values

Writing a test 37

List<Account> accounts = result.jsonPath().getList ("$"); Extracts the
assertThat (accounts, not (empty())) ; Asserts the JSON array and
assertThat (accounts, hasSize(3)); array of Account converts it to a
) J Asserts the array of Account objects is not hls:.: of Account
objects has three items empty objects

One test method is not sufficient to ensure the prevention of future breakages. The
next code snippet displays a test method for verifying the retrieval of a single Account.

Listing 2.16 AccountResourceTest

eTest Passes the ID of the
void testGetAccount () { account to be retrieved
Account account = as a URL path parameter
given ()
.when () .get ("/accounts/{accountNumber}", 545454545)
.then ()
.statusCode (200)
.extract ()
.as (Account.class) ;
assertThat (account.getAccountNumber (), equalTo(545454545L)) ;
assertThat (account .getCustomerName (), equalTo("Diana Rigg")) ;
assertThat (account.getBalance (), equalTo(new BigDecimal ("422.00"))) ;
assertThat (account.getAccountStatus (), equalTo (AccountStatus.OPEN)) ;

The tests written so far do not verify updating or adding data with the Account service;
they only verify that existing data returns with the correct values. Next, add a test to
verify that the creation of a new account succeeds.

Testing account creation covers multiple facets. In addition to verifying the cre-
ation of the new account, the test needs to ensure that the list of all accounts includes
the new account. When including tests for mutating the state within a service, it
becomes necessary to order the execution sequence of tests.

Why is it necessary to order the test execution? When there is a test to create,
delete, or update the state within a service, it will impact any tests that read the state.
For instance, in the earlier test to retrieve all accounts, listing 2.15, the expectation is
it returns three accounts. However, when the test method execution order is nonde-
terministic, that is, not in a defined order, it’s possible for the test creating an account
to execute before listing 2.15, causing it to fail by finding four accounts.

To define the test method execution order, add @TestMethodOrder (Order-
Annotation.class) to the test class definition, as shown in listing 2.17. Above or
below @QuarkusTest is fine. @0rder (x) is added to each test method, where x is a
number to indicate where in the execution sequence of all tests is this particular test.
testRetrieveAll () and testGetAccount () can either be Order (1) or Order (2); they
don’t mutate data, so it does not matter.

38 CHAPTER 2 Your first Quarkus application

Listing 2.17 AccountResourceTest

Defines the test execution order to
be third, after the retrieve all and
{ get account tests

@Test
@Order (3)
void testCreateAccount ()
Account newAccount = new Account (324324L, 112244L, "Sandy Holmes", new
BigDecimal ("154.55")) ;
Sets the content type to
Account returnedAccount = JSON for the HTTP POST
given()

.contentType (ContentType . JSON) .Sets the new account object
.body (newAccount) into the body of the HTTP POST

.when () .post ("/accounts") 4441 Sends the HTTP POST

~then () request to /accounts URL
.statusCode (201)
-extract () Verifies the HTTP status code returned is
-as (Account..class) ; 201, indicating it was created successfully

assertThat (returnedAccount, notNullvValue()) ;
assertThat (returnedAccount, equalTo (newAccount)) ;

Asserts that the account
from the response was
not null and equals the

Response result = account we posted
given ()
.when () .get ("/accounts") Sends an HTTP GET
.then()

request to /accounts URL,

-statusCode (200) for retrieving all accounts

.body (
containsString ("George Baird"),
containsString ("Mary Taylor"),
containsString("Diana Rigg"),
containsString("Sandy Holmes")

Verifies the response
contains the name of
the customer on the

)
new account

.extract ()
.response () ;

List<Account> accounts = result.jsonPath() .getList ("s$");
assertThat (accounts, not (empty()));

assertThat (accounts, hasSize(4)) ; Asserts there are
now four accounts

}

Open a terminal window in the directory where the Account service is located and
run the next test:

mvn test

Figure 2.11 shows the error when running the tests.

Though creating an account should have returned a 201 HTTP status code, the
test received 200 instead. Though the request succeeded, it didn’t return an expected
HTTP status code.

To fix it, instead of returning the created Account instance, the method should
return a Response to enable the appropriate HTTP status code to be set. The next list-
ing contains the updated create method.

Writing a test 39

[ERROR] Tests run: 3, Failures: 1, Errors: @, Skipped: @, Time elapsed: 3.817 s <<< FAILURE! -
in quarkus.accounts.AccountResourceTest

[ERROR] quarkus.accounts.AccountResourceTest.testCreateAccount Time elapsed: 0.079 s <<< FAIL
URE!

java.lang.AssertionError:

1 expectation failed.

Expected status code <201> but was <200>.

at quarkus.accounts.AccountResourceTest.testCreateAccount(AccountResourceTest. java:72)

Figure 2.11 Create account test failure

Listing 2.18 AccountResource

@Path ("/accounts")
public class AccountResource {
@POST
@Consumes (MediaType.APPLICATION_ JSON)
@Produces (MediaType.APPLICATION_ JSON)
public Response createAccount (Account account) {

if (account.getAccountNumber () == null)
throw new WebApplicationException("No Account number specified.", 400);

}

accounts.add (account) ;
return Response.status(201) .entity(account) .build() ;

% - Constructs a Response with status code
} 201 containing the new account entity

Running mvn test again shows a different error. Now it fails because the two accounts,
the one sent in the HTTP POST request and the one returned, are not equal. The test
failure follows:

Expected: <quarkus.accounts.repository.Account@2236le23>
but: was <quarkus.accounts.repository.Account@46994f26>
at quarkus.accounts.activerecord.AccountResourceTest.testCreateAccount (
AccountResourceTest.java:77)

Account doesn’t have any equals or hashcode methods, making any equality check use
the default object comparison, which in this case means they are not the same object.
To fix it, update Account with equals and hashcode methods, as shown here.

Listing 2.19 Account

public class Account {

@Override
public boolean equals(Object o) ({
if (this == o) return true;

40

24

CHAPTER 2 Your first Quarkus application

if (o == null || getClass() != o.getClass()) return false;

Account account = (Account) o;

return accountNumber.equals (account.accountNumber) &&
customerNumber.equals (account .customerNumber) ;

}

@Override
public int hashCode () {

return Objects.hash (accountNumber, customerNumber) ;
}

NOTE The equality check and hashcode creation use only the account and
customer numbers. All the other data on Account can change, and it still rep-
resents the same instance. It’s very important to ensure objects have an appro-
priately unique business key.

Run mvn test again; all tests now pass.
In future sections and chapters, we discuss additional aspects of testing, including
running tests with native executables and defining required resources for tests.

Creating a native executable

Java programs require a Java Virtual Machine (JVM) as their operating system for exe-
cution. The JVM includes all the low-level Java APIs wrapping operating system librar-
ies, as well as convenience APIs to simplify Java programming. The JVM, including all
the APIs it provides, is not small. It occupies large parts of memory, measured by its
resident set size (RSS), when running Java programs.

Native executables are files containing programs to be executed directly on an oper-
ating system, only relying on operating system libraries to be present. Embedded
within them are all the necessary operating system instructions required by a particu-
lar program. The key difference between a native executable and Java programs is
that there is no requirement for a JVM to be present during runtime execution.

The ability to compile a Java program down into a native executable significantly
reduces the file size of the program because the JVM is no longer required. It also sig-
nificantly reduces the amount of RSS memory used while executing and shortens the
time required to start the program.

WARNING The reduction in the program size is a result of the dead code elimi-
nation process. Several aspects of this impact how code can execute inside a
native executable. A key difference is that dynamic class loading will not work,
because nondirectly referenced code is removed from the native executable.
Full details of what won’t work in a native executable can be found on the
GraalVM website: https://www.graalvm.org/reference-manual/native-image/ .

Over the last couple of years, a part of the GraalVM project offering compilation to
native executable has become popular. GraalVM might sound familiar because of the

https://www.graalvm.org/reference-manual/native-image/

Creating a native executable 41

Truffle compiler subproject offering polyglot programming on the JVM, but the com-
pilation of Java down to native executable is from a different subproject.

Native executables are particularly beneficial in serverless environments where
processes need to start promptly and require as few resources as possible. Quarkus
offers first-class support for native executable creation and optimization. Such optimi-
zation is possible through ahead-of-time (AOT) compilation, build-time processing of
framework metadata, and native image preboot.

NOTE Ahead-of-time refers to the process of compiling Java bytecode to a native
executable. The JVM offers only just-in-time compilation.

Metadata processing at build time ensures any classes required for initial application
deployment are used during the build and are no longer required during runtime
execution. This reduces the number of classes needed at runtime, providing the dual
benefits of reduced memory utilization and faster startup time.

NOTE Examples of metadata processing include processing persistence.xml,
and defining required processing based on annotations in the code.

Quarkus further reduces the number of classes needed at runtime in a native execut-
able by performing a preboot when building the native image. During this phase,
Quarkus starts as much of the frameworks as possible within the application and stores
the serialized state within the native executable. The resulting native executable has
therefore already run most, if not all, of the necessary startup code for an application,
resulting in further improvement to startup time.

In addition to what Quarkus does, GraalVM performs dead code elimination on
the source and packaged libraries. This process traverses the code to remove methods
and classes that aren’t actually on the execution path. Doing so reduces both the size
of the native executable and the memory required to run the application.

How does a project create a native executable? In the pom.xml for the project, the
profile for the native executable creation was added by the generator as follows:

<profile> Specifies the ID of the
<ids>native</id> 4# profile when activating
<activations with -Pnative
<property>
<names>native</name> Deﬁnesaﬂagthat
</p?0pe?ty> when present will
</activations activate the profile, Infludes the_
<build> -Dnative Falls.afe plug'ln to
<plugins> run integration
<plugin> tests with a native
<artifactIdsmaven-failsafe-plugin</artifactIds executable
<Version>${surefire—plugin.version}</version>
<executions>
<executions>

<goals>

42 CHAPTER 2 Your first Quarkus application

<goals>integration-test</goals>

<goalsverify</goals> DeﬁHESthFPath
</goals> to the native
executable for use

<configuration> ‘
when testing

<systemPropertyVariables>

<native.image.path>${project.build.directory}/s${project.build.finalName}
-runner</native.image.path>
<java.util.logging.manager>org.jboss.logmanager
.LogManager</java.util.logging.managers>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>

</configurations>
</executions> Tells the Quarkus
</executions> Maven plugin to
</plugins> build a native

</plugins> executable in
</builds> addition to the
<properties> usual Java JAR

<quarkus.package.type>native</quarkus.package.type> runner
</properties>

</profilex>

If we generate the project from https://code.quarkus.io, the Account service already
includes the native profile in the pom.xml.

NOTE Instead of using a new profile, we can create a native executable by
passing -Dquarkus.package.type=native to mvn clean install. However,
having a profile is more convenient and enables integration testing with a
native executable.

Before creating a native executable, it’s necessary to install GraalVM for the JDK ver-
sion and operating system in use, in this instance, JDK 11. Follow the instructions on
the Quarkus website for installing and configuring GraalVM: http://mng.bz/GOIS8. Pre-
requisites for GraalVM are available at http://mng.bz/zEog.

Once GraalVM is installed, to build the native executable, run the following:

mvn clean install -Pnative

The native build process can take a few minutes to complete—much slower than regu-
lar Java compilation—depending on the number of classes in the application and the
number of external libraries included.

Once complete, a -runner executable will be in the /target directory, which is the
result of the native executable build process. The native executable will be specific to
the operating system it was built on, as GraalVM uses native libraries to implement cer-
tain functionality.

TIP To create a native executable that is suitable for use within a Linux con-
tainer, run mvn package -Pnative -Dquarkus.native.container-build=true.

https://code.quarkus.io
http://mng.bz/GOl8
http://mng.bz/zEog

2.5

Running in Kubernetes 43

Try running the native executable version of the Account service, shown here:

./target/chapter2-account-service-1.0.0-SNAPSHOT-runner

As with the earlier startup, listing 2.20 contains the console output when the native
executable starts. Notice the startup time for the Account servicer? In this case it was
only 0.023s!

Listing 2.20 Quarkus-native executable startup

-~/ N/ NN

A A S A A V R A AV A AV AN

-\ N\ VA B VA T A /7
INFO [io.quarkus] (main) chapter2-account-service 1.0.0-SNAPSHOT native
(powered by Quarkus 2.1.3.Final) started in 0.023s. Listening on:
http://0.0.0.0:8080
INFO [io.quarkus] (main) Profile prod activated.
INFO [io.quarkus] (main) Installed features: [cdi, resteasy,

resteasy-jsonb, smallrye-context-propagation]

NOTE Within a native executable, we still have garbage collection, though it
uses different garbage collectors than the JVM. One impact of this is very
long-running processes will see better memory performance over time with
the JVM instead of the native executable, due to the JVM continually optimiz-
ing memory utilization.

In addition to the native executable build, we can now also run native executable tests,
as was seen with the generated project earlier. To run the current test with a native
executable, create the test as shown in the next code listing.

Listing 2.21 Account

@NativeImageTest
public class NativeAccountResourcelIT extends AccountResourceTest
// Execute the same tests but in native mode.

mvn clean install -Pnative will do the native executable build as before, but also
run the earlier tests against that generated executable. If everything works as
expected, the native executable will build, and the tests defined in AccountResource-
Test will execute and all will pass.

Running in Kubernetes

Quarkus focuses on Kubernetes native, so it’s time to put that to the test, packaging
and deploying the Account service to Kubernetes. We have several options when it
comes to deploying Quarkus applications to Kubernetes, and this section covers some
of them.

44

25.1

CHAPTER 2 Your first Quarkus application

Generating Kubernetes YAML

When using Kubernetes, everything is YAML—there’s just no way around that. How-
ever, Quarkus provides some ways to alleviate the hassle of handcrafting YAML by
offering extensions to generate it.

The first thing to do is add a dependency into the Account service pom.xml, as
follows:

<dependency>
<groupld>io.quarkus</groupId>
<artifactId>quarkus-kubernetes</artifactId>
</dependency>

This dependency adds the Kubernetes extension for Quarkus, which offers the ability
to generate, and customize, the necessary YAML for deploying to Kubernetes.

To see what it produces, run mvn clean install on the project, then look at the
files produced in /target/kubernetes. By default, it will produce a .yml and a .json ver-
sion of the required configuration.

An example of what can be seen for the Account service is shown in the next code
snippet.

Listing 2.22 kubernetes.yml

apiVersion: "vi1" Defines the Kubernetes
kind: "Service" service, Account service,
metadata: % to be provisioned
annotations:
app.quarkus.io/build-timestamp: "...."
app.quarkus.io/commit-id: "...."
labels:
app.kubernetes.io/name: "chapter2-account-service"
app.kubernetes.io/version: "1.0.0-SNAPSHOT"
name: "chapter2-account-service"

spec:
ports: Indicates the service will expose
- name: "http" Q# port 80, and the application will
port: 80 be running on 80
targetPort: 80
selector:

app.kubernetes.io/name: "chapter2-account-service"
app.kubernetes.io/version: "1.0.0-SNAPSHOT"
type: "ClusterIP"

apiVersion: "apps/v1l" Creates the Kubernetes
kind: "Deployment" <k+ Deployment of the
metadata: service
annotations:
app.quarkus.io/build-timestamp: "...."
app.quarkus.io/commit-id: "...."
labels:
app.kubernetes.io/name: "chapter2-account-service"

Running in Kubernetes 45

app . kubernetes.io/version: "1.0.0-SNAPSHOT"
name: "chapter2-account-service"

spec: Tells Kubernetes to create only one instance;
replicas: 1 it’s possible to set the value higher, but it’s
selector: not necessary in this situation.
matchLabels:

app . kubernetes.io/name: "chapter2-account-service"
app.kubernetes.io/version: "1.0.0-SNAPSHOT"
template:
metadata:
annotations:
app.quarkus.io/build-timestamp: "...."
app.quarkus.io/commit-id: "...."
labels:
app.kubernetes.io/name: "chapter2-account-service"
app . kubernetes.io/version: "1.0.0-SNAPSHOT"
spec:
containers:
- env:
- name: "KUBERNETES NAMESPACE"
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
image: "{docker-user}/chapter2-account-service:1.0.0-SNAPSHOT"
imagePullPolicy: "Always"
name: "chapter2-account-service"
ports:
- containerPort: 80
name: "http"
protocol: "TCP"

Names the Docker
image to use for the
Deployment

With the default kubernetes.yml, the following customizations are worth making:

Change the name of the service to account-service.
Use a more meaningful name for the Docker image.

To make these changes, modify application.properties in src/main/resources to include
the following:

quarkus.container-image.group=quarkus-mp
quarkus.container-image.name=account-service
quarkus .kubernetes.name=account-service

After running mvn clean install again and looking at kubernetes.yml in /target/
kubernetes, notice that the name used is now account-service, and the Docker
image is quarkus-mp/account-service:1.0.0-SNAPSHOT.

With Minikube as the deployment target, we can generate specific resource files.
These resource files are required to expose the Kubernetes services to the local
machine. Add the following dependency into the pom.xml:

<dependencys>
<groupld>io.quarkus</groupIds>

46

252

CHAPTER 2 Your first Quarkus application

<artifactId>quarkus-minikube</artifactIds>
</dependency>

TIP Full details on how to deploy to Minikube can be found here: https://
quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube.

Running mvn clean install will now generate Minikube-specific resources into the
target/kubernetes directory. Looking at the files, we see they’re virtually identical.
The only difference is with the Service definition, as shown here:

spec: For Kubernetes, nodePort is not required, but
ports: when using Minikube, the nodePort indicates
- name: http which port on the local machine will receive
nodePort: 30704 any traffic forwarded from the service.
port: 80
targetPort: 80
selector:

With Kubernetes the type is set
to ClusterlP, but for Minikube,
NodePort is required.

app.kubernetes.io/name: account-service
app.kubernetes.io/version: 1.0.0-SNAPSHOT
type: NodePort

IMPORTANT It is not recommended to use Minikube-specific Kubernetes
resources when deploying to a Kubernetes environment for production.
The examples will use the dependency, because it exposes the services to
localhost.

Packaging an application

With Quarkus we have the following ways to package an application for deployment to
Kubernetes:

Jib (https://github.com/GoogleContainerTools/jib)
Docker
S2I (Source to Image) binary build

Each requires the addition of their respective dependency to the pom.xml, either
quarkus-container-image-jib, quarkus-container-image-docker, or quarkus-
container-image-s2i.

To minimize the required dependencies for running the examples, Docker is not
required. The advantage with Jib is that all requirements for producing container
images are part of the dependency itself. Container images with Docker utilize the con-
tents of the src/main/docker directory but require the Docker daemon to be installed.

Add the following dependency into the pom.xml:

<dependency>
<groupld>io.quarkus</groupIld>
<artifactId>quarkus-container-image-jib</artifactIds>
</dependency>

https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://quarkus.io/guides/deploying-to-kubernetes#deploying-to-minikube
https://github.com/GoogleContainerTools/jib

253

Running in Kubernetes 47

Then run the following code to create the container image for JVM execution:

mvn clean package -Dquarkus.container-image.build=true

IMPORTANT If there isn’t a Docker daemon running locally, the container
image creation will fail. The Docker daemon inside Minikube can be used
instead. Run minikube start, and then expose the Minikube Docker dae-
mon with eval $ (minikube -p minikube docker-env). It’s necessary for the
eval command to be run in each terminal window running the Maven com-
mands to create a container, because the evaluation is specific to each ter-
minal window.

When successful, running docker images will show the quarkus-mp:account-service
image:

=> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
quarkus-mp/account-service 1.0.0-SNAPSHOT 8bca7928d6a9 4 seconds ago 200MB

Deploying and running an application

It’s time to deploy to Minikube! If Minikube isn’t already installed and running, install
Minikube using the instructions provided in appendix A.
Once installed, open a new terminal window and run the following:

minikube start

WARNING If it’s the first time you’ve run Minikube, it could take some time
to download the necessary container images.

This will start Minikube with the default settings of 4 GB RAM and 20 GB HDD.

IMPORTANT Run eval $(minikube -p minikube docker-env) in each termi-
nal window that will be executing commands to build and deploy containers.

Time to deploy! Run the following:

mvn clean package -Dquarkus.kubernetes.deploy=true

This command generates the necessary container image, using whichever container
extension is installed, and deploys to the Kubernetes cluster specified in .kube/config.
The Minikube cluster will be present in /[HOME]/ .kube/config if minikube start
was executed.

If successful, the build should finish with messages similar to the following:

[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Deploying to
kubernetes server: https://192.168.64.2:8443/ in namespace: default.

48

CHAPTER 2 Your first Quarkus application

[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Applied:
Service account-service.

[INFO] [io.quarkus.kubernetes.deployment.KubernetesDeployer] Applied:
Deployment account-service.

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue for updates on a resolution. You can
work around the problem by removing the application first with kubectl
delete -f /target/kubernetes/minikube.yaml.

The log messages indicate the following Kubernetes resources that were deployed and
that were present within the kubernetes.yml generated earlier:

Service
Deployment

With Account service deployed, run minikube service list to see the details of all
services:

\ \
| NAMESPACE | NAME | TARGET PORT | URL
. |- |--mm e [oo |
| default | account-service | http/80 | http://192.168.64.2:30704 |
| default | kubernetes | No node port
| kube-system | kube-dns | No node port |

\ \

For account-service, the URL for use locally is http://192.168.64.2:30704.

NOTE Because Minikube binds to the IP address of the machine, using http://
localhost:30704 will not access the service in Minikube.

To see the list of all accounts, open a browser to http://192.168.64.2:30704/accounts.
Test out the other endpoints Account service has to make sure they work as expected
when deployed to Minikube.

That is a lot of information to digest. Let’s recap the key tasks we covered during
the chapter: how to generate a Quarkus project from https://code.quarkus.io/, using
live coding to improve development speed, writing tests for a Quarkus microservice,
building native executables to reduce image size and improve startup speed, and
what’s needed to deploy a Quarkus microservice to Kubernetes.

Summary

You can open up https://code.quarkus.io/ in a browser and select the desired
extensions for an application, choosing the name of the application, before
generating the project code to download.

http://192.168.64.2:30704
http://192.168.64.2:30704/accounts
https://code.quarkus.io/
https://code.quarkus.io/

Summary 49

Start a microservice with mvn quarkus:dev to begin live coding with Quarkus.
Make changes to a JAX-RS resource in the IDE, and see immediate changes to
the running application when refreshing the browser.

Add @QuarkusTest on a test class so that Quarkus packages the application for a
test in the same manner as the Quarkus Maven plugin. This makes the test as
near to an actual build as possible, improving the chances of catching any issues
within a test early.

Generate a native executable of a Quarkus application with mvn clean install
-Pnative, with the native profile in pom.xml. The generated executable can
optimize memory usage and startup time in constrained or FaaS- (function as a
service) type environments, where services aren’t necessarily running for weeks
on end.

Kubernetes needs resource definitions to know what is being deployed. When
adding the Kubernetes extension to a Quarkus application, the extension auto-
matically creates the JSON and YAML needed to deploy it to Kubernetes.

Add quarkus-container-image-jib dependency to pom.xml for generating
the necessary container images for deployment to Kubernetes. Running mvn
clean package -Dquarkus.container-image.build=true will generate the image
for Kubernetes.

Part 2

Developing microservices

Et 2 delves into developing microservices with MicroProfile and Quarkus.
Whether it be reading configuration, using Panache to simplify database devel-
opment, consuming external microservices, securing microservices, document-
ing the available HTTP endpoints, implementing resilience within and between
microservices, or introducing reactive programming and bridging it into the
imperative world, part 2 covers them all in detail.

Configuring microservices

This chapter covers

Externalized configuration

MicroProfile Config

Accessing application configuration
Configuration sources

Quarkus configuration features

Using Kubernetes ConfigMaps and Secrets

Chapter 2 introduced the Account service, which runs both locally and in Kuberne-
tes. It can run in many more than two contexts, as shown next. Each context varies,
having external services like a database, messaging system, and backend business
microservices. The Account service has to interact with each service in its context,
each with configuration requirements.

Figure 3.1 represents how enterprises may use different databases depending
on the context. The developer uses a local desktop database during development,
like the H2 embedded database. Integration testing uses a low-cost database like
PostgreSQL. Production uses a large-scale enterprise-grade database like Oracle,
and staging mimics production as closely as possible, so it also uses Oracle. The
application needs a way to access and apply a configuration specific to each context

53

54

CHAPTER 3 Configuring microservices

Development Integration Staging Production
Unit testing on Integration testing on Test with production-like Live production
local desktop integration test servers environment environment
H2 database PostgreSQL database Oracle database Oracle database

Figure 3.1 Example microservice contexts

without having to recompile, repackage, and redeploy for each context. What is
required is externalized configuration, where the application accesses the configuration
specific to the context in which it is running.

3.1 MicroProfile Config architecture overview
MicroProfile Config enables externalized configuration, where the application can
access and apply configuration properties without having to modify the application
when a configuration changes. Quarkus also uses MicroProfile Config to configure itself
and receives the same context-specific configuration benefits. For example, Quarkus
may need to expose a web application on port 8080 locally, whereas in staging and
production, Quarkus may need to be configured for port 80 without modifying appli-
cation code.
Figure 3.2 outlines the MicroProfile Config architecture that enables externalized
configuration.
A ConfigSource stores A converter converts The applic.ation. accesses the
properties as String from a String to a conﬁguratlor} either using a
key-value pairs. type-safe Java object. programmatic APl or by using
dependency injection.
r——-—-- il r——-—-=- hl
s | | I it
: ConfigSource | | Converter | The config class | Aoplication :
[' : I : contains all converted : 4 |
: Property file | : Integer | key-value pairs. | :
|
: . | | | i | Programmatic API |
: En\)/;r:i):g?:nt : : Boolean : : String greeting = :
| | | | | | config.get ("greeting",| |
C. rted . 5 A d\! String.class)| !
: System : on;: e : Array : Stored in> | Config chjse | ring.coassy
| | parameter | | | | :
| |
! | | | | CDl injection |
| : | : : @Inject :
: | : | | | @ConfigProperty (1
Kubernetes | 1 | | name = "greeting") |
: ConfigMap | ! : Custom | | | String greeting :
I ! I I I
________ a —— e ———— 2 |

Figure 3.2 MicroProfile Config architecture

3.2

3.3

The Bank service 55

Properties are String key-value pairs defined in a configuration source. When the
application starts, Quarkus uses MicroProfile Config to load properties from all avail-
able configuration sources. As the properties are loaded, they are converted from
Strings to a Java data type and stored in a Config object. An application can then
access the properties from the Config object using either a programmatic API or an
annotation-based CDI injection APIL

This section offers an overview of the MicroProfile Config architecture, and the
remainder of this chapter details the components of this architecture most often used
by developers. MicroProfile Config offers some advanced capabilities like creating
converters for custom data types and building custom data sources, but these are
beyond the scope of this book.

Accessing a configuration

Applications access a configuration through the Config object. MicroProfile Config
includes two API styles for accessing the Config object. The following examples show
the two API styles by retrieving the value of the greeting property from the Config
object and storing it in a greeting variable:

= Programmatic API—The programmatic API is available for runtimes that do not
have CDI injection available. The following listing shows a brief example.

Listing 3.1 Programmatic API

. Directly looks up the greeting using
Conf £ = ConfigP der.getConf H .
ontig contig onfigProvider.getConfig() config.getValue() programmatic API
String greeting = config.getValue ("myapp.greeting", String.class);

= CDI injection—Available to runtimes that support CDI injection. Because Quarkus

supports CDI injection (see the next listing), future examples will focus exclu-
sively on CDI injection.

Listing 3.2 CDI injection APl example

@Inject
@ConfigProperty (name="myapp.greeting")
String greeting;

Injects the value of myapp.greeting
into greeting using CDI injection

NOTE When injecting a property with @ConfigProperty, the MicroProfile
Config specification requires the use of the @Inject annotation. Quarkus,
with its focus on developer joy, makes the use of @Inject on @ConfigProperty
annotations optional to simplify code. The remainder of this chapter will use
the CDI approach exclusively.

The Bank service

With a background in externalized configuration and MicroProfile Config in place,
the next step is to apply them. Let’s begin by creating a microservice, the Bank service,
that uses the configuration APIs. The Bank service is basic, allowing the focus to

56 CHAPTER 3 Configuring microservices

remain on its configuration. It consists of the following configurable fields that are
accessed using MicroProfile Config and exposed through REST endpoints:

= name—String field containing the name of the bank

= mobileBanking—DBoolean indicating support for mobile banking

= supportConfig—Java object with multiple configuration values for obtaining
bank support

In later chapters, we’ll extend the Bank service with additional capabilities, including
those that extend across to the Account service, like invoking remote REST end-
points, propagating security tokens, and tracing requests.

3.3.1 Creating the Bank service

In chapter 2, we used code.quarkus.io to generate an application. We use the
Quarkus maven plugin here as an alternative approach. See the following listing for
the Maven command line to create the Bank service Quarkus project.

Listing 3.3 Generating bank-service using Maven

Names the Java class that Uses the Quarkus Maven plu'gin
implements a REST resource create goal to generate the project

mvn io.quarkus:quarkus-maven-plugin:1.13.4.Final:create \
-DprojectGroupIld=quarkus \

-DprojectArtifactId=bank-service \ Specifies the generated

-DclassName="quarkus.bank.BankResource" \ REST resource path

-Dpath="/bank" \

-Dextensions="resteasy-jsonb, \ Enables the use of
quarkus-hibernate-validator \ validation annotations

Specifies the list of quarkus-kubernetes, \ Adds support for Kubernetes

Quacll’lfus I(:?(te:smns docker, \ deployment and Kubernetes YAML

used in this chapter minikube, \ _ generation, customizable through
kubernetes-config" configuration properties

cd bank-service
Reads Kubernetes Generates a container image

ConfigMaps and Secrets using a Docker registry
directly through the

Kubernetes APl server Customizes Kubernetes YAML

generation for Minikube deployment

Extensions can be easily added at any time using the add-extensions Maven goal and
removed using the remove-extension goal. If running in development mode (mvn
quarkus:dev), Quarkus will automatically reload the application with the extension
changes included! (See the Maven Tooling Guide at https://quarkus.io/guides/
maven-tooling.) To improve the developer experience, the -Dextensions property
accepts shortened extension names. The shortened name must be specific enough to
select only one extension or the command will fail. The quarkus-resteasy-jsonb
extension, selected with the shortened “resteasy-jsonb” name, adds JSON-B serializa-
tion support to RESTEasy (JAX-RS).

https://quarkus.io/guides/maven-tooling
https://quarkus.io/guides/maven-tooling
https://quarkus.io/guides/maven-tooling

3.3.2

The Bank service 57

NOTE A Quarkus command line tool to create and manage Quarkus applica-
tions is in experimental status at the time of this writing. See the Quarkus com-
mand line interface guide (https://quarkus.io/guides/ cli-tooling) to learn more.

To prepare for this chapter’s examples, execute the following steps:

= Remove the src/test directory and its subdirectories. This example will fre-
quently break the generated tests by intentionally modifying the output.

= To prevent potential port conflicts, stop the Account service started in the previ-
ous chapter if it is still running.

With the project created and prerequisite steps taken, start the application in devel-
oper mode with the command line shown next.

Listing 3.4 Start Live Coding

mvn gquarkus:dev

With developer mode enabled, it’s time to start configuring the Bank service.

Configuring the Bank service name field

Beginning with the bank.name property, add the getName () method in BankResource
java, shown in the next listing.

Listing 3.5 Injecting and using bank name property

@ConfigProperty (name="bank.name") Injects the value of the
String name; bank.name property
into name

@GET

@Path (" /name")

@Produces (MediaType.TEXT PLAIN)
public String getName () {

return name; : Returns the
} injected name

Load the http://localhost:8080/bank/name endpoint and notice the error page simi-
lar to that shown in figure 3.3.

The error identifies a shortcoming in the code, and Quarkus places the source of
the error immediately at the top of the page. The code attempts to inject the value
of the bank.name property, but bank.name has not been defined. Quarkus, as required
by the MicroProfile Config specification, throws a DeploymentException when attempt-
ing to inject an undefined property.

The return value will
be in text format.

https://quarkus.io/guides/cli-tooling

58

CHAPTER 3 Configuring microservices

Error restarting Quarkus

java.lang.RuntimeException: java.lang.RuntimeException: Failed to start quarkus

The stacktrace below has been reversed to show the root cause first. Click Here to see the original stacktrace

javax.enterprise.inject.spi.DeploymentException: No config value of type [java.lang.String] exists for: bank.name

ad

at io.quarkus.arc.runtime.ConfigRecorder.validateConfigProperties(ConfigRecorder.java:37)

at io.quarkus.deployment.steps.ConfigBuildStepSvalidateConfigProperties1249763973.deploy_0(ConfigBuildStep$
at io.quarkus.deployment.steps.ConfigBuildStepSvalidateConfigProperties1249763973.deploy(ConfigBuildStep$va
at 1o.quarkus.runner.ApplicationImpl.doStart(ApplicationImpl.zig:436)

Figure 3.3 Browser output

We can address missing property values in the following three ways, and all are com-
monly used depending on the need:

= Default value—A fallback value that is general enough to apply in all situations
when a property is missing.
= Supply a value—Define the property and value within a property source.

= Java Optional—Use when a missing property value needs to be supplied by cus-
tom business logic.

Let’s look at the first two in more detail, and the third shortly after that.
Assigning a default value is simple. Update the @ConfigProperty code.

Listing 3.6 Assigning a property a default value

Assigns a default
value, which is used when

@ConfigProperty (name="bank.name", .
bank.name is undefined

defaultValue = "Bank of Default")

Reloading the URL will show the updated bank name.

Listing 3.7 Output: Bank of Default

Bank of Default

The second option, assigning the property a value, can be easily accomplished by add-
ing the bank.name property to the application.properties file.

Listing 3.8 Defining bank . name property in application.properties

bank.name=Bank of Quarkus

Reloading the URL will show the updated bank name, as shown in the next listing.

3.4

Configuration sources 59

Listing 3.9 Output: Bank of Quarkus

Bank of Quarkus

Configuration sources

A configuration source is a source of configuration values defined as key-value pairs.
application.properties is a configuration source, and Quarkus supports nearly a dozen
more. It is common for a microservice to consume its configuration from more than
one source. Figure 3.4 shows configuration sources and sample values used through-
out this chapter.

application.properties Environment variables

Ordinal: 250 Ordinal: 300

bank.name=Bank of Quarkus bank.name=Bank of Env
Kubernetes ConfigMap System properties
Ordinal: 270 Bank service Ordinal: 400
bank.name=Bank of ConfigMap quarkus.http.host=0.0.0.0

application.yaml
Ordinal: 254

bank.name=Bank of Kubernetes

Figure 3.4 Configuration sources

The same property is often intentionally defined in more than one configuration
source. If this is the case, which one takes precedence? MicroProfile Config uses a sim-
ple but effective approach for property conflict resolution. Each configuration source
is assigned an ordinal. The properties defined in a configuration source with a higher
ordinal take precedence over properties defined in a configuration source with a
lower ordinal. MicroProfile Config requires support for three configuration sources,
each with its own ordinal. Table 3.1 outlines the required MicroProfile Config config-
uration sources and additional Quarkus-supported configuration sources used in this
chapter and their ordinals.

Table 3.1 Example MicroProfile Config sources

Source Ordinal Description

System properties 400 Required by MicroProfile Config. These are JVM
properties that override nearly all property sources by
using -Dproperty=value on the Java command line.

60

CHAPTER 3 Configuring microservices

Table 3.1 Example MicroProfile Config sources (continued)

Source Ordinal Description

Environment variables 300 Required by MicroProfile Config. Overrides most property
settings. Linux containers use environment variables as a
form of parameter passing.

Kubernetes ConfigMap client 270 Directly access a Kubernetes ConfigMap. Overrides values
in application.properties.

application.yaml 254 Store properties in YAML format in files with a .yaml or
.yml file extension.

application.properties 250 The default property file used by most Quarkus applications.

microprofile-config.properties 100 Required by MicroProfile Config. Useful for MicroProfile-
centric applications that prefer application portability
across MicroProfile implementations.

NOTE MicroProfile Config requires support for the META-INF/microprofile-
config.properties file for application portability. Quarkus supports microprofile-
config.properties but defaults to application.properties. This book uses
application.properties, although microprofile-config.properties works equally
well.

Let’s put the configuration source ordinal values to the test, starting with environment
variables. Environment variables are a special case. Property names can contain dots,
dashes, and forward slash characters, but some operating systems do not support
them in environment variables. For this reason, these characters are mapped to char-
acters that are broadly supported by operating systems.

MicroProfile Config searches for environment variables in the following order
(e.g., bank.mobileBanking):

1 Exact match—Search for bank.mobileBanking. If not found, move to the next
rule.

2 Replace each nonalphanumeric with _—Search for bank mobileBanking. If not
found, move to the next rule.

3 Replace each nonalphanwmeric with _ ; convert to uppercase—Search for BANK
MOBILEBANKING.

Define a BANK_NAME environment variable as shown in the next code listing.

Listing 3.10 Defining BANK NAME environment variable

export BANK NAME="Bank of Env"

Start Quarkus in developer mode (mvn quarkus:dev) to verify that the environment
variable overrides application.properties. Reloading the http://localhost:8080/bank/
name URL will result in the output shown next.

Configuration sources 61

Listing 3.11 Output: Bank of Env

Bank of Env

Next, start Quarkus as a runnable JAR to test two outcomes at once. The first is to test
the system property configuration source, and the second is to test externalized con-
figuration with a different packaging format.

Restart the application with the system property as shown in the following two
code samples.

Listing 3.12 Running the Bank service as a runnable .jar file

mvn -Dquarkus.package.type=uber-jar package Packages the application

. N ., into a runnable uber-JAR.
java "-Dbank.name=Bank of System" \ OnWthejARfHeandthe
-jar target/bank-service-1.0.0-SNAPSHOT-runner.jar jVMzweneededtorun

Runs the application, specifying the application.
bank.name as a system property

Listing 3.13 Startup output

R — e ki i
S NIVl T O R e

SV A A S A A V P ST A B AV AN 0.587 seconds!
S\ NN SN N
2021-05-10 14:27:25,976 INFO [io.quarkus] (main) bank-service
1.0.0-SNAPSHOT on JVM (powered by Quarkus 1.13.4.Final) started in 0.587s.
Listening on: http://0.0.0.0:8080
2021-05-10 14:27:25,993 INFO [io.quarkus] (main) Profile prod activated.
2021-05-10 14:27:25,994 INFO [io.quarkus] (main) Installed features: [cdi,
resteasy]

Reload the http://localhost:8080/bank/name endpoint, with the output shown next.

Listing 3.14 Output: Bank of System

Bank of System

There are a couple of items to point out in this approach. First, Quarkus applications
can run as an uber-JAR file like many popular Java runtimes. Second, it started in just
over .5 seconds! Although uber-JARs have become a popular package format in recent
years, it is not container friendly. For this reason, Quarkus applications are rarely
packaged as uber-JARs. More on this later.

Stop Quarkus and remove the BANK NAME environment variable as follows.

Listing 3.15 Removing environment variable

unset BANK NAME

62

3.5

3.6

CHAPTER 3 Configuring microservices

Configuring the mobileBanking field

To begin coding mobileBanking configuration, start Quarkus in developer mode. To
avoid exceptions, in this example we use an approach different from the earlier
defaultValue by introducing the use of the Java Optional type. Add the code in from
the next listing to BankResource java.

Listing 3.16 Add mobileBanking support to BankResource

@ConfigProperty (name="app.mobileBanking") Injects the value of
Optional<Boolean> mobileBanking; app.mobileBanking into

the mobileBanking field
@GET
@Produces (MediaType.TEXT PLAIN)
@Path (" /mobilebanking")
public Boolean getMobileBanking() {

return mobileBanking.orElse (false) ;
1

With Optional types, MicroProfile
Config will not throw an exception
if a property is not defined.

If the mobileBanking field

is undefined, returns false
mobileBanking is a Boolean, and properties are stored as strings. The string needs to
be converted to a Boolean data type for proper injection. As shown in figure 3.2, con-
verters in the MicroProfile Config architecture convert properties from strings to
primitive data types, including Booleans.

NOTE There is also an API for creating converters for custom data types.

MicroProfile Config supports the Java Optional data type for working with undefined
properties while avoiding a Deployment Exception. In the getMobileBanking () method,
mobileBanking returns the configured value if defined, or false if left undefined.

To test the code, load the /bank/mobilebanking endpoint to see an HTTP
response of false, this time without the need for exception handling. The value of
app .mobileBanking in application.properties, either true or false, will be the returned
value at the endpoint.

Grouping properties with @ConfigProperties

An alternative approach to individually injecting each property is to inject a group
of related properties into fields of a single class. Annotating a class with @Config-
Properties, as shown in the next listing, makes every field in the class a property.
Every field will have its value injected from a property source.

Listing 3.17 BankSupportConfig.java: defining @ConfigProperties

public class BankSupportConfig { @ConﬁgProperties makes every

@ConfigProperties (prefix="bank-support") Annotating a class with
private String phone; field a configuration property.

A configuration class should
be a plain old Java object
(P0JO) with no business logic.

Grouping properties with @ConfigProperties 63

public String email; Fields become properties regardless

)) of access modifiers. For example,
public String getPhone() f{ BankSupportConfig contains both
} return phone; private and public fields.

public void setPhone (String phone) {
this.phone = phone;
1

The optional prefix parameter specifies the property prefix. For example, bank-
support.email and bank-support.phone are the property names in this code snip-
pet. The prefix applies to all properties in the class.

TIP Import org.eclipse.microprofile.config.inject.ConfigProperties
and not io.quarkus.arc.config.ConfigProperties, which is deprecated.

The next listing adds code to BankResource.java to inject the configuration and to
return the injected property values at a JAX-RS endpoint.

Listing 3.18 BankResource.java: using @ConfigProperties

@ConfigProperties (prefix="bank-support")

)) Injects BankSupportConfig into
BankSupportConfig supportConfig;

supportConfig. Quarkus does not
require the @Inject annotation

@GET as a developer convenience, but
@Produces (MediaType.APPLICATION JSON) it can be used when application
@Path ("/support") portability to other MicroProfile
public HashMap<String, String> getSupport () runtimes is desired.

HashMap<String, String> map = new HashMap<> () ;
The return value (map)

map.put ("email", supportConfig.email) ; will be converted to a
map .put ("phone", supportConfig.getPhone()) ; JSON representation.
return map; Adds the properties

} to the map

supportConfig.email can be added directly because email is a public field, whereas
supportConfig.phone is accessed through the getPhone () accessor method because
phone is a private field. A best practice is to choose a consistent approach for better
readability.

With the BankSupportConfig class and JAX-RS endpoint defined, the last step is
defining the properties themselves. The following code snippet specifies the field
property values.

Listing 3.19 Defining support properties in application.properties

Applies the prefix

bank-support .email=support@bankofquarkus.com
defined in listing 3.18

bank-support .phone=555-555-5555

64

3.7

3.7.1

CHAPTER 3 Configuring microservices

When accessing the http://localhost:8080/bank/support REST endpoint, the result
should look the same as that shown next.

Listing 3.20 Support endpoint JSON output

{"phone":"555-555-5555", "email" : "support@bankofquarkus.com"}

Quarkus-specific configuration features

The focus so far has been on features defined by the MicroProfile Config specifica-
tion. Quarkus goes beyond the specification by adding Quarkus-specific configuration
features.

Quarkus configuration profiles

With profiles, Quarkus enables us to use multiple configurations within a single config-
uration source. Quarkus defines the following three built-in profiles:

= dev—Activated when in developer mode (e.g., mvn quarkus:dev)

= test—Activated when running tests

= prod—Activated when not in development or test modes. In chapter 4, we use
profiles to differentiate between production and development database config-
uration properties.

As shown in the next listing, the syntax for specifying a profile is $profile.key=value,
so the application.properties file defines the bank.name property three times.

Listing 3.21 Example application.properties with profiles

The default property definition J This property definition is

used when running Quarkus

bank.name=Bank of Quarkus .
in developer mode.

%$dev.bank.name=Bank of Development
$prod.bank.name=Bank of Production

This property definition is used when the
application is started with java -jar or when
running a natively compiled binary.

When running Quarkus in development mode, like mvn quarkus:dev, the value of
bank.name will be Bank of Development. When running in production, like java -jar
target/quarkus-app/quarkus-run.jar, the value of bank.name will be Bank of
Production. bank.name, with no profile prefix, is a fallback value used when a profile
value is not defined. For example, when running mvn quarkus:test in this example,
the %dev and %prod properties don’t apply. A %$test.bank.name property is not
defined. So, the fallback value of Bank of Quarkus is used.

We can also define custom profiles. Earlier in the chapter, we covered four con-
texts: development, integration, staging, and production. Because Quarkus inherently
supports development and production profiles, let’s create a custom staging profile
and update application.properties, as shown next.

3.7.2

Quarkus-specific configuration features 65

Listing 3.22 Add a staging profile bank .name property value

$staging.bank.name=Bank of Staging

We can activate custom profiles by either setting the name of the quarkus.profile
system property (e.g., java -Dquarkus.profile=staging -jar myapp.jar) or by set-
ting the QUARKUS PROFILE environment variable.

Start Quarkus in developer mode with mvn compile quarkus:dev and access the
endpoint at http://localhost:8080/bank/name. The output is shown next.

Listing 3.23 Quarkus developer mode output

Bank of Development

To see the production profile output, see the following two code listings.

Listing 3.24 Running the application in production mode

mvn package
java -jar target/quarkus-app/quarkus-run.jar

Listing 3.25 Production mode output from http://localhost:8080/bank/name

Bank of Production

Property expressions

Quarkus supports property expressions in application.properties, where an expres-
sion follows the ${my-expression} format. Quarkus resolves properties as it reads
them. Let’s modify the next code to use property expressions.

Listing 3.26 Property expression example

support .email=support@bankofquarkus.com Adds support.email property
bank-support.email=3${support.email} for the support email address
bank-support .phone=555-555-5555

Updates bank-support.email

to use a property expression
Reload the /bank/support endpoint to validate that the support email address matches
the code shown next.

Listing 3.27 Support endpoint JSON output

{"phone":"555-555-5555", "email" : "support@bankofquarkus.com" }

Although support .email and bank-support.${support-email} are in the same con-
figuration source in this example, they do not have to be. In chapter 4, we use prop-
erty expressions for database credentials. We define the databases credentials and the
property expression that refers to the credentials in different configuration sources.

66

CHAPTER 3 Configuring microservices

3.7.3 Quarkus ConfigMapping

Quarkus offers a custom API, eConfigMapping, that groups properties together like
MicroProfile @ConfigProperties but is more flexible and feature-rich. @Conf igMapping
is so feature-rich that it could be an entire chapter by itself! This section demonstrates
two features: nested groups and property validation. The remainder of the features is
documented in the Quarkus ConfigMapping Guide (https://quarkus.io/guides/config-
mappings).

A @ConfigMapping is defined as a Java interface as shown in the following code.

Listing 3.28 BankSupportConfigMapping.java

@ConfigMapping (prefix = "bank-support-mapping") Uses the @ConfigMapping
interface BankSupportConfigMapping { annotation, and specifies a prefix
@Size (min=12, max=12) <+—
String phone () ; BankSupportConfigMapping is a Java
interface. Properties are defined as
String email() ; method names, like phone() and email().
Business business(); Unlike MicroProfile Config @ConfigProperties,
)) @ConfigMapping properties can be validated
interface Business f{ <+ using Bean Validation constraints.
@Size (min=12, max=12)
Str%ng phor_le O References the Business interface
String email(); to load business properties

The nested group business defines a Java
interface with properties relevant to the
bank’s business customers.

—

With the @ConfigMapping created, the next step is to add the relevant properties to
application.properties as shown here.

Listing 3.29 application.properties

The prefix, specified in listing 3.28, To access the nested
is bank-support-mapping. properties, append

the interface name
bank-support-mapping.email=support@bankofquarkus.com to the prefix.

bank-support-mapping.phone=555-555-5555
bank-support-mapping.business.email=business-support@bankofquarkus.com
bank-support-mapping.business.phone=555-555-1234

TIP Nested groups can contain nested groups.

Last, add a new JAX-RS resource to BankResource.java to access the @ConfigMapping.

Listing 3.30 BankResource.java

@Inject

BankSupportConfigMapping configMapping; Injects BankSupportConfigMapping

into configMapping

https://quarkus.io/guides/config-mappings
https://quarkus.io/guides/config-mappings

Quarkus-specific configuration features 67

@GET Properties are accessible at the

@Produces (MediaType.APPLICATION JSON) /bankkupporUnapmngendpdnt

@Path ("/supportmapping") This method is a near copy of the

public Map<String, String> getSupportMapping() { /bank/support endpoint, extended
HashMap<String, String> map = getSupport () ; with the business support properties.
map.put ("business.email", configMapping.business().email());

map.put ("business.phone", configMapping.business () .phone());

Access the nested group by invoking the interface name
as a method. Invoking the business() method returns the
} values of the properties defined in the Business interface.

return map;

Load http://localhost:8080/bank/supportmapping in the browser to verify the prop-
erties are displayed. With a successful @ConfigMapping endpoint up and running, in
the following section we change gears a bit by explaining why Quarkus categorizes
properties as either runtime or build-time properties.

3.7.4 Run-time vs. build-time properties

As a MicroProfile Config implementation, Quarkus optimizes configuration for con-
tainers in general and Kubernetes in particular. Kubernetes is considered an
immutable infrastructure, where it restarts pods with a new application configuration
instead of modifying an application’s configuration within a running pod.

Let’s do a quick Quarkus and traditional Java runtime configuration comparison.
Most Java runtimes scan the classpath while an application is starting. The runtime
scanning creates a dynamic deployment capability at the cost of increased RAM utili-
zation and increased startup time. It can take a significant amount of resources to con-
duct a classpath scan to build an in-memory model (metamodel) of what it has found.
Also, the application pays this resource penalty every time it starts. In a highly dynamic
environment like Kubernetes that encourages frequent incremental application
updates, this is quite often!

Quarkus, on the other hand, considers its primary target environment to be con-
tainers in general and Kubernetes in particular. Quarkus allows extensions to define
two types of properties: build time and run time.

Quarkus prescans and compiles as much code as possible when the application is
compiled (built), so it is static in nature when loaded and run. Build-time properties
influence compilation and how the metamodel (like annotation processing) is pre-
wired. Changing build-time properties at run time has no effect, like when running
java -jar myapp.jar. Their values, or the effect of their values, are already compiled
into myapp.jar. An example is a JDBC driver because developers typically know ahead
of time which drivers will be required.

Run-time properties do not impact how code is prescanned and generated, but
they do influence run-time execution. Examples include port numbers like quarkus
.http.port=80 and database connection strings like quarkus.datasource.jdbc
.url=jdbc:postgresqgl://localhost:5432/mydatabase.

68 CHAPTER 3 Configuring microservices

The result of prescanning at build-time is lower run-time memory utilization—
consuming only tens of MB of RAM and faster startup time in tens of milliseconds as a
native binary and hundreds of milliseconds on the JVM.

Each Quarkus extension guide (https://quarkus.io/guides) lists its configurable
properties. The “Quarkus: All Configuration Options” guide (https://quarkus.io/
guides/all-config) lists all configuration properties for all Quarkus extensions. In both
cases, a lock icon identifies properties fixed at build time.

Figure 3.5 shows a mix of fixed properties and run-time-configurable properties
from the “Quarkus: All Configuration Options” guide.

& Configuration property fixed at build time - All other configuration properties are overridable at runtime

FILTER CONFIGURATION

AWS Lambda Type Default

quarkus.lambda.handler

o n . NP, N strin,
The handler name. Handler names are specified on handler classes using the @javax.inject.Named annotation. g
Vv Show more
Agroal - Database connection pool Type Default
& quarkus.datasource. jdbc
. boolean true
If we create a JDBC datasource for this datasource.
& quarkus.datasource.jdbc.driver .
. string
The datasource driver class name
& quarkus.datasource. jdbc.transactions enable
Whether we want to use regular JDBC transactions, XA, or disable all transactional capabilities. When enabling XA d, xa, enable
Vv Show more disabl d
ed
& quarkus.datasource.jdbc.enable-metrics
. boolean
Enable datasource metrics collection. If unspecified, collecting metrics will be enabled by default if the smallrye-
v Show more
quarkus.datasource. jdbc.url .
string

The datasource URL

Figure 3.5 Build-time properties identified by the lock icon

For example, the Agroal database connection pooling extension “fixes” the quarkus
.datasource.jdbc.driver property at build time, but allows the quarkus.datasource
.jdbc.url property to change after compilation.

https://quarkus.io/guides
https://quarkus.io/guides/all-config
https://quarkus.io/guides/all-config
https://quarkus.io/guides/all-config

3.8

381

Configuration on Kubernetes 69

Configuration on Kubernetes

We have been configuring the Bank service throughout the chapter, and application
configuration for a Kubernetes deployment is nearly the same. The primary differ-
ence is the available configuration sources and how to utilize them.

Common Kubernetes configuration sources

Table 3.1 covers the configuration sources we use in this chapter, but let’s look at how
they are most commonly used in Kubernetes:

System properties—Container images often start a runtime with predefined parame-
ters. A good example is requiring the use of team or corporate standards. The
corporate standard in this case is using the JBoss LogManager, shown next:

java -Djava.util.logging.manager=org.jboss.logmanager.LogManager \
-jar /deployment/app.jar

Environment variables—A container is a self-contained runnable software pack-
age. Environment variables are a formalized and popular parameter-passing
technique to configure an application packaged in a container. For example,
the Postgres official container image uses environment variables like POSTGRES _
USER to define a database user (https://hub.docker.com/_/postgres). This
approach to container parameter passing is popular in Kubernetes as well.
Kubernetes ConfigMap—A ConfigMap is a first-class externalized configuration
concept for Kubernetes. A ConfigMap stores nonconfidential data as key-value
pairs. Think of a ConfigMap as an interface for accessing key-value pairs, and
more than one interface implementation exists. The most common implemen-
tation is mounting a ConfigMap as a storage volume within a Pod and is, there-
fore, accessible to all containers within the Pod. Quarkus uses a different
ConfigMap implementation. Instead of mounting the configuration file within
the container, the Quarkus ConfigMap extension takes a simpler approach by
directly accessing the properties from etcd using the Kubernetes REST-based
API server. Figure 3.6 compares the two different approaches.
application.properties—Quarkus applications can still include an application
.properties file for sensible default values.

Third-party configuration sources—Quarkus supports popular third-party configu-
ration sources that can run in Kubernetes, like the Spring Cloud Config Server,
Vault, and Consul.

https://hub.docker.com/_/postgres

70 CHAPTER 3 Configuring microservices

Mounting ConfigMaps

Kubernetes cluster

\oPod
0> API

- -+ ConfigMap Volume
server N
T application.properties
| T ‘3 pp prop
l T
0 | |
10 0
) ¥

P Banking
m microservice

1. Run kubectl create configmap.

2. Write configmap properties to etcd.

3. Volume created when Pod created.

4. Read configmap properties from etc.

5. Mount properties as application.properties.
6. Microservice reads properties.

Direct API server access

Kubernetes cluster

Pod

o API S
—]

> Banking
m microservice

1. Runkubectl create configmap.

2. Write configmap properties to etcd.

3. Banking microservice requests properties when
booted.

4. API server requests properties from etcd.
5. API server returns properties.

Figure 3.6 ConfigMaps: mounting vs. API server direct access

3.8.2 Using a ConfigMap for Quarkus applications

Quarkus can recognize ConfigMap files created from application.properties, applica-
tion.yaml, and application.yml files. Let’s create a ConfigMap out of an applica-
tion.yaml file so as not confuse it with the existing application.properties file. Create

the application.yaml in the top-level project directory, as shown in the next listing.

Listing 3.31 Creating application.yaml

bank:
name: Bank of ConfigMap

TIP Make sure to use two spaces before the name property because YAML is

space sensitive.

Next, create the Kubernetes ConfigMap, as seen in the next code sample.

Listing 3.32 Creating a Kubernetes ConfigMap

kubectl create configmap banking \
--from-file=application.yaml

Creates a ConfigMap
named banking

Populates the ConfigMap with the
contents of the application.yaml file

3.8.3

Configuration on Kubernetes 71

With the ConfigMap created in Kubernetes, the next step is to configure the banking
service to access it, as shown in the application.properties file in the next listing.

Listing 3.33 Configuring Quarkus to use the banking ConfigMap

Enables Kubernetes ConfigMap support. %prod specifies
that it applies only when running in production.

The comma-
$prod.quarkus.kubernetes-config.enabled=true zep?'ra'fled list of
$prod.quarkus.kubernetes-config.config-maps=banking onfigMaps to use

TIP A ConfigMap can be viewed with kubectl get cm/banking -oyaml, edited
with kubectl edit cm/banking, and deleted with kubectl delete cm/banking.

With the ConfigMap created and the banking service configured to use it, deploy the
banking service to Kubernetes as shown in the following code listing.

Listing 3.34 Deploying the updated application to Kubernetes

mvn clean package -Dquarkus.kubernetes.deploy=true

To verify the output, run minikube service list to obtain the base URL.

Listing 3.35 Example output of minikube service list

E
=
n
g
>
Q
=
E
=
H
b
ool
@
=
H
g
o
o]
H
g
o
=

|
|
|
| default | banking-service | http/80 | http://192.168.64.8:31763 |
|
|
|

| default | kubernetes No node port |
| kube-system | kube-dns No node port |

The base URL, although the IP address and
port will likely differ from what is shown

Load the URL in the browser, appending /bank/name. The full URL in this example
would be http://192.168.64.8:31763/bank/name.

The output should be the contents of bank.name defined in the ConfigMap as
shown next.

Listing 3.36 Output obtained from ConfigMap

Bank of ConfigMap

Editing a ConfigMap

Changing a ConfigMap requires a Pod restart. This boots a new Bank Service
instance that reloads property values from its configuration sources. The first step, of
course, is to edit the ConfigMap. Type kubectl edit cm/banking. See the next listing
for editing the ConfigMap.

http://192.168.64.8:31763/bank/name

72

3.8.4

CHAPTER 3 Configuring microservices

Listing 3.37 ConfigMap contents while editing

apiVersion: vl
data: Contents of

application.yaml: |- application.yaml

bank: Edit this line to
name: Bank of Quarkus (ConfigMap) reflect new value
kind: ConfigMap of bank.name.

metadata:

creationTimestamp: "2020-08-04T06:08:56Z" Ignore all the other content that is
managedFields: automatically added by Kubernetes
- apiVersion: vl when creating the ConfigMap. Do not
fieldsType: FieldsVl modify the content outside of the
fieldsV1l: application.yaml because the results
f.data: will vary depending on the edits.

{}
f:application.yaml: {}

manager: kubectl

operation: Update

time: "2020-08-04T07:09:30Z"
name: banking
namespace: default
resourceVersion: "863163"
selfLink: /api/vl/namespaces/default/configmaps/banking
uid: 3eba39df-336d-4a83-b50f-24ff8b767660

Kubernetes offers various ways to restart the Pod; however, the simplest is to redeploy
the application as shown in the following code sample.

Listing 3.38 Redeploying the updated application to Kubernetes

mvn clean package -Dquarkus.kubernetes.deploy=true

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue (https://github.com/quarkusio/
quarkus/issues/19701) for updates on a resolution. The problem can be
worked around by removing the application first with kubectl delete -f
/target/kubernetes/minikube.yaml.

Kubernetes Secrets

ConfigMaps are ideal for general property storage and access. However, some cases,
like using usernames, passwords, and OAuth tokens, require working with confiden-
tial properties. The Kubernetes solution for storing sensitive information is the Kuber-
netes Secret. By default, Secrets store data in Base 64—encoded format. While this makes
sensitive data unreadable to the eye, it can be easily decoded. From an application
perspective, Secrets look and feel a lot like ConfigMaps.

WARNING Like ConfigMaps, Secrets are stored in etcd. Any administrator
with access to etcd can decode Base 64—encoded Secrets. Kubernetes can

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

Configuration on Kubernetes 73

encrypt secret data at rest as well (https://kubernetes.io/docs/tasks/adminis-
ter-cluster/encrypt-data/).

Up to this point, properties have been stored mostly in files including applica-
tion.properties and application.yaml. ConfigMaps and Secrets can also store literals,
meaning key-value pairs, without having to define them within a file. See the next list-
ing for the code to create a database username and password using Secrets.

Listing 3.39 Creating Kubernetes Secrets from literals

Creates a Kubernetes Secret Stores username=admin as a

named db-credentials Base 64—encoded property Stores password =secret

kubectl create secret generic db-credentials \ as a Base 64—encoded
--from-literal=username=admin \ property
--from-literal=password=secret \
--from-literal=db.username=quarkus_ banking \
--from-literal=db.password=quarkus_banking

Stores db.username=
quarkus_banking as a

Stores db.password =quarkus_banking Base 64—encoded
as a Base 64—encoded property property

Next, run the command in the next listing, and view the output in listing 3.41 to check
itis encoded.

Listing 3.40 Getting the Secret contents

kubectl get secret db-credentials -oyaml

Listing 3.41 kubectl output

Encoded

- apiVersion: vl
database password

data:
db.password: cXVhcmtlcl9iYW5raWsn Encoded database
db.username: cXVhcmtlcl9iYW5raWsn username
password: c2VjcmVo0
username: YWRtaWd= Encoded password

kind: Secret Encoded username

metadata:

With a Kubernetes Secret containing username and password properties, the next
step is to verify that these properties can be injected and used within the application.
We will use the database username and password later. Extend BankResource as shown
the in next listing.

Listing 3.42 Access Secret from BankResource.java

@ConfigProperty (name="username")

) Injects the username
String wusername;

and password into the

BankResource fields
@ConfigProperty (name="password")

String password;

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

74

CHAPTER 3 Configuring microservices

@GET

@Produces (MediaType.APPLICATION JSON)

@Path (" /secrets")

public Map<String, String> getSecrets()
HashMap<String, String> map = new HashMap<> () ;

map.put ("username", username) ;
map.put ("password", password) ;

Inserts the username and
password into a HashMap

and returns as a JSON string
return map;

Like a ConfigMap, applications need two Quarkus properties defined to access a Secret.
See the next listing.

Listing 3.43 Enabling Secret access in application.properties

Enables access to Secrets. %prod specifies that

it applies only when running in production. The comma-
separated list of
$prod.quarkus.kubernetes-config.secrets.enabled=true Secrets to include
$prod.quarkus.kubernetes-config.secrets=db-credentials for property lookup

Redeploy the application and open the /bank/secrets endpoint. The output should
look like the next listing.

Listing 3.44 Browser output

{"password":"secret", "username":"admin"}

Summary

This chapter covered a lot of ground. It introduced externalized configuration, Micro-
Profile Config, Quarkus-specific configuration features, and Kubernetes Config-
Maps. The top two takeaways from this chapter are that externalized configuration
is a microservice deployment necessity, and Quarkus uses MicroProfile Config and
custom configuration features to make Kubernetes deployments both practical
and seamless.

Here are the key detailed points:

= Quarkus uses the MicroProfile Config API for application configuration and to
configure itself.

= MicroProfile Config uses configuration sources to abstract where configuration
values are stored.

= There is an order of precedence when loading property values from configura-
tion sources.

= Properties can be loaded individually using @ConfigProperty or in bulk using
@ConfigProperties or @ConfigMapping.

Summary 75

Quarkus supports configuration profiles for loading context-dependent config-
uration values, such as for development, test, and production.

Not all Quarkus properties can be modified at run time.

Quarkus supports ConfigMaps by reading ConfigMap key-value pairs using the
Kubernetes API server.

Applications can store and access sensitive information in Kubernetes Secrets.

Database access
with Panache

This chapter covers

What Panache is
Simplifying JPA development with Panache

Database testing with Panache and
@QuarkusTest

In chapter 2, we created the Account service to show how to develop JAX-RS end-
points with Quarkus. In this chapter, we take that Account service and add database
storage for the account data, instead of the data being held only in memory.

Because most microservices will need to store some type of data, or interact with
data stored by another microservice, being able to read and store data to a database
is a key feature to learn and understand. Though stateless microservices are “a
thing,” and certainly a goal, if appropriate, for a microservice, there are also times
when denying the need to store data leads to unnecessary mental gymnastics, lead-
ing to a significantly more complex distributed system.

To simplify the development of microservices requiring storage, Quarkus cre-
ated Hibernate ORM with Panache (Panache), an opinionated means of storing and
retrieving state from a database, heavily inspired by the Play framework, Ruby
on Rails, and JPA experience. Panache offers two different paths, depending on

76

4.1

Data sources 77

developer preference: active record and data repository. The data repository approach
will be familiar to those with experience in Spring Data JPA.

Before getting into how Panache can simplify database development in a microser-
vice, we will alter the Account service to store data with the known JPA approach.
Showing how to store data with JPA will make it easier to compare the approaches,
both in terms of the amount of code and the different coding styles they facilitate.

Data sources

Before delving into modeling objects for persistence, we need to define a data source
for JPA, or Panache, to communicate with the database.

The Agroal extension from Quarkus handles data source configuration and setup.
However, adding a dependency for the extension is unnecessary when being used for
JPA or Panache, because they have a dependency on Agroal. At a minimum, the type
of data source and database URL must be specified in configuration, and usually a
username and password, as follows:

quarkus.datasource.db-kind=postgresqgl
quarkus.datasource.username=database-user
quarkus.datasource.password=database-pwd
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/my database

NOTE The username and password values shown here are just examples.
What they need to be set to depends on the database being connected to.

In this particular example, the configuration tells Quarkus that the application will be
connecting to a PostgreSQL database. The JDBC configuration indicates the URL of
the database.

With the previous configuration, no data source name is mentioned. That is because
the configuration is defining the default data source that should be used by anything
needing a JDBC data source. Multiple data sources are created by setting a specific
name in the configuration. For instance, the next configuration creates a data source
called orders:

quarkus.datasource.orders.db-kind=postgresqgl
quarkus.datasource.orders.username=order-user
quarkus.datasource.orders.password=order-pwd
quarkus.datasource.orders.jdbc.url=jdbc:postgresgl://localhost:5432/orders db

Data sources can be created for many kinds of databases, but the more popular ones
are h2 (mostly for testing), mysqgl, mariadb, and postgresql.

In addition to defining the data source configuration, a JDBC driver must be pres-
ent for Quarkus to create the data source and to communicate with the database! For
that, use a dependency such as the following:

<dependency>
<grouplds>io.quarkus</grouplds>
<artifactId>quarkus-jdbc-postgresgl</artifactIds>
</dependency>

78

4.2

CHAPTER 4 Database access with Panache

The previous dependency matches the configuration from earlier that specified the
database type as postgresqgl. If a different database is used, the application would
require a different dependency, where the artifact is prefixed with quarkus-jdbc- and
suffixed with the database type name.

Although it is possible to use the regular JDBC driver dependencies directly with
Quarkus, using the Quarkus-provided JBDC driver extensions allows them to be auto-
matically configured with Quarkus but also means they are guaranteed to work as part
of a native executable. At present, most JDBC driver dependencies won’t work inside a
native executable.

Quarkus has a fantastic feature to help with testing when using a database. Adding
@QuarkusTestResource (H2DatabaseTestResource.class) onto a test class will start
an H2 in-memory database as part of the test startup. Being an in-memory database,
H2 is convenient for testing without needing external databases running. It needs the
quarkus-test-h2 dependency, and a JDBC driver as well, as shown here:

<dependency>
<grouplds>io.quarkus</groupIds>
<artifactId>quarkus-test-h2</artifactIds>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.quarkus</groupId>
<artifactId>quarkus-jdbc-h2</artifactIds>
<scope>test</scope>

</dependency>

Most applications don’t need to interact with a data source directly: they use another
layer on top to simplify the code. Now it’s time to modify the Account service from
chapter 2 to use JPA to store its data instead of storing it in memory.

JPA

Before we delve into what a Quarkus microservice that uses JPA looks like, look at fig-
ure 4.1, which shows the components involved and their interaction.

(i

Account Entity

resource manager Database
. J

Figure 4.1 Account service: JPA

y

Though JPA may not be the favored approach to database interactions by many devel-
opers, it provides an easy migration path for anyone familiar with Java EE and Jakarta
EE development with JPA. In addition, it provides a good basis for comparison with
the Panache approaches covered later in the chapter.

JPA 79

As seen in figure 4.1, the AccountResource uses an EntityManager to interact with

the database. Whether it’s finding entities, creating new ones, or updating existing
ones, it all happens through the EntityManager instance.

Let’s begin converting the Account service from chapter 2 to use JPA for data stor-

age. To add JPA to the Account service, the following dependencies need to be added:

<dependencys>

<groupld>io.quarkus</groupld>
<artifactIds>quarkus-hibernate-orm</artifactId>

</dependency>
<dependencys>

<groupld>io.quarkus</groupIlds>
<artifactId>quarkus-jdbc-postgresgl</artifactId>

</dependency>

quarkus-hibernate-orm adds the Hibernate implementation of JPA to the project,
and quarkus-jdbc-postgresqgl adds the JDBC driver for PostgreSQL discussed in sec-
tion 4.1.

The updated code for the Account service from chapter 2 can be found in the

chapter4/jpa/ directory of the book source.

Next is to modify the Account class to be a JPA entity.

Listing 4.1 Account

Another named query, this Indi
h ndicates
one finding accounts that the POJO is Defines a named query
match accountNumber PA enti to retrieve all accounts,
) a |PA entity and orders the result by
@Entity . accountNumber
@NamedQuery (name = "Accounts.findAll",
query = "SELECT a FROM Account a ORDER BY a.accountNumber")
@NamedQuery (name = "Accounts.findByAccountNumber",
query = "SELECT a FROM Account a WHERE a.accountNumber = :accountNumber
ORDER BY a.accountNumber") . .
. Tells JPA that the id field is the
public class Account ({ .
primary key of the database table
@Id <
@SequenceGenerator (name = "accountsSequence", sequenceName =

}

"accounts_id seqg",
allocationSize = 1, initialvValue = 10)

Creates a sequence

@GeneratedValue (strategy = GenerationType.SEQUENCE, generator for the id
generator = "accountsSequence") Uses the sequence field, starting with the
private Long id; generator from the number 10. Starting at
previous line to specify | 10 provides space to
private Long accountNumber; where the generated import some records
private Long customerNumber; value comes from for on startup for testing.
private String customerName; the primary key

private BigDecimal balance;
private AccountStatus accountStatus = AccountStatus.OPEN;

When using JPA, the fields can be marked private instead of public.

80

CHAPTER 4 Database access with Panache

NOTE Getter and setter methods, general object methods, and equals and
hashcode methods from chapter 2 are excluded from the listing for clarity.

All constructors were removed from the Account class, because constructing instances
directly is not needed when using JPA.

With the JPA entity defined, it’s now possible to use an EntityManager to interact
with the database for that entity. The first change to AccountResource is to inject an
instance of the EntityManager:

@Inject
EntityManager entityManager;

Now the entityManager instance can be used for retrieving all the accounts, as shown
in the next listing.

Listing 4.2 AccountResource

Tells the entityManager to use the named
@GET query "Accounts.findAll" defined on Account
public List<Account> allAccounts () { in listing 4.1 and that the expected results

return entityManager will be of the Account type
.createNamedQuery ("Accounts.findAll", Account.class)

.getResultList () ;
getresu tst0 Converts the results from the database
into a List of Account instances

—

There was another named query for finding accounts by their number on Account,
shown in the following listing.

Listing 4.3 AccountResource

Passes the parameter into the query, Uses the "Accounts.findBy-
setting the name of the parameter in AccountNumber"
the query and passing the value named query

public Account getAccount (@PathParam("acctNumber") Long accountNumber) {
try {
return entityManager
.createNamedQuery ("Accounts. findByAccountNumber", Account.class)
P .setParameter ("accountNumber", accountNumber)

.getSingleResult () ; <
—=> } catch (NoResultException nre) {
throw new WebApplicationException ("Account with " + accountNumber
+ " does not exist.", 404);
} For a given accountNumber, there should
} only be one account, so requests the
return of a single Account instance.
To retain the exception handling added in chapter 2,
catches any NoResultException thrown when there is no
account and converts it to a WebApplicationException

Now for a look at how to add a record to the database with an EntityManager, see the
next listing.

JPA 81

Listing 4.4 AccountResource

Tells Quarkus that a transaction should be created for this operation
A transaction is necessary here because any exception from within
the method needs to result in a “rollback” of any proposed database

. changes before they’re committed. In this case it’s a new Account.
@Transactional

public Response createAccount (Account account) { Calls persist with the Account

instance, adding it to the
persistent context for committing
to the database at the completion
} of the transaction, in this case,
createAccount()

entityManager.persist (account) ; <
return Response.status(201) .entity(account) .build() ;

Now that we’ve shown how to use named queries and persist 2 new entity instance,
how do we update an entity that already exists? Calling entityManager.persist ()
throws an exception if it’s already persisted, so instead we use the following code.

Listing 4.5 AccountResource
Requires a transaction
, during method execution
@Transactional
public Account withdrawal (@PathParam("accountNumber") Long accountNumber,

String amount) . .
I { Retrieves an Account instance

Account entity = getAccount (accountNumber) ; .
. . . . using accountNumber
entity.withdrawFunds (new BigDecimal (amount)) ;

return entity; Withdraws the funds from

1 the account, modifying the
state of the entity
For those that noticed, in listing 4.5, entityManager was not used. It wasn’t necessary
to call any methods on entityManager because retrieving the account instance had
already happened. Retrieving the account puts the instance into the persistence con-
text as a managed object. Managed objects can be updated at will and persisted in the
database when the transaction commits.
If the method had a parameter of Account, instead of accountNumber and amount,

the instance would be unmanaged because it does not exist in the current persistence
context. Updating the balance would require the next code:

@Transactional

public Account updateBalance (Account account) { Merges the unmanaged
entityManager.merge (account) ; instance into the persistence
return account; context, making it managed

}

IMPORTANT When using unmanaged instances to update the state in a data-
base, it’s necessary to ensure that the state hasn’t been updated in the mean-
time. For example, the earlier method updating the balance requires the
account to have been retrieved previously. An update to the balance could
have occurred in another request between retrieval of the account and a
call to update the balance. We have means to mitigate this problem, such as

CHAPTER 4 Database access with Panache

versioning JPA entities, but the use of entityManager.merge () needs to be
carefully considered.

With only the code changes done so far, it’s possible to run the application with Dev
Services from Quarkus. With Docker running, run mvn quarkus:dev. The application
will start a PostgreSQL database first. Dev Services are a recent addition to Quarkus
for extensions enabling the automatic creation of necessary containers when configu-
ration is not present for an external service. Details on how it works for data sources
can be found at https://quarkus.io/guides/datasource#dev-services.

It’s time to write some tests! To be able to test with an H2 database but use Postgre-
SQL in a production deployment, we need to use configuration profiles. Here’s a snip-
pet of the needed application.properties:

Overrides the password to empty,

because H2 does not require a password Defines the data source
configuration for production,
when building the application,
and for Live Coding

quarkus.datasource.db-kind=postgresqgl

quarkus.datasource.username=quarkus_banking
quarkus.datasource.password=quarkus_banking
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost/quarkus banking

ftest.quarkus.datasource.db—k1nd=h2 Defines the data source
%test.quarkus.datasource.username=username-default configuration for tests
L—> S%test.quarkus.datasource.password=
$test.quarkus.datasource.jdbc.url=jdbc:h2:tcp://localhost/mem:default

quarkus.hibernate-orm.database.generation=drop-and-create

uarkus.hibernate-orm.sgl-load-script=import.sqgl N .
4 4 P P d Indicates the SQL script

Lets Quarkus know to drop any existing to import data into the
tables, based on the defined entities, and tables upon creation
recreate them on startup

$test. is one of the configuration profiles introduced in chapter 3. Using the test
profile for H2 configuration enables a separate configuration for production and Live
Coding modes.

The next code listing contains a test using the H2 database described in section 4.1.

Listing 4.6 AccountResourceTest

@QuarkusTest
@QuarkusTestResource (H2DatabaseTestResource.class)
@TestMethodOrder (OrderAnnotation.class)
public class AccountResourceTest {
@Test
@Order (1)
void testRetrieveAll() {
Response result =
given ()
.when () .get ("/accounts")
.then ()
.statusCode (200)

Tells Quarkus to start an
H2 database prior to the
tests being executed

https://quarkus.io/guides/datasource#dev-services

JPA 83

.body (
containsString ("Debbie Hall"),
containsString ("David Tennant"),
containsString ("Alex Kingston")

)

.extract ()

.response () ;

List<Account> accounts = result.jsonPath() .getList ("$");
assertThat (accounts, not (empty()));
assertThat (accounts, hasSize(8)) ;

This test may look familiar from chapter 2. The only difference between the similar
test in chapter 2 and this one is that @QuarkusTestResource was added to the test
class. Another change is in verifying the customer names. Why are they different? In
chapter 2, all the data was in memory only, but now it’s within a database.

To add records for testing, define an import.sql in the chapter4/jpa/src/main/-
resources directory, as shown here:

INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (1, 123456789, 0, 550.78, 'Debbie Hall', 12345);
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (2, 111222333, 0, 2389.32, 'David Tennant',6 112211);
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,

customerNumber) VALUES (3, 444666, 0, 3499.12, 'Billie Piper', 332233);
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (4, 87878787, 0, 890.54, 'Matt Smith', 444434);
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (5, 990880221, 0, 1298.34, 'Alex Kingston', 778877);
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (6, 987654321, 0, 781.82, 'Tom Baker', 908990) ;
INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (7, 5465, 0, 239.33, 'Alex Trebek', 776868);

INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
customerNumber) VALUES (8, 78790, 0, 439.01, 'Vanna White',6 444222);

Then inform Quarkus to use it by adding the following code to application.properties:
quarkus.hibernate-orm.sqgl-load-script=import.sqgl
With all that in place, from the chapter4/jpa/ directory, run the following:

mvn clean install

The test will execute using the H2 database, and if everything went well, the test passes!

In developing the Account service to use JPA, we made no mention of a
persistence.xml file. Why is that? Everyone familiar with developing JPA code in Java
EE and Jakarta EE knows about creating a persistence.xml file to configure the driver,
data source name, and other JPA configuration elements.

84

4.3

4.3.1

CHAPTER 4 Database access with Panache

With Quarkus, there’s no need for a persistence.xml. What is present in that file
either is performed automatically based on dependencies, has sensible defaults, or
can be customized with application.properties instead. Though it is possible to use a
persistence.xml file with Quarkus, we won’t demonstrate it.

As an exercise for the reader, add additional test methods for the following:

Creating an account

Closing an account

Withdrawing funds from an account
Depositing funds into an account

By no means were all aspects of how to use JPA covered in this section—that was not
the intention. Although using JPA with Quarkus is an option, the purpose of this sec-
tion is to outline some key usages of JPA to provide a means of comparing how data
access with Panache differs.

Simplifying database development

Using JPA for accessing a database is only one approach of many. Quarkus also
includes the ability to choose the active record or data repository approaches to man-
aging state. Both of these approaches are part of the Panache extensions to Quarkus.
Panache seeks to make writing entities trivial and fun with Quarkus.

Though we talk about data in the following sections, Panache is emerging as a
mini brand within Quarkus for simplification. In addition to simplifying entity devel-
opment, Panache also has experimental functionality for generating RESTful CRUD
endpoints, saving the time it takes to churn out the boilerplate JAX-RS definitions.
See https://quarkus.io/guides/rest-data-panache for all the details.

Active record approach

Let’s take a look at how the active record pattern differs from JPA. As seen in figure 4.2,
all interactions occur through the entity itself. As objects usually hold data that needs
to be stored, the active record approach puts the data access logic into the domain
object directly. The active record approach rose to popularity with Ruby on Rails and
the Play framework.

JPA
] T
. M~ A
Account Entity
resource manager Database
v

Active record

] T
u
Account Account
resource ™ Database Figure 4.2 Account

I/ ~ @ service: active record

https://quarkus.io/guides/rest-data-panache

Simplifying database development 85

In 2002, Martin Fowler outlined the approach in his book Patterns of Enterprise Applica-
tion Architecture (https://www.martinfowler.com/books/eaa.html). His definition can
be found on his site, https://www.martinfowler.com/eaaCatalog/activeRecord.html.
Now to work on the implementation! All the code for this section can be found in
the /chapter4/active-record/ directory of the book source code.
Dependencies need to be different, because we need the Panache version, not the
regular Hibernate version. For that, add the following dependency:

<dependency>
<groupld>io.quarkus</grouplds>
<artifactId>quarkus-hibernate-orm-panache</artifactId>
</dependency>

Because a JDBC driver is needed, the same PostgreSQL dependency used with JPA
can be added.

For the entity, that’s different because Panache is used, as shown in the next
code listing.

Listing 4.7 Account

@Entity
public class Account extends PanacheEntity

public Long accountNumber; Account extends PanacheEntity,

) The fields on which provides the data access
public Long customerNumber; . .
) ; Account need helper methods like persist().
public String customerName; .
to be public.

public BigDecimal balance;
public AccountStatus accountStatus = AccountStatus.OPEN;

public static long totalAccountsForCustomer (Long customerNumber) { <t
return find("customerNumber", customerNumber) .count () ;

}

public static Account findByAccountNumber (Long accountNumber) {
return find("accountNumber", accountNumber) .firstResult () ;

J Custom static methods can be added to
} o enhance those provided with PanacheEntity.

NOTE equals() and hashCode () methods are excluded for brevity. The full
code can be viewed in the chapter 4 book source code.

Note the following key points in listing 4.7:

= @Entity is still used to indicate the class is a JPA entity.

= Getter and setter methods for the fields are not required. During build time,
Panache generates the necessary getter and setter methods, replacing field
access in code to use the generated getter and setter methods.

= Definition of id, the primary key, is handled by PanacheEntity. If there was a need
to customize the id configuration, we could do it with the usual JPA annotations.

https://www.martinfowler.com/books/eaa.html
https://www.martinfowler.com/eaaCatalog/activeRecord.html

86

CHAPTER 4 Database access with Panache

Given the data access methods are present on Account, interacting with it must be
quite different, as shown next.

Listing 4.8 AccountResource

public class AccountResource {

@GET
public List<Account> allAccounts()
return Account.listAll(); Uses the static listAll() from the
} PanacheEntity superclass of Account
to retrieve all the accounts
@GET

@Path ("/{acctNumber}")
public Account getAccount (@PathParam("acctNumber") Long accountNumber) {

return Account.findByAccountNumber (accountNumber) ; .
Calls the custom static

) method from listing
4.7, retrieving an
@POST Account instance by

@Transactional the accountNumber
public Response createAccount (Account account) {

account .persist () ;

return Response.status(201) .entity(account) .build() ; Adds a new Account instance

into the persistence context.

} On transaction commit, the
record will be added to the

@PUT database.

@Path (" {accountNumber}/withdrawal")

@Transactional

public Account withdrawal (@PathParam ("accountNumber") Long accountNumber,
String amount) {
Account entity = Account.findByAccountNumber (accountNumber) ;
entity.withdrawFunds (new BigDecimal (amount)) ;

t tity; e - PP -
} rettrn Rty When modifying an existing instance, it will

be persisted on transaction completion.

}

For testing, AccountResourceTest from the JPA example earlier can be copied for use
with the active record approach. Because Account no longer has methods for retriev-
ing or setting values, the only necessary changes are to provide it direct field usage.
As before, the tests use an in-memory H2 database, and import the data on startup
from import.sql. The application-properties doesn’t need to change compared with
the JPA version.
In the /chapter4/active-record/ directory, run the next code:

mvn clean install

If all went well, all the tests pass.

To briefly recap, the active record approach with Panache integrates all data access
into the JPA entity, while taking care of boilerplate tasks such as defining the primary
key. PanacheEntity provides simplified methods that don’t require deep SQL knowl-
edge to construct queries, enabling developers to focus on the necessary business logic.

Simplifying database development 87

4.3.2 Data repository approach

Now on to the last approach, data repository.

Figure 4.3 uses AccountRepository as the intermediary for data access methods.
There are some similarities with EntityManager from JPA, but also key differences.
The Spring Framework popularized the data repository approach over the last
decade or more.

JPA
(Y
Account Entity
resource manager Database

Active record
] —

v
Account
Account
resource Database
y, ~
Data repository
] T
v
Account Account .
resource repository Database Figure 4.3 Account
Y, ~ service: data repository

Martin Fowler also outlined this approach, with active record, in Patterns of Enterprise
Application Architecture (https://www.martinfowler.com/books/eaa.html). On his website,
Fowler explains the approach: https://martinfowler.com/eaaCatalog/repository.html.

So what’s needed to implement the data repository approach? Exactly what was
needed for the active record approach, as shown here:

<dependency>
<groupld>io.quarkus</groupId>
<artifactId>quarkus-hibernate-orm-panache</artifactId>
</dependency>

One benefit of both approaches being in the same dependency is it’s quick to switch
between them, or even use each approach in different situations in the same application.

The Account entity for the data repository approach is shown in the following
listing.

Listing 4.9 Account

@Entity

public class Account {
@Id
@GeneratedvValue
private Long id;

private Long accountNumber;
private Long customerNumber;

https://martinfowler.com/eaaCatalog/repository.html
https://www.martinfowler.com/books/eaa.html

88

Defines

a custom
data access
method

CHAPTER 4 Database access with Panache

private String customerName;
private BigDecimal balance;
private AccountStatus accountStatus = AccountStatus.OPEN;

—

NOTE Getter and setter methods, general object methods, and equals and
hashcode methods are excluded from the listing for brevity.

Listing 4.9 is very similar to listing 4.1 for JPA. The main difference is there are no
@NamedQuery annotations, and the default ID-generation process for the primary key
is not the same.

Take a look at the repository class, shown in the following code listing.

Listing 4.10 AccountRepository

@ApplicationScoped tells the container

that only one instance should exist.
@ApplicationScoped

public class AccountRepository implements PanacheRepository<Accounts> {
public Account findByAccountNumber (Long accountNumber) {
return find ("accountNumber = ?1", accountNumber) .firstResult() ;

}

} Implements PanacheRepository
for all the data access methods

As with the active record approach, a parent class includes the convenience methods
for finding and retrieving instances.
But how different is the JAX-RS resource? See the next example.

Listing 4.11 AccountResource

public class AccountResource { Injects an

AccountRepository instance

@Inject .
for data access operations

AccountRepository accountRepository;

CGET Retrieves all the
public List<Account> allAccounts() { o
. . accounts with listAll()
return accountRepository.listAll();

/ Uses the custom data access

@GET method on AccountRepository

@Path ("/{acctNumber}")

public Account getAccount (@PathParam("acctNumber") Long accountNumber) {
Account account = accountRepository.findByAccountNumber (accountNumber) ;
return account;

}

@POST

@Transactional

public Response createAccount (Account account)
accountRepository.persist (account) ;

Persists a new
{ Account instance
into the database

4.3.3

Simplifying database development 89

return Response.status(201) .entity (account) .build() ;

}

@PUT

@Path (" {accountNumber} /withdrawal™")
@Transactional
public Account withdrawal (@PathParam("accountNumber") Long accountNumber,
String amount) {
Account entity = accountRepository.findByAccountNumber (accountNumber) ;

entity.withdrawFunds (new BigDecimal (amount)) ;
return entity;

}
}

Updates the balance on the account without
needing to call accountRepository.persist(); it’s
done automatically when the transaction completes.

The AccountResourceTest class can be copied from the JPA example, because both
approaches use entities that have getters and setters.
The tests can be run from the /chapter4/data-repository/ directory with the fol-

lowing line:

mvn clean install

Which approach to use?

Through the previous sections, we have outlined different approaches for JPA, active
record, and data repository. Which one is the best?

As with most things dealing with software, it depends. The key points of each
approach follow:

JPA

Easy migration for existing Java EE and Jakarta EE applications.

Requires creation of primary key field; not provided by default.
@NamedQuery annotations must be placed on an entity or super class.
Queries require actual SQL, as opposed to shortcut versions that are used in
active record or data repository.

Non-primary key search requires SQL or @NamedQuery.

Active record

Doesn’t require getters and setters for all fields.

Coupling the data access layer into an object makes testing it without a data-
base difficult. The flip side is that testing with a database is a lot easier than
in the past.

Another aspect of coupling, it breaks the single responsibility principle and sepa-
ration of concerns.

Data repository

Requires creation of a primary key field; not provided by default.

Clearly separates data access and business logic, enabling them to be tested
independently.

Without custom methods, it’s an empty class. For some, this can seem unusual.

90

44

44.1

CHAPTER 4 Database access with Panache

These are some key differences shown through the previous sections; there are likely
many more. When it comes down to it, the chosen approach will depend on the
requirements of an application and personal choice of the developer, based on their
previous experience.

It’s worth noting that no one approach is wrong, or right—it all depends on per-
sonal perspective and preference.

Deployment to Kubernetes

Now that the Account service has a database, it’s time to deploy it to Kubernetes to see
it in action. First, though, we must deploy a PostgreSQL instance that can be used by it.

Deploying PostgreSQL

We need to deploy the following pieces to Kubernetes for setting up a PostgreSQL
database:

A Kubernetes Secret with encoded username and password. This secret will be
used in creating the PostgreSQL database and in the data source configura-
tion in Quarkus.

PostgreSQL database deployment.

First, verify Minikube is already running, and if it isn’t, run the following:

minikube start

IMPORTANT As mentioned in previous chapters, ensure that eval $(mini-
kube -p minikube docker-env) is run in each terminal window that will be
pushing a deployment to Minikube, because it uses Docker inside Minikube
for building the image.

Once Minikube is running, create the Secret as shown next:

Creates a new Secret with

kubectl create secret generic db-credentials \ the name db-credentials

--from-literal=username=quarkus_ banking \

i i Adds username with the plain
--from-literal=password=quarkus_banking

text value of quarkus_banking.

Also sets a password The value will be encoded as
in the Secret part of creating the Secret.

NOTE If the Minikube instance being used is the same as in chapter 3, you willl
need to execute kubectl delete secret generic db-credentials first.

With the Secret created, the PostgreSQL database instance can be started. Doing that
requires a Kubernetes Deployment and Service.
Change to the directory /chapter4/ and run the next code:

kubectl apply -f postgresgl kubernetes.yml

4.4.2

Deployment to Kubernetes 91

If successful, the terminal contains messages stating the Deployment and Service were
created. With a PostgreSQL database running, it’s time to package and deploy a ser-
vice to use it.

Package and deploy

Any of the examples from the chapter could be used to show it working in Kuberne-
tes, but in this instance, we use the active record example.

Before packaging the application, we need to make a few changes because it will
be reading Kubernetes Secrets for database configuration. Add a new dependency in
pom.xml as follows:

<dependencys>
<grouplds>io.quarkus</grouplds>
<artifactId>quarkus-kubernetes-config</artifactIds>
</dependency>

This dependency enables an application to read Kubernetes ConfigMaps and Secrets.
For it to know where the information is to read, the following additional properties
are needed:

Enables the extension

$prod.quarkus.kubernetes-config.enabled=true
$prod.quarkus.kubernetes-config.secrets.enabled=true
$prod.quarkus.kubernetes-config.secrets=db-credentials

Tells the extension that
Secrets will be read

Lists the Secrets to be read; in
this case it’s just db-credentials.

NOTE The %prod. prefix ensures the settings are not used during develop-
ment and testing.

As well as the previous additions to application.properties, we need to modify the
datasource information for Kubernetes, as shown here:

Uses variables for the username
$prod.quarkus.datasource.username=3 {username} and Pa§sw°rd because they will
o be retrieved from the Secret
$prod.quarkus.datasource.password=${password}

$prod.quarkus.datasource.jdbc.url=jdbc:postgresqgl://postgres.default:5432/

k banki .
duarius_banting Updates the URL to be in the format of

"<servicename >.<namespace>:<port>/<database>".
In this example, postgres is the service name, and the
namespace is default.

These are the only changes needed to have the database credentials read from a
Secret and the PostgreSQL database used within Kubernetes. With the changes made,
it’s time to build the image and deploy it to Kubernetes as follows:

mvn clean package -Dquarkus.kubernetes.deploy=true

92

CHAPTER 4 Database access with Panache

With the Account service deployed, run minikube service list to see the details of
all services, as shown here:

| |

| NAMESPACE | NAME | TARGET PORT | URL
oo	-	-	
default	account-service	http/80	http://192.168.64.2:30704
default	kubernetes	No node port	
default	postgres	http/5432	http://192.168.64.2:31615
kube-system	kube-dns	No node port	

| | \

Accessing http://192.168.64.2:30704/accounts in a browser will now retrieve all the
accounts in the PostgreSQL database running in Kubernetes.

Throughout the chapter, each example has shown the different approaches we can
take for writing database code with Quarkus, beginning with JPA for easy migration to
Quarkus, before progressing to cover the enhancements to Hibernate ORM that
Panache brings through use of active record or data repository approaches.

Summary

By adding the data source properties for db-kind, username, password, and
jdbc.url, along with the quarkus-jdbc-postgresqgl dependency, a Quarkus
application can connect with a PostgreSQL database.

Use @NamedQuery on a JPA entity class to define custom queries for use with the
EntityManager.

Hibernate ORM with Panache offers simplified approaches to JPA with either
the active record or data repository approaches.

Add the quarkus-hibernate-orm-panache dependency, and use Panache-
Entity as a super class for JPA entity classes to use the active record approach.
The active record approach provides common methods for use when interact-
ing with a database, simplifying the data access layer in an application.

When using the data repository approach, create a repository class that imple-
ments PanacheRepository to hold custom data access methods, such as queries
equivalent to @NamedQuery on JPA entities.

Define a PostgreSQL deployment and service in Kubernetes, and create the
resources in a Kubernetes environment using Minikube.

http://192.168.64.2:30704/accounts

Clients for consuming
other microservices

This chapter covers

= MicroProfile REST Client specification

= Using type-safe interfaces to consume external
microservices

= Customizing the content of headers on the
request

Although many microservices require only a database or alternative data services,
or process a request within their own process, sometimes a microservice needs to
communicate with other microservices to fulfill a request. When shifting from mono-
liths to microservices, the tendency is toward smaller and leaner microservices,
which necessitates more of them. More importantly, many of those smaller micro-
services will need to communicate with each other to complete a task previously
achieved with a single method calling other services inside a monolith. All those
previously “in-process” method calls are now external microservice invocations.
This chapter introduces the MicroProfile REST Client and describes how
Quarkus implements the specification to provide a type-safe means of interacting
with external services. Many possible approaches exist, including Java’s networking
library or third-party libraries like OkHttp and Apache HttpClient. Quarkus

93

94

5.1

CHAPTER 5 Clients for consuming other microservices

abstracts away the underlying HTTP transport construction from the developer,
enabling them to focus on the task of defining the external service and interacting
with the service as if it were a local method invocation.

Figure 5.1 represents a microservice calling another microservice, but it is also the
basis for the examples used throughout the chapter. The examples for this chapter
follow from the previous banking domain examples. The Transaction service calls the
Account service to retrieve the current balance to ensure the requested transaction
doesn’t result in an overdrawn account.

Accounts
microservice

Transactions
microservice

Figure 5.1 Banking microservice consumption

The Account service in this chapter is not the same as the version seen in earlier chap-
ters. Because this chapter’s focus is on the calling microservice, and not the called
microservice, the Account service API will expose methods only to retrieve the current
balance and update it.

NOTE We won’t show the Account service for this chapter because it’s a
derivative of that in earlier chapters. Take a look at the code for chapter 5, in
the /chapterb/account-service/ directory, to see how it was implemented.

What is MicroProfile REST Client?

MicroProfile REST Client is one of the specifications from Eclipse MicroProfile
(https://microprofile.io/). The specification defines how a representation of an exter-
nal service with Java interfaces ensures interactions with that service occur in a type-safe
manner. What that means is we use the Java language and compilation process to ensure
the code that interacts with an external service is free from obvious errors.

When interacting with services utilizing one of the many HTTP libraries or the
JAX-RS client library, it’s necessary to perform a lot of casting between objects, trans-
formations from JSON to POJOs, and many other steps that don’t rely on the Java lan-
guage to ensure correctness. Though workable, this leaves code susceptible to failures
due to problems being discovered not during compilation but only through testing or
even production usage. Using a type-safe approach with MicroProfile REST Client
enables us to discover these types of problems during compilation and not much later
during execution.

https://microprofile.io/

5.2

Service interface definition 95

For many years the RESTEasy project (https://resteasy.github.io/) had a custom
means of defining external services with Java interfaces. However, because it was included
within only one JAX-RS implementation, other JAX-RS implementations didn’t have
such a feature. Building on the RESTEasy project’s work, the Thorntail project (https://
thorntail.io/) added a CDI layer on top of the programmatic builder from RESTEasy.

MicroProfile REST Client defines a specification to combine the ideas from
RESTEasy and Thorntail for the Eclipse MicroProfile platform. Many aspects within
the specification align it with how JAX-RS defines RESTful endpoints.

Some of the more important features of the specification include the following:

= Including additional client headers onto any external request

= Following responses redirecting to another URL

= Calling external services through an HTTP proxy

= Registering custom providers for filtering, message body manipulation, inter-
ceptors, and exception mappers

= Automatic registration of JSON-P and JSON-B providers

= Configuring SSL for REST client endpoints

Having covered the origins of the specification and its purpose, it’s now time to begin
using it with Quarkus.

Service interface definition

For the Transaction service to be able to communicate with the Account service, it
needs to know what methods are available, their parameters, and their return types.
Without that information, the Transaction service doesn’t know the API contract of
the Account service.

Many libraries are available that support communicating with other services via
HTTP and other protocols, including classes within the JDK itself. However, taking such
an approach requires more complex code to handle setting the appropriate content
type, setting any headers, and handling response codes for different situations. Let’s
take a look at a service definition for AccountService in the next code listing.

Listing 5.1 AccountService

Defines the path of the service,
excluding the base URL portion Indicates that the interface
@Path (" /accounts") should have_a.CDI be.an created
@RegisterRestClient that can be injected into classes
@Produces (MediaType .APPLICATION_ JSON)
public interface AccountService {
@GET
@Path ("/{acctNumber}/balance")
BigDecimal getBalance (@PathParam("acctNumber") Long accountNumber) ;

Sets all methods of the
service to return JSON

Method for retrieving the
account balance, with HTTP
method and Path annotations

@POST
@Path (" {accountNumber}/transaction")

https://resteasy.github.io/
https://thorntail.io/
https://thorntail.io/
https://thorntail.io/

CHAPTER 5 Clients for consuming other microservices

void transact (@PathParam("accountNumber") Long accountNumber,

Bigbecimal amount); Method for transacting on an account,
with HTTP method and Path annotations

Looking at the interface definition, it likely seems very familiar, and there’s a good
reason for that. The way in which a Java interface defines the service deliberately
uses the well-known JAX-RS annotations for a class and its methods. Using the same
JAX-RS annotations on a Java interface to define a remote service as is used for creat-
ing a JAX-RS resource class means developers are already familiar with all the annota-
tions used. If defining a service with a Java interface used completely different
annotations, or an entirely different way to define the service, developers would find it
much more difficult to learn and use.

The only difference in the Java interface compared to what a JAX-RS resource
would contain is the @RegisterRestClient annotation. This annotation tells Quarkus
that a CDI bean that contains the methods on the interface needs to be created.
Quarkus wires up the CDI bean such that calls to the interface methods result in
HTTP calls to the external service.

Listing 5.1 utilizes synchronous response types. Asynchronous types such as
CompletionStage, Future, and CompletableFuture will be discussed in 5.3.

Let’s take a look at how the execution flow works. In figure 5.2, the dotted boxes
represent separate process boundaries. It doesn’t matter whether it is a physical
machine or Kubernetes Pod.

Transactions microservice

I I
I I

I | | I

: Resource : : : 1. Call method on REST

I] | 9 | I interface.

| HTTP | || Accounts ! . .

! o [client J [J microservice ro2 HTTI,’ client is .

! | : : configured and invoked.
| A t |

: inf:,—?:ge (2] : : | 3. HTTP request sent

| | I I to external service.

| | A UL U NI U 4

Figure 5.2 Account transaction service: REST client call

The flow of execution when calling the Account service in figure 5.2 follows:

The JAX-RS resource calls a method on the AccountService interface, which
executes the call on the CDI bean that implements the interface.

The CDI bean, representing the AccountService interface, configures the
HTTP client with the URL, HTTP method type, content types, headers, or any-
thing else needing to be set on the HTTP request.

The HTTP client issues the HTTP request to the external Account service and
handles the response that’s returned.

5.21

Service interface definition 97

One thing that has not been mentioned so far is how to define the URL where the
external service exists. As with many things, we can do this in several ways.

When @RegisterRestClient is present, we can set the URL directly on the annota-
tion with the baseUri parameter. Though this is not a great way to set it for production,
because URLs can change, it’s an easy way to configure it to get started. With the baseUri
parameter set on the annotation, it’s still possible to override the value with configura-
tion. The configuration key for setting the URL is {packageName} . {interfaceName}/
mp-rest/url, which can be added to the application.properties file with the URL of
the external service.

For listing 5.1, the configuration key is io.quarkus.transactions.Account-
Service/mp-rest/url. Such a long key can be difficult to remember and is open to mis-
takes. To simplify the configuration key, set the configKey parameter of @Register-
RestClient. For instance, define the configKey on the interface as follows:

@RegisterRestClient (configKey = "account-service")
public interface AccountService {

}

This method makes the configuration key account -service/mp-rest/url, making it
less prone to errors.

Having covered how to create a service definition for any external service, let’s
actually use it in the Transaction service.

CDI REST client

The previous section discussed how Quarkus automatically creates a CDI bean from
the Java interface when @RegisterRestClient is present. See the next listing to see
how it’s used.

Listing 5.2 TransactionResource

To inject the CDI bean for the interface, it is necessary to
explicitly use @Inject. Though it’s not required for other
situations, it is when injecting a REST client interface.

public class TransactionResource {

L—> @Inject
—

@RestClient The REST client
AccountService accountService; Q—' interface representing
the external service
@POST
@Path ("/{acctNumber}")
public Response newTransaction (@PathParam("acctNumber") Long accountNumber,
BigDecimal amount) {

accountService.transact (accountNumber, amount) ; <k441 Calls the external

return Response.ok () .build() ; service method

}
}

CDI qualifier telling Quarkus to inject a type-safe
REST client bean matching the interface

CHAPTER 5 Clients for consuming other microservices

Being able to call an external service with a single method call, as if it was a local ser-
vice, is extremely powerful and simplifies making HTTP calls in the code. For devel-
opers familiar with Java EE, this looks very similar to remote EJBs. In many respects, it
is very similar, except that instead of communicating with Remote Method Invocation
(RMI), it uses HTTP.

With the interface defined, and a JAX-RS resource method that uses it, now it’s
time to test the REST Client.

MOCKING THE EXTERNAL SERVICE
When unit testing, setting up and running the service to be called is far from ideal. To
verify some basic operation of the Transaction service, it’s necessary to use a server to
mock the responses that would be received from the Account service. One option is to
create a server that handles a request and provides an appropriate response, but
thankfully there’s a handy library that offers that exact functionality, WireMock.

The first step is to add the required dependency, as follows:

<dependency>
<groupld>com.github.tomakehurst</groupId>
<artifactId>wiremock-jre8</artifactId>
<scope>test</scope>

</dependency>

To assist in setting up an environment for testing, Quarkus provides Quarkus-
TestResourceLifecycleManager. Implementing QuarkusTestResourceLifecycle-
Manager enables us to customize what happens during start () and stop() during
the life cycle of a test. Any implementation is applied to a test with @Quarkus-
TestResource. One is needed to interact with the WireMock server, as shown in the
next listing.

Listing 5.3 WiremockAccountService

Implements QuarkusTestResourceLifecycleManager
to respond to the start and stop events of the test

public class WiremockAccountService implements Stores the WireMockServer
QuarkusTestResourceLifecycleManager { instance to enable stopping
private WireMockServer wireMockServer; it during test shutdown
@Override
public Map<String, Strings> start() Creates the.Wil’eMockServer,
wireMockServer = new WireMockServer () ; and starts it
wireMockServer.start () ;
stubFor (get (urlEqualTo (" /accounts/121212/balance")) <
.willReturn (aResponse ()
.withHeader ("Content-Type", "application/json")

.withBody ("435.76")

)); Provides a stub for responding to the HTTP GET method for
retrieving an account balance. Because it’s a mock server, the account number
the server responds to needs to be hardcoded and used in the request from a test.

Service interface definition 99

stubFor (post (urlEqualTo ("/accounts/121212/transaction"))

-willReturn (noContent ()) Creates another stub for
Vi responding to the HTTP POST
method to create a transaction

return Collections.singletonMap (
"io.quarkus.transactions.AccountService/mp-rest/url",

wireMockServer.baseUrl ; . .
0) Sets an environment variable named

J io.quarkus.transactions.AccountService/
mp-rest/url to the URL of the WireMock server.

@Ove:lrride . The variable name matches the expected name
public void stop() f{ of the configuration key for defining the URL.
if (null !'= wireMockServer) {

wireMockServer.stop () ;

}
}

Stops the WireMock
server during test-
shutdown processing

}

Lastly, we need to write the test shown in the following code sample to use the Trans-
action service, which will call the mock server.

Listing 5.4 TransactionServiceTest

@QuarkusTest

@QuarkusTestResource (WiremockAccountService.class) AddSthelﬂecyde'nanager

public class TransactionServiceTest { for WireMock to the test
@Test
void testTransaction() { Issues an HTTP POST request
given() using the account number

-body ("142.12") defined in the WireMock stub
.contentType (ContentType.JSON)
.when () .post ("/transactions/{accountNumber}", 121212)
.then ()
-statusCode (200) ; Verifies a response code

} of 200 is returned

With the test written, open the /chapterb/transaction-service/ directory and run the
following:

mvn clean install

NOTE Be sure to have Docker running for the database.

The test should pass without issue.

Running the test using a mock server doesn’t provide much confidence it’s cor-
rect, so let’s deploy all the services to Kubernetes to verify that the code works with a
real service.

DEPLOYING TO KUBERNETES
If Minikube is already running, great. If it isn’t, run the next line of code:

minikube start

100

CHAPTER 5 Clients for consuming other microservices

With Minikube running, we can start the PostgreSQL database instance. To do that,
install the Kubernetes Deployment and Service for PostgreSQL.
Change into the /chapterb/ directory and run the following:

kubectl apply -f postgresgl kubernetes.yml

WARNING This PostgreSQL instance doesn’t use Secrets for the username
and password, unlike in chapter 4. For this reason, this setup is not recom-
mended for production usage.

Change into the /chapterb/accountservice/ directory to build and deploy the
Account service to Kubernetes, as shown here:

mvn clean package -Dquarkus.kubernetes.deploy=true

NOTE Run eval $ (minikube -p minikube docker-env) before this command
to ensure the container image build uses Docker inside Minikube.

Verify the service has started properly by running kubectl get pods as follows:

NAME READY STATUS RESTARTS AGE
account-service-6d6d7655cf-ktmhv 1/1 Running 0 6m55s
postgres-775d4d9odd5-bov42 1/1 Running 0 13m

If there are errors, indicated by the STATUS column containing Error, run kubectl
logs account-service-6d6d7655cf-ktmhv, using the actual Pod name, to show the
logs of the container for diagnosing the error.

Find the URL of the Account service by running minikube service list, and then
verify it’s working by running the next code:

curl http://192.168.64.4:30704/accounts/444666/balance

The terminal will show the balance returned, which should be 3499.12 if everything
worked.

With the Account service deployed and working, it’s time to do the same for the
Transaction service. Remember, the URL needs to be set so that the Account service can
be found. Do that by modifying application.properties to include the next code:

$prod.io.quarkus.transactions.AccountService/mp-rest/url=
http://account-service:80

It uses the production profile ($prod) as the URL, which applies only when deployed
to Kubernetes, and it’s using the Kubernetes service name for the Account service that
is returned from minikube service list.

Change to the /chapterb/transaction-service/ directory and deploy the next service:

mvn clean package -Dquarkus.kubernetes.deploy=true

Service interface definition 101

Verify the service has started without error and issue a request to withdraw funds from
an account as follows:

curl -H "Content-Type: application/json" -X POST -d "-143.43"
http://192.168.64.4:31692/transactions/444666

If it completes with no errors and messages, run the curl command from earlier to
check the account balance. If everything worked as intended, the balance returned
should now be 3355.69! Have some fun exploring by depositing and withdrawing dif-
ferent amounts from various accounts, and see how the balance changes after each
request.

Though we haven’t used them so far, many other configuration options are avail-
able when using a REST client with CDI. With listing 5.1 as an interface, here is a list
of different configurations that could be used:

By default, the scope of a CDI bean for a

Timeout for connecting to the REST client is @Dependent. This would
remote endpoint in milliseconds change it to be @Singleton instead.
Comma-separated list of JAX-RS providers The URL where the external service is
that should be used with the client available, as seen in examples earlier

io.quarkus.transactions.AccountService/mp-rest/url=http://localhost:8080
io.quarkus.transactions.AccountService/mp-rest/scope=javax.inject.Singleton <—!
io.quarkus.transactions.AccountService/mp-rest/providers=
io.quarkus.transactions.MyProvider
L—> io.quarkus.transactions.AccountService/mp-rest/connectTimeout=400
——> 1lo.quarkus.transactions.AccountService/mp-rest/readTimeout=1000
io.quarkus.transactions.AccountService/mp-rest/followRedirects=true
io.quarkus.transactions.AccountService/mp-rest/proxyAddress=http://myproxy:9100

Determines if HTTP redirect responses HTTP proxy to be used
are followed or an error is returned for all HTTP requests
from the client
How long to wait for a response from
a remote endpoint in milliseconds

This configuration can also be achieved with the programmatic API, which we cover
in the next section. If configKey on @RegisterRestClient had been used, all the pre-
vious configuration keys could replace io.quarkus.transactions.AccountService/
mp-rest/ with account-service/mp-rest/.

Using CDI isn’t the only way to use a REST client for connecting to external ser-
vices. Let’s take a look at doing the same as earlier with the programmatic API.

5.2.2 Programmatic REST client

In addition to utilizing CDI for injecting and calling REST client beans for external
interfaces, we can use a programmatic builder API instead. This API provides more
control over the various settings of the REST client without needing to manipulate
configuration values. See the next code listing.

102

How long to wait
for a response
before triggering
an exception

Uses RestClientBuilder to create a builder
instance for setting features programmatically

> RestClientBuilder.newBuilder ()

CHAPTER 5 Clients for consuming other microservices

Listing 5.5 AccountService

@Path (" /accounts")
@Produces (MediaType.APPLICATION_ JSON)
public interface AccountServiceProgrammatic {
@GET
@Path ("/{acctNumber}/balance")
BigDecimal getBalance (@PathParam("acctNumber") Long accountNumber) ;

@POST

@Path (" {accountNumber}/transaction")

void transact (@PathParam("accountNumber") Long accountNumber,
BigDecimal amount) ;

The only difference between this interface and listing 5.1 is the removal of @Register-
RestClient. Though the same interface can be used for CDI and programmatic API
usage, it’s important to show that @RegisterRestClient is not required for program-
matic API usage, as shown next.

Listing 5.6 TransactionResource

Sets the URL for any requests with the
REST client, which is equivalent to baseUrl
on @RegisterRestClient. Uses the configuration

@Path ("/transactions") value of account.service to create a new URL.
public class TransactionResource {
@ConfigProperty (name = "account.service", defaultValue =

"http://localhost:8080")

)) Injects a value for the configuration
String accountServiceUrl;

key account.service, defaulting it to
http://localhost:8080 if it’s not found

@POST Adds the new programmatic API
@Path ("/api/{acctNumber}") to the /transactions/api/ URL path

public Response newTransactionWithApi (@PathParam("acctNumber") Long
accountNumber, BigDecimal amount) throws MalformedURLException {
AccountServiceProgrammatic acctService =

.baseUrl (new URL (accountServiceUrl)) <

.connectTimeout (500, TimeUnit.MILLISECONDS) The maximum amount
.readTimeout (1200, TimeUnit.MILLISECONDS) of wait time allowed
.build(AccountServiceProgrammatic.class) ; when connecting to an

external service
acctService.transact (accountNumber, amount) ;

return Response.ok () .build() ; Buﬂdsa|w0¥yofthe .
} AccountServiceProgrammatic
} Calls the service in the same way interface for calling the
as done previously with a CDI bean external service

Add the following configuration into application.properties:

%prod.account.service=http://account-service:80

5.2.3

5.24

Service interface definition 103

Now build the Transaction service, and redeploy it to Kubernetes as shown next:

mvn clean package -Dquarkus.kubernetes.deploy=true

Verify the service has started without error, and issue a request to deposit funds into
an account as follows:

curl -H "Content-Type: application/json" -X POST -d "2.03"
http://192.168.64.4:31692/transactions/api/444666

Running curl http://192.168.64.4:30704/accounts/444666/balance will return
a balance that should be $2.03 more than it was previously. Try out different combi-
nations of depositing and withdrawing funds from accounts with the programmatic
APIL. Both the CDI bean and programmatic API endpoints shouldn’t result in any
different outcomes.

Using the programmatic API with RestClientBuilder provides greater control
over the configuration of the client. Whether specifying the URL of the external ser-
vice, registering JAX-RS providers, setting connection and read timeouts, or any other
setting, we can do it all with the RestClientBuilder.

Choosing between CDI and a programmatic API

There is no right or wrong answer here—it all comes down to preference.

Some developers are more comfortable dealing with CDI beans, whereas others pre-
fer using programmatic APIs to fully control the process. There is one caveat when
using CDI beans for a REST client—it does require more configuration in application
.properties compared to the programmatic API approach. However, whether that is a
problem very much depends on what aspects the developer wants control over. If they
require more control, then it’s likely easier to do that with the programmatic API and
not configuration properties.

Whichever approach we choose, it doesn’t impact the type-safe guarantees of the
REST client. It impacts only the interaction with the interface.

In addition, both approaches provide a thread-safe means of communicating with
external resources. In listing 5.6, the acctService could be stored in a variable on the
class. In this case, it wasn’t, to simplify the code.

Asynchronous response types

In recent years, there’s more desire to write reactive code, ideally not blocking threads
while waiting. Because calling an external service could be a slow operation, depend-
ing on network latency, network load, and many other factors, it would be a good idea
to utilize asynchronous types when using the REST client.

The first thing to do is to update the AccountService and AccountService-
Programmatic interfaces with the following method:

104

CHAPTER 5 Clients for consuming other microservices

@POST

@Path (" {accountNumber}/transaction")

CompletionStage<Void> transactAsync (@PathParam("accountNumber") Long
accountNumber, BigDecimal amount) ;

The only change from the original transact () method on the interface is the return
type. Instead of returning void, the method now returns CompletionStage<Voids. In
essence, the method is still returning a void response, but wrapping it in a Comple-
tionStage allows the method to complete, and handling the response from the HTTP
request will happen later once received. Although the response has not been
received, the method execution completes and processing of the response waits.
Doing so frees up the thread that was processing the request to handle other requests
while waiting for an asynchronous response.

With the interfaces updated, how different are the JAX-RS resource methods? See
the next code listing.

Listing 5.7 TransactionResource

Uses a different URL path for the
asynchronous version. Return type is now

@POST) - et
CompletionStage <Void > instead of Response.

@Path ("/async/{acctNumber}")

public CompletionStage<Void> newTransactionAsync (@PathParam("acctNumber")
Long accountNumber, BigDecimal amount) {

return accountService.transactAsync (accountNumber, amount) ;

}
Method body modified
@POST to return the result
@Path ("/api/async/{acctNumber}") of REST client call
public CompletionStage<Voids>
newTransactionWithApiAsync (@PathParam("acctNumber") Long accountNumber,
BigDecimal amount) throws MalformedURLException {

As with the newTransaction-

AccountServiceProgrammatic acctService = Async method, instead of
RestClientBuilder.newBuilder () returning a Response to indicate
.baseUrl (new URL (accountServiceUrl)) eventMngisOK,reﬂwnsthe
.build (AccountServiceProgrammatic.class) ; CompletionStage returned from
the REST client call instead

return acctService.transactAsync (accountNumber, amount) ; <

}

With the Transaction service updated, redeploy the changes with the following:

mvn clean package -Dquarkus.kubernetes.deploy=true

After verifying that the service started successfully with kubectl get pods, retrieve
an account balance and then deposit an amount using the new asynchronous API
URL as follows:

curl http://192.168.64.4:30704/accounts/444666/balance
curl -H "Content-Type: application/json" -X POST -d "5.63"
http://192.168.64.4:31692/transactions/async/444666

5.3

53.1

Customizing REST clients 105

Though the new methods use asynchronous return types, they achieve the same out-
come as the synchronous ones. Take some time to experiment with the asynchronous
methods—see what the upper limit of the number of parallel requests might be.

Customizing REST clients

So far, the examples have focused on normal usage: defining an interface and then
executing methods on that interface to execute HTTP requests. REST clients offer
many other features, some of which will be covered in the following sections.

Client request headers

All requests that are received or sent from applications contain many headers within
them—some that everyone is familiar with, such as Content-Type and Authorization,
but many headers are passed down a call chain. With REST client, it’s possible to add
custom request headers into the outgoing client request or ensure that headers from
an incoming JAX-RS request propagate to a subsequent client request.

To see the headers received in the Account service, modify AccountResource to
return them from the request. Another option is to print the header contents to the
console with log statements inside the service, as shown next.

Listing 5.8 AccountResource

Injects the HttpHeaders of the HTTP

public class AccountResource { > ;
request into the method. @Context is

@POST . .
@Path (" {accountNumber}/transaction") specific to].AX:RS but acts in a manner
@Transactional similar to @Inject with CDI.

public Map<String, List<Strings>> transact (@Context HttpHeaders headers,
@PathParam("accountNumber") Long accountNumber, BigDecimal amount) {

Returns the Map containing

the HTTP request headers
return headers.getRequestHeaders () ;

}
}

With the Account service modified, it’s also necessary to modify the AccountService
interface the Transaction service uses, as shown in the following listing.

Listing 5.9 AccountService

Indicates the default ClientHeadersFactory should be used. The

default factory will propagate any headers from an inbound JAX-RS Adds class-level-param to
request onto the outbound client request, where the headers are the outgoing HTTP request
added as a comma-separated list into the configuration key named header. Adding it on the
org.eclipse.microprofile.rest.client.propagateHeaders. interface means all
methods will have the
@Path ("/accounts") header added.
@RegisterRestClient
@ClientHeaderParam(name = "class-level-param", value = "AccountService
interface") <

@RegisterClientHeaders

106

CHAPTER 5 Clients for consuming other microservices

@Produces (MediaType.APPLICATION_ JSON)
public interface AccountService {

Modifies the return type to
@POST be a Map of the headers

@Path (" {accountNumber}/transaction")
Map<String, List<String>> transact (@PathParam("accountNumber") Long
accountNumber, BigDecimal amount) ;

@POST
@Path (" {accountNumber}/transaction")
—— @ClientHeaderParam(name = "method-level-param", value = "{generateValue}")
CompletionStage<Map<String, List<String>>>
transactAsync (@PathParam ("accountNumber") Long accountNumber,
BigDecimal amount) ;
default String generateValue() { As with the transact
return "Value generated in method for async call"; method, returns a
} CompletionStage of
} Default method on the the Map of headers
interface used to create
Similar to the usage of @ClientHeaderParam a value for the header
on the type, it adds the method-level-param on transactAsync
header to the outbound HTTP request.

There are new features included in listing 5.9 to cover in detail.

@ClientHeaderParam is a convenient way to add request headers onto the HTTP
request that is sent to the external service. As seen previously, the annotation can
define a value that is a constant string, or it can use a method, either on the interface
itself or in another class, by using curly braces to surround the name of the method.
Calling a method to add a header is useful for setting an authentication token on the
request, which would be necessary to call secured services, and a token isn’t present
on the incoming request.

Is there an advantage to using @ClientHeaderParam? Another option is adding
header parameters using @HeaderParam on a method parameter. The problem with
the @HeaderParam approach is it requires additional parameters on any interface
method. Maybe when adding one or two parameters, it’s not too bad, but what about
three, four, or even six parameters! Not only does it clutter up the method definition
in the interface, whenever making a call to the method, we need to pass all those
parameters as well. This is where @ClientHeaderParam is helpful, keeping the inter-
face methods uncluttered and simplifying the method invocation.

@RegisterClientHeaders is similar to @ClientHeaderParam, but for propagating
headers and not adding new ones. The default behavior when there’s an incoming
JAX-RS request is for no headers to be passed onto any subsequent REST client call.
Using @RegisterClientHeaders allows specific headers to be propagated from an
incoming JAX-RS request.

Which headers should be propagated is specified in the configuration with the
org.eclipse.microprofile.rest.client.propagateHeaders key, where the value is
a comma-separated list of header names to propagate. This feature is especially useful

Customizing REST clients 107

for propagating authentication headers from incoming requests onto REST client
calls, but do make sure it makes sense for them to be passed. Sometimes passing
authentication headers from incoming to outgoing can have unintended conse-
quences, such as performing operations on a service with an unexpected user identity.

If the default header propagation isn’t sufficient—maybe it’s needed to modify the
content of a particular header—@RegisterClientHeaders allows the use of a custom
implementation. For example, @RegisterClientHeaders (MyHeaderClass.class)
says to use a custom implementation, where MyHeaderClass extends ClientHeaders-
Factory. The only method on ClientHeadersFactory to implement is update (),
which has method arguments for the MultiMap containing the headers from the
incoming JAX-RS request and a MultiMap with the headers to be used on the outgoing
REST client call. Updating the headers on the outgoing headers will alter what is set
on the HTTP request to the external service.

The change to be made in the TransactionResource is modifying the return types
of newTransaction and newTransactionAsync to use a Map for the headers.

The last thing needed is to specify which headers need to be automatically propa-
gated. Without doing that, @RegisterClientHeaders will not propagate anything.
Add the following to application.properties of the Transaction service:

org.eclipse.microprofile.rest.client.propagateHeaders=SpecialHeader

The header name to be
propagated is SpecialHeader.

With all those changes made, deploy the updated Account service and Transaction
service to Kubernetes as shown here:

/chapter5/account-service > mvn clean package
-Dguarkus.kubernetes.deploy=true

/chapter5/transaction-service > mvn clean package
-Dguarkus.kubernetes.deploy=true

With both services updated, it’s time to see the headers being passed. Let’s run the
synchronous transaction method first, which should have only the class-level header
added, as follows:

curl -H "Content-Type: application/json" -X POST -d "7.89"
http://192.168.64.4:31692/transactions/444666

The terminal output should contain the next code:

{ Q—' Header passed via
"class-level-param": ["AccountService-interface"], @ClientHeaderParam
"Accept": ["application/json"], on AccountService
"Connection": ["Keep-Alive"],

"User-Agent": ["Apache-HttpClient/4.5.12 (Java/11.0.5)"],

"Host": ["account-service:80"],

108

CHAPTER 5 Clients for consuming other microservices

"Content-Length":["4"],
"Content-Type": ["application/json"]

}

Now let’s do the same with the asynchronous transaction. This time both the class
level and method level headers should be present, as shown next:

curl -H "Content-Type: application/json" -X POST -d "6.12"
http://192.168.64.4:31692/transactions/async/444666

The output should now include the following:

Class-level header
{ from AccountService
"class-level-param": ["AccountService-interface"],
"method-level-param": ["Value generated in method for async call"], <—

"Accept": ["application/json"],

"Connection": ["Keep-Alive"],

"User-Agent": ["Apache-HttpClient/4.5.12 (Java/11.0.5)"],

"Host": ["account-service:80"],

"Content-Length": ["4"], Header passed via @ClientHeaderParam

"Content-Type" : ["application/json"] on the transactAsync method. of
} AccountService

How about the propagation of headers? For that, it’s necessary to pass a header with
curl as follows:

curl -H "Special-Header: specialValue" -H "Content-Type: application/json" -X
POST -d "10.32" http://192.168.64.4:31692/transactions/444666

curl -H "Special-Header: specialValue" -H "Content-Type: application/json" -X
POST -d "9.21" http://192.168.64.4:31692/transactions/async/444666

If it works as expected, the terminal output will contain the headers for each of the
previous examples, in addition to the Special-Header that was passed into the ini-
tial call.

Exercise for the reader
Modify the programmatic APl versions in AccountServiceProgrammatic and
TransactionResource, and try out the /api endpoints to see the headers.

In this section, we covered the different approaches to including additional headers
on the client request. @ClientHeaderParam can be added to a REST client interface
for applying to all methods, or added to specific methods only. @ClientHeaderParam
allows setting a static value as the header, or calling a method to retrieve a necessary
value for the header.

5.3.2

REST client
interface

Customizing REST clients 109

Declaring providers

Many JAX-RS providers can be written to adjust a request or response, such as Client-
RequestFilter, ClientResponseFilter, MessageBodyReader, MessageBodyWriter,
ParamConverter, ReaderInterceptor, and WriterInterceptor. Each provider type
enables developers to customize an aspect of the HTTP request or response process-
ing. Because the providers are part of JAX-RS, example usage will cover only some of
them. There is also the ResponseExceptionMapper from the REST client.

Figure 5.3 highlights the sequence of JAX-RS and REST client provider execution
in preparing the HTTP request and handling the HTTP response.

REST client proxy internals

|

|

|

|

Param Client request Writer Message body . |
converter filter interceptor writer T ,

<
Message body Reader Response Client response \(\—(i?
reader interceptor exception mapper filter |

Figure 5.3 Provider processing sequence of REST client proxy

Any provider classes that implement the previous interfaces can register them for use
in the following ways:

Add eprovider onto the class itself. This is the least flexible method because it
means any JAX-RS interaction will include the provider, irrespective of whether
it’s an incoming JAX-RS request or an outgoing REST client call.

Associate a provider class with a specific REST client interface by adding
@RegisterProvider (MyProvider.class) to the interface.

When using the programmatic API, call builder.register (MyProvider.class)
to use the provider with a particular REST client call.

Implement either RestClientBuilderListener or RestClientListener, and
register the provider directly onto the RestClientBuilder.

The following sections cover in detail how to use client filters and exception mappers.

CLIENT REQUEST FILTER

This section shows how to write and apply a ClientRequestFilter to REST client
calls. A ClientRequestFilter can be used to modify the HTTP request before it is
sent. Modifications can include anything from modifying header attributes and their

110 CHAPTER 5 Clients for consuming other microservices

values, to modifying the content of the HTTP request. There’s not much to writing a
request filter, so let’s write one to add a new header onto the request containing the
name of the invoked method, as shown in the next code listing.

Listing 5.10 AccountRequestFilter

Overrides the filter method to perform whatever filtering is The class needs
needed. The method has access to the ClientRequestContext . to |mp|er.nent
to amend what is sent in the request. ClientRequestFilter.

public class AccountRequestFilter implements ClientRequestFilter {
@Override
public void filter (ClientRequestContext requestContext) throws IOException {
String invokedMethod =
(String) requestContext.getProperty ("
org.eclipse.microprofile.rest.client.invokedMethod") ;
requestContext .getHeaders () .add ("Invoked-Client-Method", invokedMethod) ;

} : The REST client adds a property named
org.eclipse.microprofile.rest.client.invokedMethod

Adds a new request header named with the value of the interface method that is
Invoked-Client-Method with the being invoked. In this case it is retrieved.

value from the previous line

For the previous filter to be used during invocation of a client request, register it as a
provider onto AccountService as follows:

@RegisterProvider (AccountRequestFilter.class)
public interface AccountService { ... }

Time to redeploy the updated Transaction service to Kubernetes, like so:

mvn clean package -Dquarkus.kubernetes.deploy=true

With the service updated, let’s see the additional header added to the request by the
filter, as shown in the following code. Verification can be done with either the syn-
chronous or asynchronous version of the method. Because it’s applied directly on the
interface, it works on both executions.

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/444666

With the returned headers, the following code should be present in the terminal:

{
"class-level-param": ["AccountService-interface"],
"method-level-param": ["Value generated in method for async call"]l,
"Accept": ["application/json"],
"Invoked-Client-Method": ["transact"], Headeraddedbyﬁhe
) . AccountRequestFilter
"Connection": ["Keep-Alive"], howi h
"User-Agent": ["Apache-HttpClient/4.5.12 (Java/11.0.5)"] showing the transact .
g) p] p o T ! method of AccountService
"Host": ["account-service:80"], was called

Customizing REST clients 111

"Content-Length": ["4"],
"Content-Type": ["application/json"]

}

The returned results should be the same as the CDI bean version seen earlier.

Exercise for the reader

Modify the methods on TransactionResource that use the REST client program-
matic APIs to register the filter and run the tests on the URLs that use them.

This section covered how to register a ClientRequestFilter, or ClientResponse-
Filter, for a REST client by adding @RegisterProvider with the name of the class.

MAPPING EXCEPTIONS

Another JAX-RS provider type that can be implemented is the ResponseException-
Mapper. This provider is specific to the REST client and will not work with JAX-RS end-
points. The purpose of the mapper is to convert the Response that is received from an
external service into a Throwable that can be more easily handled.

IMPORTANT The exception type of the mapper must be present on the
throws clause of the method on the interface for it to work.

As with other JAX-RS providers, we can set a specific @Priority to indicate the prece-
dence of an exception mapper compared to others. The lower a priority number, the
higher, or earlier, in the ordering it is executed.

Implementations of the REST client provide a default exception mapper designed
to handle any Response where the status code is greater than or equal to 400. With
such a response, the default mapper returns a WebApplicationException. The prior-
ity of the default exception mapper is the maximum value for an Integer, so it can be
bypassed with a lower priority.

If the default exception mapper isn’t wanted at all, it can be disabled by setting the
microprofile.rest.client.disable.default.mapper configuration property to true.

Let’s write the following exception mapper to handle any errors related to an account
not being found. For that, there needs to be an exception thrown from the mapper.

public class AccountNotFoundException extends Exception {
public AccountNotFoundException (String message) {
super (message) ;

}
}

There’s nothing special about the exception, because the string parameter construc-
tor is sufficient.
Now to write the mapper, as shown in the next listing.

112 CHAPTER 5 Clients for consuming other microservices

Listing 5.11 AccountRequestFilter

toThrowable takes the Response and
converts it the appropriate exception type,
in this case, AccountNotFoundException.

Implements ResponseExceptionMapper
for the AccountNotFoundException type

public class AccountExceptionMapper implements
ResponseExceptionMapper<AccountNotFoundExceptions {

@Override
public AccountNotFoundException toThrowable (Response response) { <+
return new AccountNotFoundException("Failed to retrieve account"); <
Handles a } Creates an instance of
AccountNotFoundException
Relspo'r‘lse @Override P
z;l;;;ﬁ public boolean handles (int status, MultivaluedMap<String, Object> headers)
. { .
code is 404 return Status —- 404; The handles method provides a way to say
} whether the mapper is responsible for
) producing a Throwable based on the Response,
or whether it shouldn’t be called for it.

Without adding @Priority onto AccountExceptionMapper, the default priority of
5000 is used.

To see the effect of the exception mapper, modify TransactionResource to cap-
ture the exception from the REST client call as shown next.

Listing 5.12 TransactionResource

public class TransactionResource {
@POST
@Path ("/{acctNumber}")

public Map<String, List<String>> newTransaction (@PathParam("acctNumber")
Long accountNumber, BigDecimal amount) {

try {
return accountService.transact (accountNumber, amount) ; VVrapstheREST
} catch (Throwable t) { client call in a
t.printStackTrace () ; try-catch
Map<String, List<String>> response = new HashMap<> () ;
response.put ("EXCEPTION - " + t.getClass(),

Collections.singletonList (t.getMessage())) ;
return response;

Creates a Map with information about the received
} exception to return as the response. This is to show the

} captured exception only; a production service should

} handle the exception in a more appropriate manner.

Rebuild and deploy the Transaction service to Kubernetes as follows:
mvn clean package -Dquarkus.kubernetes.deploy=true
Now call the service with an account number that doesn’t exist, as shown here:

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/11

Customizing REST clients 113

The headers returned should provide details of the exception, as follows:

{

"EXCEPTION - class javax.ws.rs.WebApplicationException": ["Unknown error,

tat de 404"
} status code : By default, the exception type received from the

REST client call is WebApplicationException. This is a
result of the default exception mapper being active.

Let’s modify AccountService to register the custom exception mapper, as shown in
the next listing.

Listing 5.13 AccountService

@RegisterProvider (AccountExceptionMapper.class)

o i Registers the
public interface AccountService {

AccountExceptionMapper
for handling exceptions

@POST

@Path (" {accountNumber}/transaction")

Map<String, List<String>> transact (@PathParam("accountNumber")
Long accountNumber,
BigDecimal amount) throws AccountNotFoundException;

transact indicates it can return an
AccountNotFoundException, enabling
the exception mapper to work.

Time to see how the exception changes with the mapper registered. Redeploy the
Transaction service like so:

mvn clean package -Dquarkus.kubernetes.deploy=true
Now run the same request again as follows:

curl -H "Content-Type: application/json" -X POST -d "15.64"
http://192.168.64.4:31692/transactions/11

The terminal should contain the following response:

{

"EXCEPTION - class

io.quarkus.transactions.AccountNotFoundException": ["Failed to retrieve
account"] . . .
} The exception type received is
now AccountNotFoundException.

Exercise for the reader

Try out the different methods on TransactionResource to see when the exception
mapper is, and is not, applied. Another exercise is to store the transactions into a
local database for auditing.

114

CHAPTER 5 Clients for consuming other microservices

Summary

By adding @RegisterRestClient onto an interface that defines an external
service, a CDI bean representing the interface is available for injection with
@RestClient to execute REST client calls.

Customization of interface behavior can be achieved with configuration keys
that start with [packageName] . [className] /mp-rest/. The URL of the exter-
nal service, which CDI bean scope to use, what JAX-RS providers to register, and
the connection or read timeouts are all items available for customization.
When executing REST client calls with services that may require time to exe-
cute, it is worth switching the return types to CompletionStage to enable asyn-
chronous execution.

Adding @RegisterProvider, with a JAX-RS provider class name as the value,
onto an interface of an external service indicates the provider should be used
with any REST client calls that involve the interface.

Implementing ResponseExceptionMapper to handle specific HTTP status codes
and return a custom exception makes executing REST client calls more like
local method execution.

Application health

This chapter covers

= Application health, or lack thereof, in a traditional,
three-tier, Java monolithic application architecture

= MicroProfile Health and exposing application
health

= Exposing Account service and Transaction service
application health

= Using Kubernetes probes to address application
health issues

The combination of Kubernetes and the microservices architecture have caused a
fundamental shift in how developers create applications. What used to be dozens of
large monolithic applications are now becoming hundreds (or thousands) of smaller,
more nimble microservice instances. The more application instances running, the
larger the odds of an individual application instance failing. The increased odds of
failure could be a significant challenge in production if application health is not a
first-class concern in Kubernetes.

Let’s begin with a quick review of how monolithic applications running in appli-
cation servers react to unhealthy applications.

115

116

6.1

CHAPTER 6 Application health

The growing role of developers in application health

Many enterprise Java developers have experience with Java application servers, dating
back to the late 1990s. During most of that time, developers created monolithic,
three-tier applications with little awareness of exposing an application’s health. From
a developer’s perspective, monitoring an application’s health was the responsibility of
system administrators whose job descriptions are to keep applications up and running
in production.

Figure 6.1 shows the typical high-availability architecture of monolithic applica-
tions running in a traditional, horizontally scaled application server configuration.

Load-balancing monolithic applications

:- n GET /greeting

2 App 1 Load balancer

5o | O e, (OK) (LB) _

c o GET /greeting
S2

3%, o

= pp 2

g O H77P 200 (0K)

i~ <<C. 1. Incoming request for app 1.

: Ao1 :‘/ OY\ 2. Forward request to AS B, app 1.

P APR L 3. AS B, app 1 failing: HTTP 500 response—
L___7r

internal server error.
4. LB redirects to AS A, app 1.
App 2 5.AS A, app 1—successful. request and response.
6. 200 response (OK) to client.
7. AS B, app 1 remains in failed state until admin
restarts.

Application server B
(AS B)

Figure 6.1 Traditional application server, high availability architecture

There are some notable points to make about this architecture:

Load balancer—The load balancer’s primary role is to balance load across
multiple application instances for application scalability and availability. The
load balancer redirects traffic from a failing instance to a properly running
instance. It is the responsibility of an administrator to ensure proper load
balancer configuration.

Handling failed applications—Addressing failed applications is commonly dealt
with manually. Because dealing with a failing application is a manual process,
administrators prefer to conduct a root cause analysis to find the cause and
address it, so they do not have to spend time on it again at a later date.

6.2

MicroProfile Health 117

Regardless, it is the administrator’s responsibility to restart the failed applica-
tion, which takes time and resources.

Roles and responsibilities—In this scenario, developers have little to no direct role
in application health in production. The developer’s role is typically limited to
helping diagnose issues to determine whether the application is the root cause.
Minimal automation—The only automation in this process is the load balancer
recognizing the HTTP 500 error and pausing HTTP traffic to the failing appli-
cation. Load balancers also recover by occasionally sending traffic to detect a
recovered server and resume traffic. Because there is no formal “health” con-
tract among the application, the load balancer, and the application server, no
automated way exists to determine if an application is failing.

Given the scale of microservice deployments, with hundreds to thousands of applica-
tion instances, administrators cannot manually manage individual application instances
at this scale. Developers can play a key role in significantly improving the overall
health and efficiency of a production environment by reducing the need for manual
intervention. More specifically, developers can proactively expose application health
to Kubernetes. Kubernetes uses probes to check the exposed health and take corrective
action if necessary. In the next section, we cover MicroProfile Health as an API to
expose application heath and follow that by covering how Kubernetes liveness and
readiness probes can take corrective action.

MicroProfile Health

The MicroProfile community recognizes that modern Java microservices run on single-
application stacks, which in turn often run in containers. There is also recognition
that modern container platforms have defined a formal health contract between the
containerized application and the platform. With a formal contract in place, the plat-
form can restart failing application containers and pause traffic to an containerized
application that is not ready to accept traffic. The MicroProfile Health specification
supports such a contract by defining the following:

Health endpoints—Application health is accessible at the MicroProfile-specified
/health/live and /health/ready endpoints. Quarkus will redirect these to
/q/health/live and /q/health/ready endpoints, respectively.

HTTP status code—The HTTP status code reflects the health status.

HTTP response payload—The JSON payload also provides status, along with addi-
tional health metadata and context.

Application liveness—Specifies whether an application is up and running properly.
Application readiness—Specifies whether an application is ready to accept traffic.
Application health API—Exposes application readiness and liveness based on cus-
tom application logic.

118

6.2.1

6.2.2

CHAPTER 6 Application health

Liveness vs. readiness

Although it may not be apparent, a clear separation of concerns exists between live-
ness and readiness. The underlying platform makes an HTTP request to the
/q/health/live endpoint to determine whether it should restart the application con-
tainer. For example, an application running out of memory can cause unpredictable
behavior that may require a restart.

The underlying platform makes an HTTP request to the /q/health/ready end-
point to determine whether an application instance is ready to accept traffic. If it is
not ready, then the underlying platform will not send traffic to the application
instance. An application can be “live” but not be “ready.” For example, it may take
time to prepopulate an in-memory cache or connect to an external service. During
this time, the application is live and running properly but may not be ready to receive
external traffic because a service it depends on may not be running properly.

NOTE Sending an HTTP request to the /health endpoint returns the com-
bined liveness and readiness status. MicroProfile Health has deprecated this
endpoint in favor of separate /health/live and /health/ready endpoints.
Quarkus prefers using /q/health/live and /qg/health/ready endpoints
directly to avoid an HTTP redirect.

Determining liveness and readiness status

The underlying platform has two means to determine status: it can check the HTTP
status code or parse the JSON payload to obtain the status (UP, DOWN). Table 6.1 shows
the correlation between the HTTP status code and JSON payload.

Table 6.1 Health endpoints, status codes, and JSON payload status

Health check endpoints HTTP status JSON payload status
/q/health/live and /g/health/ready 200 UP
/g/health/live and /q/health/ready 503 DOWN
/a/health/live and /g/health/ready 500 Undetermined *

* Request processing failed.

Figure 6.2 shows the flow of probe traffic on the left-hand side and the flow of appli-
cation traffic on the right-hand side, in time sequence from top to bottom. The
figure shows that after a period of unsuccessful attempts, the container will be
restarted, and normal application traffic will resume until the probe detects the
next health issue.

Getting started with MicroProfile Health 119

HTTP liveness check

Underlying platform liveness probe

.)

(Kubernetes, Docker, .

HTTP GET Pod (1) 1. The liveness check and application
traffic are executing normally.

/health/live
. C HTTP GET /accounts 2. The application liveness check
200 OK (UP)) . fails.
[{“id”:1, ..}] 3. The Account service is down; the
HTTP GET HTTP response depends on the
/health/live HTTP GET /accounts error.
"éb’é’dh’é;”a’i’lé’sl’ ol 4. After three unsuccessful attempts,
@ (POWN)) Unknowne> the container is restarted. Traffic
is redirected to another instance
HTTP GET o during restart.
/health/live HTTP GET /accounts | £ | 5. The liveness check and application
I " s N .
503 Unavailable) s traffic are executing normally.
@ (DOWN) Account service Unknown @ | %
HTTP GET (container) %
/health/live HTTP GET /accounts | 2
|]
503 Unavailable S, -
Q(DOWN) Unknown o
Restart o 0
container HTTP GET /accounts
O+rPGET " ceooeeenoseas -
Ihealthilive [{fid™1, .31
200 0K (UP) | |

Figure 6.2 Liveness check and application traffic flow

Figure 6.3 shows a flow similar to figure 6.2, but instead represents a readiness health
check. The figure shows that when a database connection is lost, the readiness check
fails. The failure causes Kubernetes to redirect flow to another application instance
until the database connection resumes.

A couple of notes about these figures: First, we will address these use cases shortly
in code examples. Second, the probes are configurable, and we will also cover them
shortly.

In fact, let’s start coding now!

Getting started with MicroProfile Health

This chapter extends the Account service and Transaction service with application
health logic. This logic provides Kubernetes enough metadata to take corrective
action if necessary.

120

CHAPTER 6 Application health

HTTP readiness check

Underlying platform readiness probe

)

(Kubernetes, Docker,

HTTP GET
/health/ready

Pod

200 OK (UP)

HTTP GET
/health/ready

Database
connection
lost

-
503 Unavailable
9 (DOWN)

HTTP GET
/health/ready

g -
503 Unavailable
9 (DOWN)

HTTP GET
/health/ready

Account service
(container)

[t
503 Unavailable
9 (DOWN)

HTTP GET

Database
connection
resumed

200 OK (UP)

HTTP GET /accounts

HTTP GET /accounts

[{“id”:1, ..} 7

Figure 6.3 Readiness check and application traffic flow

[{“id”:1, ..}] .

Application traffic

1. The readiness check and application
traffic executing normally.

2. The database connection is lost;
the application health check fails.

3. The Account service is down;

the underlying platform directs
application traffic to another
instance.

4. The database connection is restored;
the application health check
succeeds.

5. The readiness check and application
traffic executing normally.

The Account service uses a PostgreSQL database, which must be up and ready to
accept requests. We can do this using the following steps:

1 Check if PostgreSQL is running in the Kubernetes cluster by running kubect1l
get pods. If the output does not contain text similar to postgres-58db5b6954-
27796, then the database is not running.

2 If the database is not running, deploy the database by running kubectl deploy

-f postgresql_kubernetes.yml from the top-level chapter06 directory.

2 Once the database is running, forward local database traffic to the PostgreSQL
Pod in the Kubernetes cluster. To do this, run the command in the next code

listing.

Listing 6.1 PostgreSQL port forwarding

This will forward traffic until CTRL-C is pressed
kubectl port-forward service/postgres 5432:5432

<

Forwards traffic on localhost port 5432 to the Kubernetes Pod port 5432. During development,
the Account service uses localhost port 5432, which forwards traffic to the PostgreSQL Pod.

6.3.1

Getting started with MicroProfile Health 121

With the database running, the next step is to start the Account service. Install the par-
ent pom.xml, and then start the Account service.

Listing 6.2 Installing parent pom and build artifacts

Installs the

mvn clean install -DskipTests
parent pom.xml

cd account-service

mvn quarkus :dev Starts the account-service

in developer mode

Check the health endpoint to determine the Account service health status using the
command shown next.

Listing 6.3 Checking health endpoint availability

curl -1 localhost:8080/g/health/live

The resulting output in listing 6.4 shows that Quarkus does not include a liveness
health check endpoint by default.

Listing 6.4 Quarkus health endpoint unavailable

HTTP/1.1 404 Not Found
Content-Length: 0
Content-Type: application/json

Account service requires an additional Quarkus extension for MicroProfile Health
support. Using the code in the following snippet, add the quarkus-smallrye-health
extension.

Listing 6.5 Add MicroProfile Health support using the smallrye-health extension

mvn quarkus:add-extension -Dextensions="quarkus-smallrye-health"

Because Quarkus is running in developer mode, the extension will be loaded
automatically.

Account service MicroProfile Health liveness

With MicroProfile Health support loaded, check the endpoint again with curl -i
localhost:8080/qg/health/live. This time, as seen in the next code listing, the result
is very different.

Listing 6.6 Liveness health check output

An HTTP response code of

HTTP/1.1 200 OK 2XX means the service is up
content-type: application/json; charset=UTF-8 andrunMngasexpedﬁd

content-length: 46 L.
The overall status of the service is

UP. An HTTP response code of 2XX
will always result in an UP status.

The HTTP response is a
{ JSON-formatted payload.

"status": "UP", <

122

6.3.2

——— &> public HealthCheckResponse call ()

The state returned

CHAPTER 6 Application health

"checks": [
1
}

Although the output is relatively simple, we do have some useful context to cover.
First, without writing a custom health check, MicroProfile Health requires a default
status of UP.

Second, the HTTP status maps to the JSON payload status. A 200 HTTP status
maps to UP, and a 5XX HTTP status maps to DOWN. The underlying platform has the
option of considering the remainder of the JSON payload for additional context
before taking corrective action.

Last, the MicroProfile Health specification requires that the JSON payload returns
two items. First, it must return a status of UP or DOWN. Second, it must return an array
of checks that aggregate all liveness health checks. If one or more liveness health
checks are DOWN, then the overall status for the health check is DOWN.

Having seen a liveness health check, it’s time to create a custom liveness health
check.

The checks JSON array contains named health checks
and their status. The array is empty, meaning there
are currently no custom liveness health checks.

Creating an Account service liveness health check

To learn the API, let’s start by creating a liveness health check that always returns UP,
as seen in the following code.

Listing 6.7 AlwaysHealthyLivenessCheck.java

A HealthCheck must be a CDI
bean. It is annotated with
@ApplicationScoped, so a single

Health checks must
implement the
HealthCheck interface,

CDI bean instance is created. This is a which recuives the cal()
@ApplicationScoped :ve:u:‘ss heck method be implemented.
@Liveness ealth check.

A HealthCheckResponse object is
created using a builder pattern.

G

is always UP.

@Override
{ QJ
.named ("Always live")
build(); Contextual data can be added to the health

public class AlwaysHealthyLivenessCheck implements HealthCheck {
return HealthCheckResponse
.withData ("time", String.valueOf (new Date()))
.up ()
} check in the form of key-value pairs. In this
health check, a time/date stamp is returned.

}

The call() method is invoked whenever the
/q/health/live endpoint is invoked and must
return a HealthCheckResponse object.

To test the liveness health check, run
results should match the next listing.

Each health check has a name that should
reflect the intent of the health check.

curl localhost:8080/g/health/live. The

Getting started with MicroProfile Health 123

Listing 6.8 Liveness health check output

HTTP/1.1 200 OK

. .) The HTTP status returns
content-type: application/json; charset=UTF-8

OK because the application

content-length: 220 status is UP.
The JSON health status
{ UP matches the HTTP
Wetatus": "UP" response status.
"checks": [. .
. { The AlwaysHealthyLivenessCheck status is UP.
The remainder of "name": "Always liver Therefore, the overall status is also UP. If any
the JSON reflects the O ' individual health check status is DOWN, then
values defined in the : ! the overall status is DOWN.
HealthCheckResponse "data": {
; "time": "Mon Sep 28 23:56:38 PDT 2020"
object. }
}

6.3.3

Next, let’s get a firmer understanding of application readiness.

Account service MicroProfile Health readiness

With a sound understanding of application liveness, the next step is to check applica-
tion readiness using curl -1 http://localhost:8080/g/health/ready. Interestingly,
the output shown next may be a bit unexpected.

Listing 6.9 Account service is ready to accept traffic

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 150

{ The database
nstatus": "UP", connection is

operating properly.

"checks": [
"name": "Database connections health check",
"status": "UP"

The output includes a preconfigured database readiness health check. If the database
becomes unavailable, then the Account service will return an HTTP 503 status code,
and Kubernetes will not forward traffic to the service. What is providing the database
readiness health check? The Hibernate ORM with Panache extension automatically
adds the Agroal data source extension as an application dependency. The Agroal data-
source extension provides the readiness health check. All relational databases sup-
ported by Quarkus will benefit from a readiness check.

124

6.3.4

6.3.5

CHAPTER 6 Application health

NOTE As a general rule of thumb, Quarkus extensions that provide client
connectivity to backend services have built-in readiness health checks, includ-
ing relational and nonrelational databases, messaging systems like Kafka and
JMS, Amazon services like S3 and DynamoDB, and more.

Disabling vendor readiness health checks

Sometimes it is preferable to disable vendor readiness health checks like the Agroal
readiness health check. For example, instead of pausing traffic to an application, the
application can continue with fallback logic if the backend service is unreachable. We
can disable vendor readiness health checks in two ways.

First, by setting the MicroProfile Health mp.health.disable-default-procedures
to true, all vendor health checks are disabled. Disabling all vendor readiness health
checks is a coarse-grained approach.

Second, Quarkus readiness health checks can be disabled on an extension-by-
extension basis. To disable a Quarkus extension’s readiness health check, use
quarkus.<client>.health.enabled=false, where <client> is the extension to dis-
able. For example, to disable the data source health check provided by the Agroal
extension, use quarkus.datasource.health.enabled=false. The Quarkus extension
guides document the relevant property name.

Creating a readiness health check

Creating a readiness health check is nearly identical to creating the liveness health
check. The only differences are using the @Readiness annotation instead of the
@Liveness annotation and the business logic to determine readiness. Because the
Account service already has a builtin database readiness health check, let’s create a
readiness health check on the Transaction service that checks the Account service
readiness. If it is not ready, then the Transaction service will return DOWN as well. First,
we’ll need to add the health extension to the Transaction service as shown in the fol-
lowing listing.

Listing 6.10 Adding the health extension to the Transaction service

cd transaction-service
mvn quarkus:add-extension -Dextensions="quarkus-smallrye-health"

With the health extension added, create the AccountHealthReadinessCheck class
shown in the next code listing.

Listing 6.11 AccountHealthReadinessCheck.java

A readiness X X X
health check Quarkus automatically makes this a @Singleton CDI bean when no

scope is provided. Although not a portable feature, this does tidy

@Readiness up the code a bit and delivers some Quarkus developer joy.

public class AccountHealthReadinessCheck implements HealthCheck {
@Inject

Getting started with MicroProfile Health 125

@RestClient

AccountService accountService; . .
Injects an instance of the

AccountService REST client, which will
BigDecimal balance; be used to invoke the Account service

Tests Account service availability by invoking
{ an endpoint and getting the balance of a
special "Health Check" account

@Override
public HealthCheckResponse call ()
try {
balance = accountService.getBalance (999999999L) ;
} catch (WebApplicationException ex) {

Returns a DOWN // This class is a singleton, so clear last request's balance
status only if there is balance = new BigDecimal (Integer. MIN_VALUE) ;
a 5XX HTTP status
code, meaning the —> if (ex.getResponse().getStatus() >= 500) {
service was unable to return HealthCheckResponse
respond to a valid .named ("AccountServiceCheck")
HTTP request. All .withData ("exception", ex.toString())
other status codes .down ()
imply that the .build() ;
service is responding }
to requests. | Returns an UP
status along with
the balance

return HealthCheckResponse
.named ("AccountServiceCheck")
.withData ("balance", balance.toString())
.up ()
.build() ;

Add a readiness health check account to the accounts table as shown next.

Listing 6.12 Adding test account to src/main/resources/import.sql

INSERT INTO account (id, accountNumber, accountStatus, balance, customerName,
> customerNumber) VALUES (9, 999999999, 0, 999999999.01, 'Readiness
HealthCheck', 99999999999) ;

Update application.properties with the properties in the following listing.

Listing 6.13 Additional Transaction service properties

The account service is already listening on port 8080, so
the Transaction service will listen on port 8088 to avoid

a port conflict when running in developer mode.
%dev.quarkus.http.port=8088

%dev.io.quarkus.transactions.AccountService/mp-rest/url=http://localhost:8080

Because the Account service is also running locally on port 8080,
the REST client must access the Account service on localhost
when running in developer mode.

126 CHAPTER 6 Application health

Within a new terminal window, start the Transaction service as shown next.

Listing 6.14 Starting the Transaction service

mvn compile quarkus:dev \ Quarkus defaults the debug port to 5005, which is the
-Ddebug=5006 debug port for the Account service that is already running.
Set the Transaction service debug port to 5006.

To test AccountHealthReadinessCheck, run curl -i localhost:8088/g/health/
ready to see the output shown here.

Listing 6.15 ReadinessCheck is accepting traffic

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 234

{

The overall HTTP status is
200, meaning the service is
ready to accept traffic.

"status": "UP",
"checks": [
"name": "AccountServiceCheck",
n Status" . IIUPII The .Acc.ount
: ' service is ready
n n.
data": { to accept traffic.
"balance": "999999999.01"
}

Currently, three services are up and running: PostgreSQL, the Account service, and the
Transaction service. Figure 6.4 shows the service health readiness status of these services.

Transaction service Account service PostgreSQL

SQL: SELECT ...

getBalance 6‘

AccountReadinessHealthCheck

Quarkus data source check -0—»

curl localhost:8088/health/ready Legend

1. Readiness endpoint status: UP. _
2. Check account service readiness.

3. Get balance from database.
4. Quarkus data source readiness check: UP.

Figure 6.4 Service readiness health check status

Getting started with MicroProfile Health 127

Next, stop the port forwarding started in 6.1 by pressing CTRL-C in the terminal run-
ning the kubectl port-forward .. command. Check the readiness endpoint again by
running curl -1 localhost:8088/g/health/ready. The result, shown next, illustrates
that the transaction service is DOWN and not ready.

Listing 6.16 AccountHealthReadinessCheck is DOWN and not ready

HTTP/1.1 503 Service Unavailable
content-type: application/json; charset=UTF-8

The Transaction
service is not

content-length: 276 ready
"status": "DOWN",
"checks": [
"name": "AccountServiceCheck", Invoking t:he Accou.nt service result§ in
"status": "DOWN", an ez(ceptul))n, dcausmg the Transaction
"data": { service to be down.
"exception": "javax.ws.rs.WebApplicationException: Unknown

error, status code 500"

}

As a result of the database being down, there is a cascading failure of the Account ser-
vice not being ready, followed by the Transaction service not being ready. This is out-
lined in figure 6.5.

Transaction service Account service PostgreSQL

SQL: SELECT ...
getBalance @..

/health/ready

AccountReadinessHealthCheck

/health/ready

Quarkus data source check

curl localhost:8088/health/ready Legend

1. The data source check fails because the database is down.
2. HTTP 500 error—]DBCConnectionException.

3. HTTP 500 error—WebApplicationException;
the readiness check fails.

4. HTTP 503—AccountReadinessHealthCheck: DOWN.

Figure 6.5 Service readiness cascading failure

128

6.3.6

CHAPTER 6 Application health

NOTE In the next chapter, section 7.3 discusses how to avoid cascading
failures.

The next couple of sections will cover Quarkus-specific health features, and then we
deploy the services to Kubernetes.

Quarkus health groups

Quarkus extends the MicroProfile Health feature set by adding health groups. A health
group allows for custom grouping of health checks. Health groups are useful for mon-
itoring health checks that do not impact container access (readiness) and container
life cycle (liveness) because they exist at separate REST endpoints. These endpoints
are likely not monitored directly by Kubernetes liveness or readiness probes but
instead by third-party or custom tooling. For example, external tooling can probe a
health group’s endpoint to monitor informational, noncritical health checks.

To create a health group, use @HealthGroup ("group-name"). The next code listing
shows an example of a health check group.

Listing 6.17 CustomGroupLivenessCheckHealth.java health check group example

@ApplicationScoped Specifies the custom
@HealthGroup ("custom") health group
public class CustomGroupLivenessCheck implements HealthCheck {

@Override
public HealthCheckResponse call()

return HealthCheckResponse.up ("custom liveness") ;
}

) Similar to the AlwaysHealthyReadinessCheck, the CustomGroupLivenessCheck
always returns UP. In a real-world scenario, this health group check
would use business logic to determine the health status.

All health groups can be accessed at /q/health/group, and a specific health check
group can be accessed at /g/health/group/<group>, where group is the health group
name. See the following code listing for example output when running curl -i
http://localhost:8088/g/health/group/custom to access the custom health group.

Listing 6.18 Health check group output

HTTP/1.1 200 OK
content-type: application/json; charset=UTF-8
content-length: 132

"status": "UP",

"checks": [
"name": "custom liveness",
"status": "UP"

Kubernetes liveness and readiness probes 129

Having just covered a Quarkus-specific feature, let’s cover one more Quarkus-specific
application health feature, the Quarkus health UI, before moving on to Kubernetes
deployments.

6.3.7 Displaying the Quarkus Health Ul

As an option to viewing the JSON output, Quarkus includes a helpful Health UI for
viewing health status while developing an application, though it is not intended to be
a production tool. To enable the UI, as seen in figure 6.6, add quarkus.smallrye-
health.ui.enable=true to the application.properties file. The Health UI can also
be autorefreshed at regular intervals by clicking the gear icon in the Health UI title
bar and setting the refresh interval. This example shows the Health UI (available at
http:/ /localhost:8080/q/health-ui) enabled on the Account service without
access to the PostgreSQL database.

& QUARKU SHeathur 4 Down

Always live Database connections health
check
time Wed Sep 30 23:08:30 PDT
2020 default Unable to execute the
validation check for the
default DataSource:
Connection to
localhost:5432 refused.
Check that the hostname
and port are correct and
that the postmaster is
accepting TCP/IP
connections.

Figure 6.6 Health Ul enabled on Account service

The UI can also be included in production builds, like native binaries and JAR deploy-
ments, by adding the property quarkus.smallrye-health.ui.always-include=true
to application.properties.

It is time to put all of this newfound health check knowledge to work by adding
Kubernetes health check probes and deploying to Kubernetes.

6.4 Kubernetes liveness and readiness probes

Kubernetes is one of the underlying platforms that offer liveness and readiness health
check probes as a built-in capability. However, they need to be enabled and config-
ured. Table 6.2 describes Kubernetes health check probe configuration parameters.
The parameters are configured with Quarkus properties in application.properties.

130

CHAPTER 6 Application health

Table 6.2 Kubernetes health check probe configuration parameters

Kubernetes probe parameter

Quarkus property

Description and Quarkus defaults

initialDelaySeconds

periodSeconds

timeout

successThreshold

failureThreshold

quarkus.kubernetes.liveness-
probe.initial-delay
quarkus.kubernetes.readiness-
probe.initial-delay

quarkus.kubernetes.liveness-
probe.period
quarkus.kubernetes.readiness-
probe.period

quarkus.kubernetes.liveness-
probe.timeout
quarkus.kubernetes.readiness-
probe.timeout

quarkus.kubernetes.liveness-
probe.success-threshold
quarkus.kubernetes.readiness-
probe.success-threshold

quarkus.kubernetes.liveness-
probe.failure-threshold
quarkus.kubernetes.readiness-
probe.failure-threshold

The amount of time to wait before
starting to probe. Defaults to
0 seconds.

Probe interval. Defaults to
30 seconds.

Amount of time to wait for probe to
complete. Defaults to 10 seconds.

Minimum consecutive successful
probes to be considered successful
after having failed. Defaults to 1.
Must be 1 for liveness.

Retry failureThreshold times
before giving up. Giving up on a
liveness probe will restart con-
tainer. Giving up on a readiness
probe will pause traffic to container.
Defaults to 3.

NOTE See the Quarkus Kubernetes and OpenShift Extension documenta-
tion (https://quarkus.io/guides) for additional liveness and readiness probe

properties.

The Quarkus health extension generates the Kubernetes probe YAML automatically.
A snippet of the liveness probe YAML that was generated automatically in target/
kubernetes/minikube.yaml follows.

Listing 6.19 Generated liveness probe YAML

... Probe health endpoint
livenessProbe: using HTTP GET
failureThreshold: 3
httpGet : Health path
path: /g/health/live to probe
port: 80 <444447
scheme: HTTP Port to probe
initialDelaySeconds: 0 Probe using HTTP
periodSeconds: 30 (VS.HTTPS)

successThreshold: 1
timeoutSeconds: 10

https://quarkus.io/guides

6.4.1

6.4.2

Kubernetes liveness and readiness probes 131

NOTE Pods can have more than one container. Liveness and readiness
probes are defined per container. Therefore probes restart and pause traffic
to individual containers within the Pod and not the Pod as a whole.

Customizing health check properties

The probe parameters listed in table 6.2 specify reasonable defaults. Health check probes
can be customized to reflect the specific needs of the business and the application. For
example, from a business perspective, probes can check business-critical applications at a
more frequent interval to more rapidly detect and resolve potential issues. On the other
hand, some applications take longer to start and should have a higher initialDelay-
Seconds setting. Determining proper probe settings may take a bit of trial-and-error test-
ing, but accepting the default probe property values is a good place to start.

To make developing probes easier, add the properties shown in the next code list-
ing to application.properties of both the Account service and the Transaction service.
The intent is to encounter liveness and readiness issues sooner to make the round-trip
coding faster. Do not use these values in production if they do not meet the needs of
the application.

Listing 6.20 Overriding probe defaults for quicker round-trip development and testing

Health Probe configuration The properties generate

quarkus.kubernetes.liveness-probe.initial-delay=10 YAML files similar to those
quarkus.kubernetes.liveness-probe.period=2 MIhﬁng6J9butwhhthe
quarkus.kubernetes.liveness-probe.timeout=5 specified values.

quarkus.kubernetes.readiness-probe.initial-delay=10
quarkus.kubernetes.readiness-probe.period=2
quarkus.kubernetes.readiness-probe.timeout=5

With updated health check properties in place, the next step is to deploy the updated
services to Kubernetes and see liveness probes (container restarts) and readiness
probes (traffic pauses) in action.

Deploying to Kubernetes

Before deploying to Kubernetes, set the Docker registry to the instance running in
Minikube. Generated container images will now be pushed directly into the Kuberne-
tes Docker registry. With the Docker registry set, deploy to Kubernetes and then track
the deployment. See the following listing for the steps.

Listing 6.21 Deploying the Account service to Kubernetes

Uses the Docker registry running in Minikube. Alternatively, run

minikube docker-env, and set the environment variables manually. Depl?ys the
Account service and
eval $(minikube -p minikube docker-env) Transaction service

to Kubernetes
Run this command in the chapter top-level directory
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

132

CHAPTER 6 Application health

Run next command in a separate terminal window, and leave running

kub 1 ds -
ubectl get pods ~w Follows the deployment by
watching Pod life cycles

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dguarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow https://github.com/quarkusio/quarkus/issues/
19701 for updates on a resolution. The problem can be worked around by
removing the application first with kubectl delete -f /target/kubernetes/

minikube.yaml.

See the following listing for the output of the kubectl get pods -w command.

Listing 6.22 Pod status terminal window output

The READY column identifies the number of containers in the Pod

The Pod and its containers are
scheduled to be created on a
node in the cluster.

NAME

account-service-68£7c4779c-jpggz

——1> account-service-68f7c4779c-jpggz

—> account-service-68£7c4779c-jpggz
transaction-service-5fb7£69496-d86sg
transaction-service-5fb7f69496-d86sg
transaction-service-5fb7£69496-d86sg
account-service-68f7c4779c-jpggz
transaction-service-5fb7f69496-d86sg

The container has been created, is starting,
but is not yet ready to accept traffic.

Kubernetes is creating the Pod and its containers.
This includes downloading the container image
from an image registry like Docker Hub.

READY

0/1
0/1
0/1
0/1
0/1
0/1
1/1
1/1

ready to accept traffic. 0/1 means zero of one container is ready.
1/1 means one of one container is ready. The RESTARTS column

is incremented each time a container restarts.

STATUS RESTARTS AGE
Pending 0 0s
ContainerCreating 0 0s
Running 0 3s
Pending 0 0s
ContainerCreating 0 0s
Running 0 2s
Running 0 13s <—
Running 0 15s

There are equivalent steps for the
Transaction service. Both services
should start successfully.

The container is running and
ready to accept traffic.

IMPORTANT There may be container restarts during the deployment. Deploy-
ing multiple services with minimal CPU cores allocated Minikube may result
in a service starting to surpass the initial-delay setting. One or two restarts
are possible until the deployment assumes a steady state. If the number of
restarts for a Pod surpasses four or five, then it will be time to troubleshoot

with commands like kubectl logs <POD NAME>.

To simplify accessing the Transaction service URL, store the service URL in an envi-
ronment variable using the command shown in the next code listing.

Listing 6.23 Getting the transaction service URL

export TRANSACTION_URL=$ (minikube service --url transaction-service)

Stores the transaction-service URL in the
TRANSACTION_URL environment variable

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

6.4.3

Kubernetes liveness and readiness probes 133

Next, verify the Transaction service is healthy by running curl -i $TRANSACTION
URL/qg/health/live, with the resulting HTTP status shown here.

Listing 6.24 Output of curl -i $TRANSACTION URL/g/health/live

HTTP/1.1 200 OK . .) Only the HTTP status
content-type: application/json; charset=UTF-8 code is shown in this

content-length: 411 listing.

Last, test that the Transaction service is ready with curl -i S$STRANSACTION URL/
g/health/ready. The output should be identical to listing 6.15, returning an HTTP
status of 200 and a JSON payload status of UP. Figure 6.7 shows the flow of readiness
checks between services.

Transaction service Account service PostgreSQL

SQL: SELECT ...

getBalance e]

AccountReadinessHealthCheck Quarkus data source check

Kubernetes probes

Legend

1. Kubernetes checks readiness endpoint(s). _

2. Check account service readiness.
3. Get balance from database.

4. Quarkus data source readiness check: UP.

Health check DOWN

Figure 6.7 Service readiness health check status in Kubernetes

Testing the readiness health check in Kubernetes

With the healthy services up and running, let’s introduce a readiness failure. An easy
way of doing this is to scale down the number of PostgreSQL instances to zero, so the
data source health check fails. It is helpful to have the Pod status terminal window cre-
ated in listing 6.21 easily viewable when running the commands in this chapter to
track the Pod life cycle.

Run the command in the next code listing to scale down the number of Post-
greSQL instances to zero.

134 CHAPTER 6 Application health

Listing 6.25 Scaling the database to zero instances (replicas)

kubectl scale --replicas=0 deployment/postgres

The pod status terminal window, shown next, will update to show the Pods terminating.

Listing 6.26 Output of kubectl get pods -w when scaling to zero Pods

The postgres Pod is no longer ready and The postgres Pod is ready
is terminating or has been terminated. but is terminating.
NAME READY STATUS RESTARTS AGE
postgres-58db5b6954-2pg7x 1/1 Terminating 0 13m
L~ postgres-58db5b6954-2pg7x 0/1 Terminating O 13m
—> account-service-68f7c4779c-jpggz 0/1 Running 0 7m59s
transaction-service-5fb7£69496-d86sg 0/1 Running 0 7m50s
The Account service Pod is no longer ready The Transaction service Pod is no longer ready (0/1).
(0/1). Its readiness health check status is Its readiness health check status is DOWN because
DOWN because the database is DOWN. The the Account service is not accepting traffic. The Pod
Pod is still running but is not accepting traffic. is still running but is not accepting traffic.

Access the Transaction service readiness endpoint with curl -i $TRANSACTION URL/q/
health/ready, and notice there is a Connection Refused message. By scaling down the
number of PostgreSQL instances to zero, the probe causes a pause to the Account ser-
vice container traffic, which paused traffic to the Transaction service, including its /q/
health/ready endpoint. Figure 6.8 shows the cascading service failure in Kubernetes.

Transaction service Account service PostgreSQL

SQL: SELECT ...
getBalance @..

/health/ready

AccountReadinessHealthCheck

/health/ready

Quarkus data source check i

Kubernetes probes

Legend
1. Quarkus data source readiness check: DOWN. _
2. HTTP 500 error; AccountReadinessHealthCheck

fails.
3. getBalance() fails; cannot connect to database.

4. Kubernetes checks both readiness endpoints.
Checks fail. Kubernetes pauses traffic to containers.

Figure 6.8 Service readiness health check cascading failure in Kubernetes

Summary 135

To resume back to a healthy status, restart the database by running the command
shown in the following listing.

Listing 6.27 Scaling the database to one instance

kubectl scale --replicas=1 deployment/postgres

By scaling the database down to zero instances and then scaling it back up to one
instance, the database contents are lost because the database schemas and data are
ephemeral in the current configuration. The easiest way to correct this is to create a
new account-service instance to regenerate the tables and repopulate the database.
Real-world production deployments would not regenerate tables and repopulate data-
bases every time a Pod is created. However, it is helpful as a learning aid in this case.
To add another account-service instance, run the following command. Note the
output in the Pod status terminal window in the following code listing.

Listing 6.28 Scaling the account-service to two instances

kubectl scale --replicas=2 deployment/account-service

Listing 6.29 Pod status output when scaling to two instances

The Pod container is running
but is not yet ready.

Kubernetes is scheduling

The Pod is being created. the Pod creation.
NAME READY STATUS RESTARTS AGE
account-service-68f7c4779c-bf458 0/1 Pending 0 1s

L—> account-service-68£7c4779c-bf458 0/1 ContainerCreating 0 1s

L——> account-service-68f7c4779c-bf458 0/1 Running 0 2s
—> account-service-68£7c4779c-bf458 1/1 Running 0 12s
transaction-service-5fb7£69496-d86sg 1/1 Running 0 23m

The Pod is ready The new account-service instance connects to the database and inserts

to service traffic. the special “Health Check” account. This results in the Transaction service

readiness health check state changing to UP and ready to accept traffic.

Of course, a real production scenario would include a database with persistent config-
uration and data, so this step to create two instances would typically be unnecessary.
Verify the UP status by running curl -i $TRANSACTION URL/qg/health/ready.

Summary

= Traditional application servers require manual intervention to react to failure.
Manual intervention does not scale well in an environment with hundreds to
thousands of containers.

= Combining the automation of Kubernetes health check probes with developer
health checks can provide a more responsive and efficient Kubernetes cluster
and microservices architecture.

136

CHAPTER 6 Application health

Kubernetes can pause traffic to a container that is unable or not yet ready to
accept traffic and resume traffic when ready, based on developer guidance
through health checks.

Kubernetes can restart a failing or failed container, based on developer guid-
ance through health checks.

Developers can create readiness and liveness health checks to provide more
accurate application-specific health status reports.

7.1

Resilience strategies

This chapter covers

= The importance of building resilient applications
= MicroProfile Fault Tolerance strategies

= When and how to apply each fault tolerance
strategy

= How to configure and disable fault tolerance
annotations using properties

Application robustness is critically important in a microservices architecture, which
can have many service interdependencies. A service susceptible to failure can nega-
tively impact other services. This chapter covers using resilience patterns to improve
application robustness to maintain overall health.

Resilience strategies overview

Services eventually experience downtime, whether planned or unplanned. A ser-
vice can reduce its downtime using resilience strategies when the services it depends
on are unreliable or unavailable.

Quarkus offers its resilience strategies using the MicroProfile Fault Tolerance
APIs. These annotation-based APIs are applied to classes or methods, standalone or
in combination. Table 7.1 lists the available Fault Tolerance annotations.

137

138

7.2

7.3

CHAPTER 7 Resilience strategies

Table 7.1 MicroProfile Fault Tolerance annotations

Annotation Description

@Asynchronous Executes a method using a separate thread
@Bulkhead Limits the number of concurrent requests

@CircuitBreaker Avoids repeated failures

@Fallback Uses alternative logic when a method completes exceptionally (throws an
exception)

@Retry Retries a method call when the method completes exceptionally

@Timeout Prevents a method from executing for longer than a specified amount of time

Executing a method under a separate thread
with @Asynchronous

A service may have to call a slow-responding remote service. Instead of blocking a
worker thread by waiting for a response, the @Asynchronous annotation uses a sepa-
rate thread to invoke the remote service to increase concurrency and throughput. See
the next code listing for an example.

Listing 7.1 @Asynchronous example

@Asifr_lchron?us . . _) Uses a thread from a
public String invokeLongRunningOperation() { separate thread pool to
callLongRunningRemoteService () ; execute a blocking operation

}

This book does not advocate using the @Asynchronous annotation with Quarkus and
will not cover the annotation in detail. The @Asynchronous annotation is for runtimes
that make heavy use of threads and thread pools to achieve higher concurrency and
throughput, like Jakarta EE runtimes. Quarkus uses a nonblocking network stack and
event loop execution model based on Netty and Eclipse Vert.x. It can achieve higher
concurrency and throughput using its inherent asynchronous and reactive APIs while
using less RAM and CPU overhead.

For example, the Quarkus RESTEasy Reactive extension enables the use of JAX-RS
annotations and handles requests directly on the IO thread. Developers can use the
APIs they already know while benefiting from the throughput typically reserved for
asynchronous runtimes like Vert.x.

Constraining concurrency with bulkheads

The bulkhead concept comes from shipbuilding, which constrains a compromised
section of a ship’s hull by closing bulkhead doors to isolate the incoming water.
The bulkhead architectural pattern applies this concept to prevent a failure in one

Constraining concurrency with bulkheads 139

service from cascading to another service by limiting the number of concurrent
method invocations.

For example, a service may make remote calls to a slow-executing backend ser-
vice. In thread-per-request runtimes like traditional Java EE and Spring, each remote
invocation to a slow service consumes memory resources and threads from a thread
pool in the calling service, eventually overcoming available resources. As with the
@Asynchronous annotation, this is less of an issue with Quarkus RESTEasy Reactive
due to its efficient threading model.

Bulkheads are also useful when a remote service is memory- or CPU-constrained,
and too many concurrent requests will overload it and cause it to fail. For example, a
microservice may invoke a business-critical legacy system that is too costly or difficult
to upgrade its software or hardware. The legacy system can benefit from a high-traffic
microservice using a bulkhead to limit concurrent access.

MicroProfile Fault Tolerance specifies bulkheads using the @Bulkhead annota-
tion, which can be applied to either a method or a class. See the next listing for an
example.

Listing 7.2 Bulkhead example

@Bulkhead (10)
public String invokeLegacySystem() {

invokeLegacySystem() is limited to 10
concurrent invocations. Attempting to exceed
10 will result in a BulkheadException.

The @Bulkhead annotation accepts the parameters defined in table 7.2.

Table 7.2 @Bulkhead parameters

Parameter Default Description
value 10 The maximum number of concurrent invocations.
waitingTaskQueue 10 When @Bulkhead is used with @asynchronous, this param-

eter specifies the size of the request thread queue.

value uses a semaphore, allowing only the specified number of concurrent invoca-
tions. When annotating the same method with @Bulkhead and @Asynchronous, value
defines the number of concurrent threads allowed to invoke a method concurrently.

The @Bulkhead annotation can be used together with @Asynchronous, @Circuit-
Breaker, @Fallback, @Retry, and @Timeout.

Figure 7.1 demonstrates a bulkhead limiting the number of concurrent invoca-
tions to two. Now that we have a firm understanding of bulkheads, the next step is to
apply the @Bulkhead annotation using a service.

140

74

CHAPTER 7 Resilience strategies

Transaction Account
service service
o Request 1 Request 1
@Bulkhead (2) getBalance () {
Request 2 getBalance () { Request 2 R

0 Response 2 } o Response 2 }
9 Request 3 Request 3
o Request 4 BulkheadException

1. TransactionService receives request 1, invokes accountservice.getBalance (), and is waiting
for a response. Semaphore count: 1.

2. TransactionService receives request 2 and invokes Accountservice.getBalance().
Semaphore count (during request): 2. Semaphore count (after response): 1.

3. TransactionService receives request 3, invokes Accountservice.getBalance (), and is waiting
for a response. Semaphore count: 2.

4. TransactionService receives request 3. Semaphore count already at limit of 2. BulkheadException
is thrown.

Figure 7.1 Bulkhead sequence diagram

Updating a TransactionService with a bulkhead

To use MicroProfile Fault Tolerance APIs with Quarkus, install the quarkus-smallrye-
fault-tolerance extension as shown next.

Listing 7.3 Install Quarkus MicroProfile Fault Tolerance extension

cd transaction-service
mvn quarkus:add-extension -Dextensions="quarkus-smallrye-fault-tolerance"

Update the newTransactionWithApi () method to use a bulkhead. To keep testing
simple, the bulkhead will allow one concurrent invocation.

Listing 7.4 Add @Bulkhead to the newTransactionWithAPI () method

If more than one concurrent
operation is attempted, a
BulkheadException will be thrown.

@POST

@Path ("/api/{acctNumber}")

@Bulkhead (1)

public Response newTransactionWithApi (
@PathParam("acctNumber") Long accountNumber,
BigDecimal amount)

Updating a TransactionService with a bulkhead 141

throws MalformedURLException {
}

As with prior chapters, start the PostgreSQL database and start port forwarding using
the commands shown here.

Listing 7.5 Starting PostgreSQL and port forwarding

From chapter7 top-level directory
kubectl apply -f ./postgresgl kubernetes.yml

It may take some time for PostgreSQL to start
kubectl port-forward service/postgres 5432:5432

Start the AccountService in terminal 1 using mvn quarkus:dev. In terminal 2, start
TransactionService using mvn quarkus:dev -Ddebug=5006. This instance of Quarkus
has to specify a debug port that does not conflict with the default debug port (5005)
used by AccountService.

Open two more terminals, terminal 3 and terminal 4. Each terminal will run sim-
ple curl commands to avoid installing any special tools. Run the code from the next
listing in both terminals at the same time.

Listing 7.6 Terminal 3 and terminal 4

count=0
while ((count++ <= 100)); do
curl -1 \
-H "Content-Type: application/json" \

-X POST \
-d "2.03" \
http://localhost:8088/transactions/api/444666
echo
done

In each terminal, the output should show a random mix of HTTP/1.0 200 OK responses
and BulkheadException output as shown next.

Listing 7.7 Sample terminal 3 and terminal 4 output

HTTP/1.1 200 OK
Content-Length: 0

HTTP/1.1 500 Internal Server Error

content-type: text/html; charset=utf-8
content-length: 13993

org.eclipse.microprofile.faulttolerance.exceptions.BulkheadException

142 CHAPTER 7 Resilience strategies

HTTP/1.1 200 OK
Content-Length: 0

The bulkhead is successfully limiting the method to a single concurrent invocation.
However, a 500 Internal Server Error is not an ideal HTTP response to return to the
caller!

The next section introduces the @Fallback annotation to execute alternative logic
to handle a bulkhead exception properly.

7.5 Exception handling with fallbacks

The @Fallback annotation facilitates exception handling by specifying a fallback
method containing alternative logic when the annotated method completes excep-
tionally. @Fallback can be triggered by any Java exception, including those thrown by
other Fault Tolerance resilience strategies.

@Fallback accepts the parameters defined in table 7.3.

Table 7.3 @Fallback parameters

Parameter Description

applyOn List of exceptions that trigger a fallback

fallbackMethod Method to invoke when the annotated method throws an exception.
fallbackMethod must have the same method signature (parameter types
and return type) as the annotated method. Use either this parameter or the
value parameter.

skipOn List of exceptions that should not trigger fallbackMethod. This list takes
precedence over the types listed in the applyOn parameter.

value FallbackHandler class. Use either this parameter or the
fallbackMethod parameter.

This example uses a fallbackMethod to replace the 500 Internal Server Error HTTP
status code caused by the BulkheadException with a meaningful HTTP status code.
Add the @Fallback annotation to newTransactionWithApi () and a fallbackMethod
as shown in the following code sample.

Listing 7.8 Adding @Fallback to the newTransactionWithAPI () method

@POST Invokes the
@Path ("/api/{acctNumber}") bulkheadFallbackGetBalance()
@Bulkhead (1) method on an exception More specifically, invokes
@Fallback (fallbackMethod = "bulkheadFallbackGetBalance", the fallbackMethod on a

BulkheadException. Any
other exceptions will be
handled in a default
manner.

applyOn = { BulkheadException.class })
public Response newTransactionWithApi (
@PathParam("acctNumber") Long accountNumber,
BigDecimal amount)

7.6

Defining execution timeouts 143

th Malf dURLE ti
rows Mattorme xception { The fallback method has the same method

signature (parameter types and return
) type) as newTransactionWithApi().

public Response bulkheadFallbackGetBalance (Long accountNumber,
BigDecimal amount) {
return Response.status (Response.Status.TOO_MANY REQUESTS) .build() ;

}

Returns a more context-appropriate
429 TOO_MANY_REQUESTS HTTP
status code

Rerun the shell script outlined in listing 7.6 in terminal 3 and terminal 4 at the same
time. The output should look similar to the following code listing.

Listing 7.9 Output after adding a fallbackMethod

HTTP/1.1 200 OK

Content-Length: 0 The 500 Internal Server Exception
HTTP status code and Java exception

HTTP/1.1 429 Too Many Requests output is now a 429 Too Many

Content-Length: 0 Requests HTTP status code with

an empty response body.
HTTP/1.1 200 OK
Content-Length: 0

A fallback can be combined with other MicroProfile Fault Tolerance annotations. In
the next section, we will use @Fallback with the @Timeout annotation.

Defining execution timeouts

Method invocations intermittently take a long time to execute. When a thread is
blocked, waiting for method completion, it is not handling other incoming requests.
Additionally, the service may also have response time requirements to meet business
objectives impacted by latency. Use @Timeout to limit the amount of time a thread can
use to execute a method.

@Timeout accepts the parameters defined in table 7.4.

Table 7.4 @Timeout parameters

Parameter Default Description

value 1000 A TimeoutException will be thrown if method execution
time exceeds this value.

unit ChronoUnit.MILLIS | Time unit of the value parameter.

The @Timeout annotation can be used together with @Asynchronous, @Bulkhead,
@CircuitBreaker, @Fallback, and @Retry.

144

—> public Response getBalance (

CHAPTER 7 Resilience strategies

Add a method to the TransactionService to get the account balance from the
AccountService. It has a timeout of 100 ms and will call a fallback method on a Time-
outException. Add the code as shown in the next listing.

Listing 7.10 Adding a getBalance () method to TransactionResource.java

@GET Throws a TimeoutException
@Path ("/{acctnumber}/balance") if getBalance() takes longer
than 100 ms to execute Calls

@Timeout (100)
@Fallback (fallbackMethod = "timeoutFallbackGetBalance")
@Produces (MediaType.APPLICATION_ JSON)

timeoutFallback-
GetBalance() if any
exception is thrown

@PathParam("acctnumber") Long accountNumber) {
String balance = accountService.getBalance (accountNumber) .toString() ;

return Response.ok (balance) .build() ;

}

public Response timeoutFallbackGetBalance (Long accountNumber) {
return Response.status (Response.Status.GATEWAY TIMEOUT) .build() ;

}
. Returns a reasonably
Invokes accountService.getBalance() and returns the account context-appropriate HTTP

balance. AccountService.getBalance() will need to complete in
less than 100 ms or a TimeoutException will be thrown. GATEWAY_TIMEOUT status code.

The @Timeout annotation will be tested using WireMock and JUnit tests.

Update the WireMock AccountService to include calls to the new getBalance ()
method as shown in the next listing. This class will also include a small amount of
refactoring.

Listing 7.11 Updating WireMockAccountService to test @Timeout

public class WiremockAccountService implements
QuarkusTestResourceLifecycleManager {
private WireMockServer wireMockServer;

@Override

public Map<String, Strings> start() {
wireMockServer = new WireMockServer() ;
wireMockServer.start () ;

mockAccountService () ;
mockTimeout () ;

Refactors mockAccountService()
into its own method

return
Collections.singletonMap ("io.quarkus.transactions.AccountService/mp-
rest/url", wireMockServer.baseUrl()) ;

} Refactored
mockAccountService()
protected void mockAccountService () { method

stubFor (get (urlEqualTo (" /accounts/121212/balance"))
.willReturn (aResponse () .withHeader ("Content-Type",
"application/json") .withBody ("435.76"))) ;

Defining execution timeouts 145

stubFor (post (urlEqualTo ("/accounts/121212/transaction")) .willReturn (

aResponse ()
// noContent () needed to be changed once the external service

returned a Map
.withHeader ("Content-Type",

"application/json") .withStatus (200) .withBody ("{}")));
} Any invocation of the
/accounts/123456/balance

protected void mockTimeout () { endpoint will invoke
stubFor (get (urlEqualTo (" /accounts/123456/balance")) this stub.
.willReturn (aResponse ()
Returns a .withHeader ("Content-Type", "application/json") Adds a 200 ms delay, which
200 HTTP .withStatus (200) will force a TimeoutException
OK status .withFixedDelay (200) < on any remote call with a
code .withBody ("435.76"))) ; ‘ timeout less than 200 ms
stubFor (get (urlEqualTo ("/accounts/456789/balance")) . .
) Any invocation of the
.willReturn (aResponse () 456789 /balance
.withHeader ("Content-Type", "application/json") ﬁ:ﬁozafaﬂlhvoketms
.w:i.thStatuS (200) .withBody("435.76"))) ; stulr, which will not force
} -withBody("435.76"))); a TimeoutException.
@Override
public void stop() {
if (null != wireMockServer)

wireMockServer.stop () ;

}
}
}

With the AccountService endpoint mocked, create the JUnit test to test the @Timeout
annotation, as shown in the next code listing.

Listing 7.12 Creating a FaultyAccountServiceTest class

@QuarkusTest
@QuarkusTestResource (WiremockAccountService.class) Binds the
public class FaultyAccountServiceTest WiremockAccountService
@Test to the life cycle of
void testTimeout () { QuarkusTest
given ()
.contentType (ContentType .JSON)
—> .get ("/transactions/123456/balance") .then() .statusCode (504) ;
given () The moclfed
/transactions/
.contentType (ContentType .JSON) 456789/balance
.get ("/transactions/456789/balance") .then() .statusCode (200) ; endpoint returns
} a 200 (OK) HTTP
} status code.

The mocked /transactions/1234546/balance endpoint defines a 200 ms
delay. The getBalance() method defines a 100 ms timeout, forcing a
TimeoutException. The timeout results in a call to the fallback method
with a return of a 504 GATEWAY TIMEOUT HTTP status code.

146

7.7

CHAPTER 7 Resilience strategies

Before running the test, stop the AccountService to avoid port conflicts between the
AccountService and the WireMock server. Test the application using mvn test, with
the sample output shown here.

Listing 7.13 Sample mvn test output

[INFO
[INFO
[INFO
[INFO
[INFO] === == mm o m o m e o e e o e
[INFO] BUILD SUCCESS

[INFO] - - - oo

Results:

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

1
1
1
1

The next section introduces the @Retry resilience strategy and how it can be com-
bined with other resilience strategies like @Timeout to improve the overall resilience
of TransactionService.

Recovering from temporary failure with @Retry
In cases where failure is rare, for example, where a remote system has an occasional
unstable connection, it may be appropriate to retry a method call a few times before
handling the failure in this context.

The @Retry annotation retries method invocations a configurable number of
times if the method completes exceptionally. The annotation accepts the parameters
defined in table 7.5.

Table 7.5 @Retry parameters

Parameter Default Description
abortOn None A list of exceptions that do not trigger a retry.
delay (0] A delay between each retry.
delayUnit ChronoUnit .MILLIS The time unit of the delay parameter.
jitter [¢] Adds or subtracts a random amount of time between

each retry. For example, a delay of 100 ms with a jit-
ter of 20 ms results in a delay between 80 ms and
120 ms.

jitterDelayUnit | ChronoUnit.MILLIS The time unit of the value parameter.

maxDuration 1800000 The maximum duration for all retries.
durationUnit ChronoUnit .MILLIS The time unit of the maxDuration parameter.
maxRetries 3 The maximum number of retry attempts.
retryOn Any exception A list of exceptions that trigger a retry.

WARNING Use the @Retry resilience strategy with caution. Retrying a remote call
on an overloaded backend service with a small delay exacerbates the problem.

Retries up
to 3 times

7.8

Avoiding repeated failure with circuit breakers 147

The @Retry annotation can be used together with @Asynchronous, @Bulkhead,
@CircuitBreaker, @Fallback, and @Timeout.
Add the following @Retry code to transactionService.getBalance ().

Listing 7.14 Adding the @Retry annotation

@GET
@Path ("/{acctnumber}/balance") X Adds or subtract 25 ms from the
@Timeout (100) Waits 100 ms retry delay. The delay between
@Retry (delay = 100, between retries retries will be a random value
jitter = 25, < between 75 ms and 125 ms.
maxRetries = 3,
retryOn = TimeoutException.class) Retries on a
@Fallback (fallbackMethod = "timeoutFallbackGetBalance")

TimeoutException only.
Other exceptions will be
handled normally.

@Produces (MediaType .APPLICATION JSON)
public Response getBalance (
@PathParam("acctnumber") Long accountNumber) {
String balance = accountService.getBalance (accountNumber) .toString() ;

return Response.ok(balance) .build() ;

}

Test the @Retry annotation by running mvn test. The output will not change from list-
ing 7.13. The mock always returns a 504 GATEWAY TIMEOUT. As a result, the @Retry
annotation consumes three timeout exceptions, and the final result remains a 504
GATEWAY TIMEOUT.

The @Retry resilience strategy attempts to recover from a failure. The next section
discusses the @CircuitBreaker resilience strategy as another popular approach to
handling a failure.

Avoiding repeated failure with circuit breakers

A circuit breaker avoids operations that are likely to fail. It is a resilience pattern pop-
ularized by the Netflix Hystrix framework and is also the most complex resilience pat-
tern to understand. A circuit breaker consists of the following three steps:

1 Detect repeated failure, typically of expensive operations like a remote service
invocation.

2 “Fail fast” by immediately throwing an exception instead of conducting an
expensive operation.

3 Attempt to recover by occasionally allowing the expensive operation. If success-
ful, resume normal operations.

All three steps are configurable to meet contextual needs.

148

7.8.1 MicroProfile Fault Tolerance: @CircuitBreaker

782

CHAPTER 7 Resilience strategies

The MicroProfile Fault Tolerance specification defines the @CircuitBreaker annota-
tion and its behavior. The annotation accepts the parameters defined in table 7.6.

Table 7.6 @CircuitBreaker parameters

Parameter

requestVolumeThreshold

failureRatio

delay

delayUnit

successThreshold

failoOn

skipOn

Default

20

5000

ChronoUnit .MILLIS

1

Any exception

None

Description

The size of the rolling window (number of
requests) used to calculate the opening of
a circuit.

Opens the circuit if the ratio of failed
requests within the requestvolume-
Threshold window exceeds this number.
For example, if the requestVolume-
Threshold is 4, then two failed requests
of the last four will open the circuit.

The amount of time the circuit remains open
before allowing a request.

The time unit of the delay parameter.

The number of successful trial requests to
close the circuit.

The list of exceptions that should be consid-
ered failures.

The list of exceptions that should not open
the circuit. This list takes precedence over
the types listed in the failoOn parameter.

The e@CircuitBreaker annotation can be used

@Asynchronous, @Bulkhead, and @Retry.

How a circuit breaker works

together with @Timeout, @Fallback,

Figure 7.2 shows a visual time sequence of a circuit breaker, followed by a description

of each labeled step:

Successful request—The requestVolumeThreshold is 3. The last three requests
have been successful, identified by the three checkmarks.

Unsuccessful request—AccountService is down. The MicroProfile REST Client
throws an HttpHostConnectException. One third (33%) of the requests have
failed, identified by the X and two checkmarks.

Unsuccessful request—RAccountService is down. An HttpHostConnectException
is thrown. The failure rate is two-thirds (66%), as shown by two Xs. Two-thirds
meets the failureRatio, and the next failure will result in a CircuitBreaker-
Exception. All requests for the next delay seconds (set to 5 seconds) will auto-

matically result in a CircuitBreakerOpenException.

Avoiding repeated failure with circuit breakers

Transaction service Account
CircuitBreaker service
Request 1 | EIZIZ | 1. Successful request
- Account
| M | 2. Unsuccessful service
Request 2 request Down
® o — — — — — — — — — — -
| IXIZlZ [3. Unsuccessful
Request 3 | _ A _r_e(lu_esi: _____ - Five-second
| - [‘ delay
IXIZIZI 4. Unsuccessful /
Request 4 | | request |
| / EIZIZI | 5. Unsuccessful ‘ " 1
Request 5 ccoun
| 4>| request service
Request 6 | @ZIZI | 6. Successful request
Request 7 | M | 7. Successful request
1 I
Request 8 | EIZIZ | 8. Successful request

Legend

Request volume threshold
Circuit breaker closed
Circuit breaker open

Circuit breaker half-open

Settings
D:l:l requestVolumeThreshold 3
—— failureRatio .66
—0/— successThreshold 2
delay 5 seconds

Figure 7.2 A circuit breaker in action

149

Unsuccessful request—The last three requests have failed. Note, the circuit opens
at the end of the step 3 circuit. This step represents all requests that occur
during the 5-second delay.

Unsuccessful request—Although AccountService is back up and running, the cir-
cuit breaker will not allow any requests until 5 seconds have passed.

Successful request—After a 5-second delay, the circuit is in a half-open state until
successThreshold requests (set at 2) have successfully completed. This is the

first successful request with the circuit in the half-open state.

150 CHAPTER 7 Resilience strategies

7 Successful request—The second successful request. After the request, the success-
Threshold increments to 2, and the circuit will close.
s Successful request—Normal request processing resumes.

7.8.3 Updating the TransactionService to use @CircuitBreaker

Instead of creating another fallback method to handle a CircuitBreakerException,
all fallback handling is moved into a separate FallbackHandler class with convenient
console output. Add the code shown next.

Listing 7.15 TransactionServiceFallbackHandler class

The FallbackHandler must implement the handle() method.

The ExecutionContext parameter gives contextual information

such as the annotated method that generated the fallback

and the exception that generated.

A FallbackHandler

class must implement the
FallbackHandler interface.

public
class TransactionServiceFallbackHandler
implements FallbackHandler<Response> {

Logger LOG = Logger.getLogger (TransactionServiceFallbackHandler.class) ;

@Override
> public Response handle (ExecutionContext context) {
Response response; The fallback handler
String name; logic keys on the
exception name.
if (context.getFailure().getCause() == null) {
name = context.getFailure() .getClass().getSimpleName () ;
} else {
name =

context.getFailure () .getCause () .getClass () .getSimpleName () ;

}

, A BulkheadException will return
switch (name) { _ aTOO _MANY_ REQUESTS HTTP
case "BulkheadException': status code with an empty body.
response = Response
.status (Response.Status.TOO_MANY_ REQUESTS) <
cbuild() ;
break; A TimeoutException will return a
)) GATEWAY_TIMEOUT HTTP status
case "TimeoutException": code with an empty body.
response = Response
.status (Response.Status.GATEWAY TIMEOUT) <
cbuild() ;
break;

case "CircuitBreakerOpenException":
response = Response
.status (Response.Status.SERVICE UNAVAILABLE)
.build() ;
break; A CircuitBreakerException will return
a SERVICE_UNAVAILABLE HTTP status
code with an empty body.

Avoiding repeated failure with circuit breakers 151

case "WebApplicationException":
case "HttpHostConnectException":
response = Response
.status (Response.Status.BAD_GATEWAY)

-build () The MicroProfile REST Client generates an
break; HttpHostConnectException when it cannot
connect to the backend REST service, and the
default: circuit breaker circuit is in the open state.
response = ReSpOnSe
.status (Response.Status.NOT IMPLEMENTED)
.build() ;

}

LOG.info ("x**xx%xx% 1
+ context.getMethod () .getName ()

+ ": " + name
+ " ********") ;

return response;

The @Fallback annotations need the fallbackMethod replaced with the Fallback-
Handler. Add the @CircuitBreaker annotation to the newTransactionWithApi ()
method as shown in the next code listing.

Listing 7.16 Add @CircuitBreaker to newTransactionWithaApi ()

@POST To make testing the circuit
@Path ("/api/{acctNumber}") breaker simpler, sets the Sets a failure ratio of .66
@Bulkhead (1) requestVYolumeThreshold (two-thirds). If two of
@CircuitBreaker (to the low value of 3 the most recent three
requestVolumeThreshold=3, requests fail, the circuit
Sets a delay failureRatio=.66, 4 breaker will open.
of 5 seconds delay = 5,
. . A circuit breaker in the half-open
Sets the delay delaylnit = ChronoUnit.SECONDS, state will close with 2 continuzus
time unit to successThreshold=2 successful requests.
seconds)

@Fallback (value = TransactionServiceFallbackHandler.class) <G
public Response newTransactionWithApi (
@PathParam("acctNumber") Long accountNumber, BigDecimal amount) {

} o Updates newTransactionWithAPI to invoke
the TransactionServiceFallbackHandler
instead of the fallbackMethod

Updates getbalance() to invoke the

@GET TransactionServiceFallbackHandler
@Path ("/bulkhead/{acctnumber} /balance") instead of the fallbackMethod
@Timeout (100)

@Fallback (value = TransactionServiceFallbackHandler.class) <+

@Produces (MediaType.APPLICATION_ JSON)

152

784

——1> createCircuitBreakerStub
—> createCircuitBreakerStub

Creates a WireMock circuit breaker stub for each
scenario state transition. This first stub defines the
initial request in the requestYolumeThreshold.

CHAPTER 7 Resilience strategies

public Response getBalance (
@PathParam("acctnumber") Long accountNumber) {

Testing the circuit breaker
To test the circuit breaker, extend the WiremockAccountService with the following:
public class WiremockAccountService implements

QuarkusTestResourceLifecycleManager {
private WireMockServer wireMockServer;

pr%vate stat%c f%nal Str%ng SERVER_ERROR 1 = "CB Fa%l in; The states defined for
private static final String SERVER ERROR 2 = "CB Fail 2"; the circuitbreaker
private static final String CB_OPEN 1 = "CB Open 1"; WireMock “scenario.”
private static final String CB OPEN 2 = "CB Open 2"; Each field defines a
private static final String CB OPEN 3 = "CB Open 3"; circuit breaker
private static final String CB_SUCCESS 1 = "CB Success 1"; state in order.
private static final String CB SUCCESS 2 = "CB Success 2";

@Override
public Map<String, Strings> start() {
wireMockServer = new WireMockServer () ;
wireMockServer.start () ; The circuit breaker is open. Even
though the request returns 200,

mockAccountService () ; L simulating service availability,
mockTimeout () ; Creates the circuit the circuit breaker is in its

) . ! breaker mock delay period
mockCircuitBreaker () ; y P .

. Returns a 502, the second error the
} circuit breaker receives. This second
error will open the circuit breaker.

void mockCircuitBreaker () {
// Define wiremock scenario to support the required by a circuitbreaker
state machine

Scenario.STARTED, SERVER ERROR 1, "100.00", 200);
SERVER ERROR 1, SERVER ERROR 2, "200.00", 502);
SERVER_ERROR_2, CB OPEN 1, "300.00", 502); Pa—

createCircuitBreakerStub

createCircuitBreakerStub
CreateCircuitBreakerStub(CB_OPEN_Z, CB OPEN_3, "400.00", 200);

createCircuitBreakerStub (CB_OPEN 3, CB SUCCESS 1, "500.00", 200); <G

createCircuitBreakerStub (CB_SUCCESS 1, CB_SUCCESS 2, "600.00", 200);
}
The second successful

Returns a 502, the first error call closes the circuit.
the circuit breaker receives

after the delay period

CB OPEN_1, CB _OPEN 2, "400.00", 200); R

The first successful call

The first
successful
call after the
delay period

Avoiding repeated failure with circuit breakers 153

void createCircuitBreakerStub (String currentState, String nextState, <
String response, int status) ({

stubFor (post (urlEqualTo ("/accounts/444666/transaction")) .inScenario("cir
cuitbreaker")

.whenScenarioStatels (currentState) .willSetStateTo (nextState) .willRetur
n (

aResponse () .withStatus (status) .withHeader ("Content-Type",
MediaType.TEXT PLAIN) .withBody (response))) ;

Any call to the /accounts/444666/transaction endpoint invokes a stub.
Each call to the endpoint will advance the state in the circuitbreaker
scenario. The body of the response is the account balance.

With the WiremockAccountService updated to support a circuit breaker, the next step
is to update FaultyAccountService to test the circuit breaker, as follows.

Listing 7.17 Circuit breaker JUnit test

This successful request defines the initial The circuit breaker is still open.
request in the requestVolumeThreshold window.

The circuit breaker is open.

@Test
void testCircuitBreaker() { Expects a 502, the second error the
RequestSpecification request = circuit breaker receives. This request
given () will open the circuit breaker.
.body ("142.12")
.contentType (ContentType.JSON) ; Expects a 502, the first error
the circuit breaker receives
L request.post ("/transactions/api/444666") .then() .statusCode (200) ;
request .post ("/transactions/api/444666") .then() .statusCode (502) ;
request .post ("/transactions/api/444666") .then() .statusCode (502) ; <+
request.post ("/transactions/api/444666") .then() .statusCode (503) ; D —
request .post ("/transactions/api/444666") .then() .statusCode (503) ; <+
try { Sleeps long enough
TimeUnit.MILLISECONDS.sleep (1000) ; to get past the
} catch (InterruptedException e) circuitbreaker delay

}

request .post ("/transactions/api/444666") .then() .statusCode (200) ;
request.post ("/transactions/api/444666") .then() .statusCode (200) ;

The second successful call closes the
circuit. The circuit is now closed, and
further invocations will continue normally.

NOTE Early Quarkus releases used the Hystrix framework as the underlying
implementation. Hystrix has been deprecated, so later Quarkus releases use a
custom implementation. Because developers develop to the MicroProfile
Fault Tolerance specification, their application source code did not change.
This demonstrates the real-world value of developing to specifications instead
of implementations.

154

7.9

CHAPTER 7 Resilience strategies

Overriding annotation parameter values using

properties

MicroProfile Fault Tolerance can globally enable or disable fault tolerance annota-
tions or modify annotation parameters at runtime using properties. This feature rec-
ognizes that operational needs change as the deployment environment changes. By
overriding annotation parameters using properties, non-Java developers responsible
for a reliable production environment can adjust fault tolerance parameters to
address production needs.

Service meshes, which give the operations team more control and visibility into a
microservices deployment, are becoming more common. A service mesh can shape
network traffic and apply its own fault tolerance features to maintain a more reliable
Kubernetes cluster. By externalizing fault tolerance annotation parameters using
properties, the operations team can ensure that application @Timeout or @Retry
annotations do not conflict with the equivalent service mesh settings.

Four ways to enable/disable fault tolerance annotations using properties follow:

1 MP_Fault Tolerance NonFallback Enabled=true—Disables all fault tolerance
annotations, except for @Fallback annotations.

2 <annotations/enabled=false—Disables all fault tolerance annotations of a
specific type used within the application. For example, Bulkhead/enabled=false
disables all bulkheads in the application.

3 <class>/<annotation>/enabled=false—Disables the specified annotation on
the specified class. For example, io.quarkus.transactions.Transaction-
Resource/Timeout/enabled=false disables all @Timeout annotations defined
on the TransactionResource class and any of its methods.

4 <class>/<method>/<annotations/enabled=false—Disables the specified anno-
tation on a specified method in the specified class. For example, io.quarkus
.transactions.TransactionResource/getBalance/Timeout/enabled=false
disables the @Timeout annotation on the TransactionResource.getBalance ()
method, and all other @Timeout annotations in TransactionResource are
unaffected.

As shown in the next listing, add the following to application.properties to disable all
timeouts in the TransactionResource class.

Listing 7.18 application.properties

Modify the MicroProfile Fault Tolerance settings
io.quarkus.transactions.TransactionResource/Timeout/enabled=false

Run mvn test. As shown in the following listing, the test fails because the expected
timeout no longer occurs. Although failing a test is not ideal, this does show that the
@Timeout annotation has been disabled.

7.10

Deploying to Kubernetes 155

Listing 7.19 mvn test failure: expected timeout does not occur

[INFOI]

[INFO] Results:

[INFO]

[ERROR] Failures:

[ERROR] FaultyAccountServiceTest.testTimeout:21 1 expectation failed.

Expected status code <504> but was <502>.

[INFO]
[ERROR] Tests run: 3, Failures: 1, Errors: 0, Skipped: 0

To change an annotation parameter, the property format is <class>/<methods/
<annotations>/<parameter>=value. Define the following property as shown next.

Listing 7.20 application.properties

Comments out the property
disabling timeouts

io.quarkus.transactions.TransactionResource/Timeout/enabled=false
io.quarkus.transactions.TransactionResource/getBalance/Timeout/value=150

Changes the timeout value from 100 to 150.
This remains under the WireMock stub delay of
200 ms, which will force a TimeoutException.

Run mvn test. All tests should pass. With everything working locally, the next step is to
deploy the services to Kubernetes.

Deploying to Kubernetes

Deploy the updated TransactionService to Kubernetes as shown in the following list-
ing. Run the same commands for the AccountService to ensure they are both up and
running.

Listing 7.21 Terminal 2

Use the Minikube Docker daemon to build the image
eval $(/usr/local/bin/minikube docker-env)

Deploy to Kubernetes. Run this for both the AccountService
and the TransactionService
mvn package -Dquarkus.kubernetes.deploy=true

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true results in an
error in Quarkus 2.x. Follow https://github.com/quarkusio/quarkus/issues/
19701 for updates on a resolution. The problem can be worked around by
removing the application first with kubectl delete -f /target/kubernetes/
minikube.yaml.

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

156

CHAPTER 7 Resilience strategies

Test the bulkhead logic while running in Kubernetes. The approach and code are
nearly identical to that of listing 7.6. In terminal 1 and terminal 2, simultaneously run
the code shown in the next listing.

Listing 7.22 Terminal 1

TRANSACTION URL="minikube service transaction-service --url®
count=0
while ((count++ <= 100)); do
curl -1 \
-H "Content-Type: application/json" \

-X POST \
-d "2.03" \
STRANSACTION URL/transactions/api/444666
echo
done

Next, run the command in each terminal simultaneously. The output will look similar
to the following listing.

Listing 7.23 Terminal 1 output

HTTP/1.1 200 OK <+—— Successful request

Content-Length: 0 The response returned when a
CircuitBreakerException is thrown.
HTTP/1.1 200 OK <—— Successful request Between terminal 1 and terminal 2
Content-Length: 0 requests, at least two of the most
recent three requests resulted in a
HTTP/1.1 503 Service Unavailable BulkheadException.

Content-Length: 0

HTTP/1.1 503 Service Unavailable

The circuit breaker remains open. The
Content-Length: 0

circuit breaker will likely not close until the
script is run from one terminal at a time.

NOTE To test the bulkhead and receive the 429 TOO MANY REQUESTS HTTP
status code, the circuit breaker must skip BulkheadExceptions. Either set the
@CircuitBreakerskipOn parameter to BulkheadException.class, or set it
using application.properties with io.quarkus.transactions.Transaction-
Resource/newTransactionWithApi/CircuitBreaker/skipOn=org.eclipse
.mic-roprofile.faulttolerance.exceptions.BulkheadException. We leave
this as an exercise for the reader.

Summary

= Resilience strategies improve application robustness.

= MicroProfile Fault Tolerance supports six resilience strategies: @Asynchronous,
@Bulkhead, @CircuitBreaker, @Fallback, @Retry, and @Timeout.

= @Asynchronous executes threads on a separate thread.

= @Bulkhead limits the number of concurrent requests to avoid cascading failures.

Summary 157

@CircuitBreaker prevents repeated failures by recognizing a failure and avoids
executing logic for a period of time.

@Fallback executes alternative logic when an exception is thrown.

@Retry retries a method call when an exception is thrown.

@Timeout prevents a method from waiting longer than a specified amount of time.
The Quarkus RESTEasy Reactive extension eliminates the need for the
@Asynchronous annotation.

MicroProfile Fault Tolerance annotations can be enabled, disabled, and cus-
tomized using properties.

Reactive in an
imperative world

This chapter covers

Importance of responsive microservices

The MicroProfile Reactive Messaging
specification

Sending and receiving messages with Apache
Kafka

A Microservice being responsive refers to its ability to complete the task required of
it within a given time. The complexity of the task will impact the time a micro-
service takes to complete its work. Different microservices performing their tasks
can require different amounts of time to complete them, yet both be considered
responsive. Developing responsive microservices is key in a modern age where
users—the customers—are expecting near instantaneous loading of web pages and
answers to their queries. Microservices that are not responsive enough will fail
when subjected to intensive high load. In an age of “going viral,” it is critical that an
application remain responsive while sustaining high load.

Although being reactive represents different aspects, in this chapter we focus on
using Reactive Streams to create an execution pipeline within an application and
between applications. After covering Reactive Streams, we introduce the MicroProfile
Reactive Messaging specification and how it’s used to build responsive microservices,

158

8.1

Reactive example 159

including how to interact with Apache Kafka or other messaging systems. In the last
section of the chapter, we explain how developers can bridge their imperative and
reactive code within a single application or microservice.

Reactive example

Figure 8.1 details how each of the banking microservices interact with a messaging sys-
tem, Apache Kafka, to implement message passing between them. Two separate mes-
sage flows are created between the various services.

The first flow send an event from the Account service when overdrawn. The event
will be added to a Kafka topic and then consumed by the Overdraft service. The

o

0 Transactions Accounts d
microservice microservice Data
A

G Apache Kafka C 0
[|
E Overdraft fee Update overdraft Overdraft :
' topic topic topic 1

(5] b (3]

a Overdraft
microservice

Flow 1: Account overdrawn event Flow 2: Overdraft limit adjustment

a. Admin user adjusts the account
overdraft limit.

b. Emit a message to a Kafka topic.
c. Process the message from Kafka.

d. Update the account in the database
with the new overdraft limit.

-

. Request to withdraw funds.

2. If account is now overdrawn, emit
a message to a Kafka topic.

3. Process the message from Kafka.

4. Put the message onto the internal
memory channel.

5. Emit a message to a Kafka topic
with overdraft fee details.

6. Process the message from Kafka.

7. Write the transaction for the
overdraft fee to the database.

Figure 8.1 Microservices utilizing Reactive Messaging

160

8.2

CHAPTER 8 Reactive in an imperative world

Overdraft service determines the appropriate fee for being overdrawn and sends a
new event to a different Kafka topic to process the fee as an account transaction.

What is a Kafka topic?

Topics contain events, or messages, durably stored for retrieval. Every topic can
receive events from zero, one, or many producers and have zero, one, or many con-
sumers subscribing to those events. Unlike traditional messaging systems, events in
a topic are not deleted after they’re consumed. For better performance while scaling
with load, a topic is partitioned between many broker instances. Any event written to
a topic is only appended, ensuring the entire series of events can be replayed from
the beginning, if desired, to reach the same end state of the data.

The second flow enables an admin user to adjust the overdraft limit for specific
accounts, based on high-value customers, for instance. An event containing the new
overdraft limit is sent to a Kafka topic for processing by the Account service.

NOTE Throughout the chapter, the terms event and message are used inter-
changeably. In the worlds of reactive messaging and event-driven architec-
tures, the two terms are synonymous. Which is preferred can often depend on
the community using it, or whether it’s being used in reference to a related
term, such as reactive messaging or event-driven architecture.

What is Reactive Streams?

Reactive Streams is an asynchronous streaming specification for interactions between
different libraries and/or technologies. In JDK 9, it’s implemented as java.util
.concurrent.Flow. However, Reactive Streams is not intended for direct usage by
developers. It needs to underpin the libraries and technologies that developers use,
and which they need to be aware about, but they are not concerned with its usage.

Reactive streams are necessary for the construction of reactive systems; see https://
www.reactivemanifesto.org/ for further details. Reactive systems are an architectural
style for designing responsive systems. The key characteristics of reactive systems are
resiliency, elasticity, and asynchronous message passing.

A developer does need to understand the following fundamental building blocks of
Reactive Streams: Publisher, Subscriber, and Processor (see figure 8.2).

Publisher

ﬂ

Processor Figure 8.2 Reactive Streams
building blocks

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/

8.21

8.2.2

What is Reactive Streams? 161

Publisher, Subscriber, and Processor

A Publisheris the first stage of a Reactive Stream, or pipeline; there is nothing before it.
Any pipeline of data always consists of a single Publisher to begin the stream.

A Subscriber is the final stage of a Reactive Stream. The stream completes with a
Subscriber; no further processing on that particular stream can occur.

A Processor combines Subscriber and Publisher to create a stage in the pipeline that
continues the stream. It will manipulate and act on the data in the stream in any way,
but it will not create or end the stream it’s acting on.

In its simplest form, a stream consists of a Publisher and a Subscriber. Complex
streams can consist of many Processors between a Publisher and a Subscriber, as shown
in figure 8.3. There is no limit to the number of Processors that a stream can contain.

Processor Processor Subscriber

Figure 8.3 A complex Reactive Stream

Publisher

Understanding these fundamental building blocks of a Reactive Stream is one part,
butit’s not the only part. Back pressureis a key aspect to Reactive Streams and their per-
formance.

The importance of back pressure

What is back pressure exactly? Let’s start by looking at a stream where service A is a
publisher and service B is a subscriber. Figure 8.4 is an example of a situation where
there is no restriction on the number of messages that service A can send to service B.
Is that a problem? Maybe it isn’t, which would be very lucky—usually it would be a
big problem.

When service B is unable to process the messages it’s receiving in a timely manner,
the following problems can occur:

The response time for service B can increase, because it’s under heavy load.
Service B can become unresponsive and fail. Depending on the deployment
environment, it might mean there are no service B instances available for use. If
there are no instances available, there can be a cascade of failures from service
B to service A, and on to whatever called service A.

Congestion on the network between services A and B will increase the latency of
any communication on the same network path. This will lead to response time
impacts on other services unrelated to service B.

162

CHAPTER 8 Reactive in an imperative world

DX
Service A M E @ @ M M Service B

Iz M M [subscriber]
> o X 54 ,

[publisher]

Figure 8.4 Overloading service B and the network

Overall, it’s a bad situation. One service becoming unavailable is bad, but the impact
on other unrelated services makes it even worse.

What should the flow of messages to a service look like? In figure 8.5, service B is
still receiving a stream of messages from service A, but in such a way that service B
never becomes overwhelmed with too many messages, enabling service B to remain in
service and be more responsive to requests. It may appear service B is not being very
responsive because it’s handling fewer messages than in figure 8.4, but it’s more
responsive than being unavailable because it was unable to handle the load.

| < XS
Service A Iz--lz Izl@lg Izlg

Service B

Figure 8.5 A steady stream of messages to service B

This is how back pressure can help to limit the possibility of the problems men-
tioned previously from occurring. Figure 8.6 outlines the process of implementing
back pressure.

When service B subscribes to receive messages from service A, service A asks
how many messages it would like. In this example, service B would like five messages.

8.3

Reactive Messaging in Quarkus 163

How many messages can you handle?

Service A Service B

D D DA DA B

Three more, please.
DI

Figure 8.6 A steady stream of messages to service B

Service A dutifully sends across five messages for processing. Once service B has fin-
ished processing some of these messages, three in this case, service A will send three
more messages. Notice that service A never sends more messages than service B has
said it can process at once.

This section described Publishers, Subscribers, and Processors as the key compo-
nents of Reactive Streams that developers must combine effectively to create pipelines
for processing data. We also covered how the common problem associated with over-
loading Reactive Streams—sending too many messages—can be remedied using back
pressure. In the next section, we introduce how Quarkus enables developers to inte-
grate Reactive Streams into applications with Reactive Messaging.

Reactive Messaging in Quarkus

Quarkus enables developers to take advantage of Reactive Messaging, as well as the
other aspects of reactive programming, while still utilizing the Java knowledge they’ve
developed over the years with Java EE, and now Jakarta EE. This allows developers
to convert small pieces of an application to use reactive concepts, without needing to
develop an entirely reactive application.

Developers can steadily include more reactive aspects into their applications as
their experience grows, without needing to switch between frameworks. This section
explains the various ways a developer can use Quarkus to program with Reactive in
their applications.

Let’s start by copying the Account service from a previous chapter. Now add the
following dependency to pom.xml:

<dependency>
<grouplds>io.quarkus</grouplds>
<artifactId>quarkus-smallrye-reactive-messaging-kafka</artifactIds>
</dependency>

Quarkus offers Reactive Messaging extensions for Apache Kafka, AMQP, and MQTT.
In this case, we chose the extension for Apache Kafka.

164

83.1

Creates an
Overdrawn
instance as
the message
payload

Sends a
message
containing the
Overdrawn
payload

required to match the name of the topic on Kafka.

CHAPTER 8 Reactive in an imperative world

Bridging from imperative to reactive with emitters

Imperative programming uses a sequence of commands to alter state but does so in a
step-by-step fashion where the developer defines the execution path. Imperative pro-
gramming clearly defines what should happen, but also when it should happen, to
achieve a desired result.

Change the Account service by modifying Account to have a BigDecimal field
named overdraftLimit. The field will be used to track the current overdraft limit of
an account, allowing it to be updated via events. With Account having another field,
update import.sql to insert a value for the field into each record during startup. The
code for the chapter sets it to -200. 00, but the reader can set an alternative value.

The first challenge for developers is starting a Reactive Stream from imperative
code. To start a Reactive Stream, a Publisher feeds the stream with messages. In the
next example, an Emitter acts as a Publisher starting the Reactive Stream. Let’s see
how it works!

Listing 8.1 AccountResource

The name of the channel for emitting messages.

The name of the channel in the application isn’t Injects an Emitter
for the Overdrawn

message payload type

@Inject

@Channel ("account-overdrawn")

Emitter<Overdrawn> emitter; The return type must be
CompletionStage because the

@PUT entity used in the Kafka message

@Path ("{accountNumber}/withdrawal") is still inside a transaction.

@Transactional

public CompletionStage<Account> withdrawal (@PathParam("accountNumber")
Long accountNumber, String amount) {

if (entity.accountStatus.equals (AccountStatus.OVERDRAWN)
&& entity.balance.compareTo (entity.overdraftLimit) <= 0) {
throw new WebApplicationException ("Account is overdrawn, no further

withdrawals permitted", 409); Throws an exception if the

account has already passed
the overdraftLimit amount

}

entity.withdrawFunds (new BigDecimal (amount)) ;

Forces the entity to
persist before sending
it in the message

if (entity.balance.compareTo (BigDecimal.ZERO) < 0) {
entity.markOverdrawn () ;
entity.persist () ;
L—> Overdrawn payload =
new Overdrawn (entity.accountNumber, entity.customerNumber,
entity.balance, entity.overdraftLimit) ;
> return emitter.send (payload)
.thenCompose (empty -> CompletableFuture.completedFuture (entity)) ;
}

return entity; Chains the CompletionStage
} ' from emitter.send() to return
one with the account entity

Reactive Messaging in Quarkus 165

Listing 8.1 is an example of bridging between imperative and reactive programming.
While inside a JAX-RS resource method—imperative programming—the application
sends a message onto a channel—reactive programming—bridging from one pro-
gramming model to the other. Section 8.3.3 details how listing 8.1 can be tested.

Being able to combine imperative and reactive programming into a single applica-
tion is incredibly powerful. No longer is a developer restricted to utilizing only one
part of their toolbox in developing an application. Now they can include as many
parts of their toolbox as they need, or desire, in any given application, irrespective of
whether it requires imperative or reactive programming. With Quarkus, developers
are no longer required to choose between imperative or reactive programming for a
project; they are able to use Quarkus in whichever direction the project might take.

Looking at the code in listing 8.1, we see the Emitter has a type of Overdrawn. An
instance of Overdrawn will be the payload of the message that is sent to Apache Kafka,
as shown next.

Listing 8.2 Overdrawn

public class Overdrawn
public Long accountNumber;
public Long customerNumber;
public BigDecimal balance;
public BigDecimal overdraftLimit;

public Overdrawn (Long accountNumber, Long customerNumber, BigDecimal
balance, BigDecimal overdraftLimit) {
this.accountNumber = accountNumber;
this.customerNumber = customerNumber;
this.balance = balance;
this.overdraftLimit = overdraftLimit;

Injecting a @Channel can start a Reactive Stream within the same application or con-
nect to an external system, such as Apache Kafka. In this case, it needs to connect to
an external Apache Kafka topic. For that, the application needs to configure the chan-
nel indicated with the @Channel annotation, as illustrated in the next listing.

Listing 8.3 application.properties

Connects to the overdrawn Uses the smallrye-kafka connector for the channel.
topic to send messages This equates to sending the messages to Apache Kafka.
mp.messaging.outgoing.account-overdrawn.connector=smallrye-kafka <—

mp.messaging.outgoing.account-overdrawn.topic=overdrawn
mp.messaging.outgoing.account-overdrawn.value.serializers=
io.quarkus.kafka.client.serialization.JdsonbSerializer
Uses the Quarkus JSON-B serializer to convert
the Overdrawn instance to JSON

166

—D

CHAPTER 8 Reactive in an imperative world

The keys used in application.properties in this example do have special meaning, so
let’s discuss the various parts to them. The key format follows:

mp.messaging.<incoming|outgoings>.<channel names.<key names>

The first variable aspect to the key is whether it represents an incoming or outgoing
connection. In listing 8.1, a message will be sent from an application to Kafka, requir-
ing listing 8.3 to use outgoing. The next variable is channel name. Listing 8.1 speci-
fied the Emitter with @Channel ("account-overdrawn"). Thus, all keys need to use
the channel name account-overdrawn. Lastly is the variable key component identify-
ing the specific piece of functionality being configured. In the next code listing, it
includes connector, topic, and value.serializer. The full list of possible configura-
tion keys for Apache Kafka with outgoing channels (http://mng.bz/OQeo) and
incoming channels (http://mng.bz/YwWK) are in the SmallRye Reactive Messaging
documentation (http://mng.bz/GOvVR).

NOTE If the channel name used within the application matched the topic on
Apache Kafka, the key for topic can be skipped because it assumes the topic
name is the channel name if not present.

Instead of emitting only the payload of a message, it’s also possible to send the
entire Message, including handlers for an acknowledgment, successful and failure,
as shown here.

Listing 8.4 AccountResource

Uses Message.of() to construct an immutable
message. The payload is the same content as the
previous usage with emitter.send(payload).

A CompletableFuture
int ackedMessages = 0; is needed as the
List<Throwable> failures = new ArrayList<>(); return type.

CompletableFuture<Account> future = new CompletableFuture<s>() ;
emitter.send (Message.of (payload,

0 ->{
future.complete (entity) ; 4—{ C?::T:tes the thltur:
return CompletableFuture.completedFuture (null) ; wi e account entity
¥
reason -> { < A negative acknowledgment
failures.add(reason); function where Throwable is
future.completeExceptionally (reason) ; <+ a parameter and returns a
return CompletableFuture.completedFuture (null) ; CompletionStage <Void>. The
h example function captures the
)i failure reason returned from
return future; the negative acknowledgment.
Defines an acknowledgment handler Comol he f
supplying a CompletionStage <Void > ompletes the future
as the result. This handler increases a exceptionally

count of acknowledged messages.

http://mng.bz/OQeo
http://mng.bz/YwWK
http://mng.bz/GOvR

83.2

Reactive Messaging in Quarkus 167

This section introduced how to bridge from imperative to reactive code with emitters,
enabling developers to send messages from a JAX-RS resource method and transmit
them to a destination—in this case, an Apache Kafka topic—using @Channel on the
Emitter injection point, to indicate the topic.

What about blocking?

When developing reactive code, it’s extremely important to not block the execution
loop, also referred to as the event loop or 10 thread. Blocking on the execution
loop prevents other methods from executing at the same time, resulting in reduced
throughput because the framework is not able to switch between inactive and active
processes.

Figure 8.7 is a representation of the execution loop, showing it processing incoming
requests with a single thread. Requests are all processed on the execution loop, but
there are times when it’s necessary to perform work that can be slower, such as writing to
a database. In such a situation, it’s critical to offload the slower work from the execution
loop; otherwise, the single thread handling all requests will be prevented from doing
anything except processing the slower work. When slower work is offloaded to other
threads, the execution loop can handle a significantly higher request load.

Request Offload

Request

Execution loop

Blocking

(Single thread) operations

Operation complete

Figure 8.7 The execution loop

For these situations, developers need the ability to indicate which code is blocking,
allowing the framework to offload the blocking code into a separate thread. Quarkus
enables this with the @Blocking annotation for reactive messaging, as shown next.

Listing 8.5 AccountResource

Indicates that the method acts as a Subscriber by
receiving messages but not sending any out. Just like

@Channel, @Incoming contains the name of the channel, The method executes blocking

or topic, from which to read messages. code and runs the method on a
thread that is not the execution

@Incoming ("overdraft-update") loop thread

@Blocking
@Transactional

168

CHAPTER 8 Reactive in an imperative world

public void processOverdraftUpdate (OverdraftlLimitUpdate overdraftLimitUpdate) {
Account account =
Account . findByAccountNumber (overdraftLimitUpdate.accountNumber) ;
account.overdraftLimit = overdraftLimitUpdate.newOverdraftLimit;

} OverdraftLimitUpdate is the

Updates the Account with payload from the message
the new overdraft limit that was received.

NOTE Section 8.4.2 explains the acknowledgment policies of @Incoming.

OverdraftLimitUpdate is a POJO with accountNumber and newOverdraftLimit as
fields. The source for OverdraftLimitUpdate is in /chapter8/account-service/.

@Blocking is a great annotation because it enables developers to utilize Reactive
Streams, while still executing more imperative, but blocking, code. Without the anno-
tation, executing blocking code would need an Executor to spawn another thread to
perform the work and deal with propagating contexts between threads for CDI beans,
database transactions, or any other context that might be on the current thread that is
required to execute the method.

Listing 8.6 application.properties

Sets the Kafka broker location for production. In

Reads the message from development, the value defaults to localhost:9092,
the new-limit topic making it unnecessary to set in most situations.

%prod.kafka.bootstrap.servers=my-cluster-kafka-bootstrap.kafka:9092
mp.messaging.incoming.overdraft-update.connector=smallrye-kafka
mp.messaging.incoming.overdraft-update.topic=new-limit
mp.messaging.incoming.overdraft-update.value.deserializer=
quarkus.accounts.OverdraftLimitUpdateDeserializer

Specifies the deserializer used to convert the JSON
payload into an instance of OverdraftLimitUpdate

These settings are similar to those from listing 8.3, but they configure an incoming
channel. Notice that incoming replaces outgoing in the key, and the channel name
overdraft-update replaces account -overdrawn.

Listing 8.6 specified a deserializer for OverdraftLimitUpdate. Let’s take a look at
what it does, as shown next.

Listing 8.7 OverdraftLimitUpdateDeserializer

public class OverdraftLimitUpdateDeserializer extends
JsonbDeserializer<OverdraftLimitUpdates> {
public OverdraftLimitUpdateDeserializer ()

super (OverdraftLimitUpdate.class) ;

The deserializer needs to

extend JsonbDeserializer for

JSON-B content. If using Jackson,
} In the default constructor, passes the ObjectMapperDeserla.Ilzer would

} class type to the superclass constructor need to be extended instead.

8.3.3

Reactive Messaging in Quarkus 169

There’s not much to the deserializer, but it handles the JSON-to-POJO conversion for
developers. Developers don’t need to use object mappers or interact with J[SON
objects—they can use the POJO directly in the method that receives a message.

This section introduced the @Blocking annotation for Reactive Messaging meth-
ods where developers know it could block and, therefore, needs to run in a separate
thread. In addition, we covered using @Incoming to indicate a Subscriber of a Reac-
tive Stream.

Testing “in memory”

Though it’s important to test the integration with Apache Kafka, there is also benefit
in being able to test quickly without it. To support testing of channels without Apache
Kafka, the in-memory connector can be used instead. The in-memory connector replaces
the smallrye-kafka connector for handling interaction with topics.

To use the in-memory connector, the following dependency is needed:

<dependencys>
<groupld>io.smallrye.reactive</groupIds>
<artifactIds>smallrye-reactive-messaging-in-memory</artifactId>
<scope>test</scope>

</dependency>

NOTE The dependency is in test scope because it’s not required for compi-
lation, and it shouldn’t be packaged into the final application.

The in-memory connector works by redefining the configuration of the channels in
the application. To be able to do that, a QuarkusTestResourceLifecycleManager,
shown in the next code listing, is needed.

Listing 8.8 InMemoryLifecycleManager

public class InMemoryLifecycleManager implements

QuarkusTestResourceLifecycleManager { Alters the incoming channel
@Override named overdraft-update to
public Map<String, Strings> start() use the in-memory connector

Map<String, String> env = new HashMap<> () ;

env.putAll (InMemoryConnector.switchIncomingChannelsToInMemory (
"overdraft-update")) ;

env.putAll (InMemoryConnector.switchOutgoingChannelsToInMemory (
"account-overdrawn")) ;

The outgoing channel account-
return env;

overdrawn switches to use the
} in-memory connector.

@Override

public void stop() { Resets the configuration for any
InMemoryConnector.clear () ; channels that were switched to

} the in-memory connector.

}

170 CHAPTER 8 Reactive in an imperative world

Now let’s use this class in a test, illustrated next, to verify that an account going over-
drawn triggers an event.

Listing 8.9 AccountResourceEventsTest

@QuarkusTest Uses the InMemoryLifecycle-
@QuarkusTestResource (InMemoryLifecycleManager.class) Manager with the test to switch
public class AccountResourceEventsTest { the channels to in-memory

Injects an InMemoryConnector into the test for
interacting with a channel. @Any on the injection
point is needed because the instance to be injected
has a qualifier present, indicating any qualifiers

@Test can be ignored.
void testOverdraftEvent () {

InMemorySink<Overdrawns> overdrawnSink = connector.sink ("account-overdrawn") ;

@Inject @Any
InMemoryConnector connector;

Retrieves the sink for
the account-overdrawn
channel from the
InMemoryConnector. The
sink receives any events
sent to the channel.

Account account =
given ()
.when () .get ("/accounts/{accountNumber}", 78790)
.then () .statusCode (200)
.extract () .as (Account.class) ;

BigDecimal withdrawal = new BigDecimal ("23.82");
BigDecimal balance = account.balance.subtract (withdrawal) ;

Sets a withdrawal amount that
will not cause the account to
become overdrawn

account =
given ()
.contentType (ContentType .JSON)
.body (withdrawal.toString())

M?kesanotherac€ount .when () .put ("/accounts/{accountNumber}/withdrawal", 78790)
withdrawal that will
. . . .then () .statusCode (200)
trigger it being
overdrawn .extract () .as (Account.class) ;
// Asserts verifying account and balance have been removed.
assertThat (overdrawnSink.received () .size (), equalTo(0)) ;
withdrawal = new BigDecimal ("6000.00") ; Verifies that the sink for the
e balance = account.balance.subtract (withdrawal) ; channel has not received any
events. It shouldn’t because
account = the account is not overdrawn.
given ()
.contentType (ContentType.JSON)
.body (withdrawal.toString())
Asserts the .when () .put ("/accounts/{accountNumber}/withdrawal", 78790)
account status is .then () .statusCode (200)
OVERDRAWN .extract () .as (Account.class) ;

// Asserts verifying account and customer details have been removed.
assertThat (account.accountStatus, equalTo (AccountStatus.OVERDRAWN)) ;
assertThat (account .balance, equalTo(balance)) ;

The channel
should have
assertThat (overdrawnSink.received () .size (), equalTo (1)) ; received an

event.

Reactive Messaging in Quarkus 171

Message<Overdrawn> overdrawnMsg = overdrawnSink.received() .get (0) ; <+
assertThat (overdrawnMsg, notNullvValue()) ;
Overdrawn event = overdrawnMsg.getPayload() ; <

assertThat (event.accountNumber, equalTo(78790L)) ;

assertThat (event.customerNumber, equalTo (444222L)) ;
assertThat (event .balance, equalTo (balance)) ;

assertThat (event.overdraftLimit, equalTo (new BigDecimal ("-200.00")));

Verifies the contents of the Overdrawn payload
have the appropriate values for the account

Retrieves the event, Message
instance, from the channel sink

Listing 8.9 tests the use of Emitter in AccountResource.withdrawal () by verifying
that an event is sent to the Emitter, but only when the account becomes overdrawn,
and not before.

Next, let’s see the test for @Incoming.

Listing 8.10 AccountResourceEventsTest

public class AccountResourceEventsTest {
Retrieves the source for the

@Test overdraft-update channel from
void testOverdraftUpdate () { the InMemoryConnector. The
InMemorySource<OverdraftLimitUpdate> source = source can send events to the
connector.source ("overdraft-update") ; channel.
Account account =
given ()
Ensures the current .when () .get ("/accounts/{accountNumber}", 123456789)
overdraft limit on the .then () .statusCode (200)
account is the default .extract () .as (Account.class) ;

-200.00

// Asserts verifying account and balance have been removed.
assertThat (account .overdraftLimit, equalTo (new BigDecimal ("-200.00")));

Sends the OverdraftLimitUpdate updateEvent = new OverdraftLimitUpdate () ;
event to updateEvent.accountNumber = 123456789L;
the channel updateEvent .newOverdraftLimit = new BigDecimal ("-600.00") ;
using the
source source.send (updateEvent) ; Creates an OverdraftLimitUpdate
instance with the account number
account = and new overdraft limit
given()

.when () .get ("/accounts/{accountNumber}", 123456789)
.then () .statusCode (200)
.extract () .as (Account.class) ;

// Asserts verifying account and balance have been removed.
assertThat (account.overdraftLimit, equalTo (new BigDecimal ("-600.00")));

) After retrieving the account,
verifies the overdraft limit has
been updated to -600.00

172

8.4

84.1

CHAPTER 8 Reactive in an imperative world

To see the tests run, open a terminal and change to /chapter8/accountservice/
directory and run the following:

mvn verify

If everything worked as expected, the tests pass without error.

With the 2.x release of Quarkus, an alternative to in-memory testing is available for
Kafka. When a Docker instance is available, the new Dev Services (https://quarkus
.io/guides/kafka-dev-services) facility will start a Kafka broker using Redpanda (https://
vectorized.io/redpanda).

This section revealed how to test Reactive Messaging applications without needing
to run an external messaging broker, such as Apache Kafka. Whether application code
uses an Emitter, @Incoming, or any method annotation for reactive messaging, the
code can be unit tested. Though there is still a need for integration testing, being able
to unit test code provides a faster feedback loop for issues.

How does it work?

The previous section covered some examples using Reactive Messaging, but now let’s
take a look at what underpins the examples. Readers will learn about the MicroProfile
Reactive Messaging specification, which is where the annotations from the examples
are defined, and what a Reactive Stream looks like.

MicroProfile Reactive Messaging specification

The specification defines the means to build distributed systems enforcing asynchro-
nous communication by promoting location transparency and temporal decoupling.
Temporal decoupling refers to separating two different actions, or steps of execution,
such that they can occur at different times. Location transparency requires not hard-
coding physical addresses of one service into another but enabling the physical loca-
tion of services to shift over time and still be addressable.

Synchronous communication, often through HTTP, can have a level of location
transparency through the use of DNS records or service registries. For example,
Kubernetes uses DNS for location transparency to abstract which node in the cluster is
hosting a service instance. However, there is no way to avoid temporal coupling
between services because the very nature of synchronous communication requires it.

How does Reactive Messaging differ from the message-driven beans of JMS? JMS
was designed at a time when message brokers were present at the edges of application
architectures, not as an integral piece of an application’s architecture. If a developer
wants to use messages with JMS within their application, it requires a message to be
published to an external broker, before the same application then receives the same
message from an external broker. When dealing with intra-application messaging,
message brokers built for operating at the edges of a system would be overweight. The
Reactive Messaging specification brings this functionality to developers by not requir-
ing external brokers to create Reactive Streams within an application.

https://quarkus.io/guides/kafka-dev-services
https://quarkus.io/guides/kafka-dev-services
https://quarkus.io/guides/kafka-dev-services
https://vectorized.io/redpanda
https://vectorized.io/redpanda
https://vectorized.io/redpanda

84.2

How does it work?

173

Over the following sections, the reader will learn about Message
the specification, including how messages, channels, con-
nectors, and streams work together as part of a distributed [gk
system.
[Payload

—

Message content and metadata

The core of the specification is a Message, representing the
data that’s transmitted, as shown in figure 8.8. As seen from
the examples earlier in the chapter, the Message wraps the

Message

specific payload being sent.

Figure 8.8 Content of a

The Message interface provides methods that readers have already seen in earlier

examples, including the following:

getPayload—Retrieves the payload from the message wrapper. Examples of
payload are OverdraftLimitUpdate and Overdrawn.

getMetadata—Accesses the metadata from within the message wrapper. Depend-
ing on the underlying message type, the available metadata will differ. When
using Apache Kafka, getMetadata (IncomingKafkaRecordMetadata.class)
can be called on Message. IncomingKafkaRecordMetadata offers methods to
access details of the underlying Kafka record, such as getTopic, getKey, and
getTimestamp.

ack—For acknowledging the completion of message processing.

nack—To negatively acknowledge message processing. This indicates there was
a failure in processing the message, and the publisher of the message needs to
determine the appropriate handling of the failed message.

IMPORTANT A Subscriber or Processor must properly acknowledge the pro-
cessing of a message. Doing so assists in preventing the reprocessing of suc-
cessful messages. With Quarkus, in many situations acknowledgment happens
automatically for the developer. When a method has a Message parameter,
developers must manually call ack() on the message. In other situations,
acknowledgment occurs as long as no exception is thrown.

NOTE Negative acknowledgment, the nack() method, is an experimental
feature of SmallRye Reactive Messaging in Quarkus. If feedback from the
community is positive, the method will be proposed to the specification.

When more control over automatic acknowledgment of a message is needed, the
developer can annotate a method with @Acknowledgement. @Acknowledgement pro-

vides the following four options for configuring the type of acknowledgment:

POST PROCESSING—Acknowledgment of an incoming message does not occur
until any produced message has been acknowledged. If service A sends a mes-
sage to service B, which in turn sends a message to service C, service B will not
acknowledge the message it received from service A until service C has acknowl-
edged the message service B sent.

174 CHAPTER 8 Reactive in an imperative world

= PRE_PROCESSING—The incoming message is acknowledged before method
execution.

= MANUAL—The developer has full control over executing ack () on the Message.

= NONE—No acknowledgment of any kind is performed.

Now let’s see in the next code listing some methods that interact with message meta-
data by adding it to a message and then retrieving it in a subsequent method.

Listing 8.11 OverdraftResource

Receives a Message with an Overdrawn An incoming channel connected to the topic
payload, and returns an identical message that receives messages from AccountResource
and payload combination, though not the . L
same message content in this case An internal application
channel for passing a message to
@Incoming ("account-overdrawn") ProcessOverdraftFee in listing 8.12

@Outgoing ("customer-overdrafts")
public Message<Overdrawn> overdraftNotification (Message<Overdrawn> message) {

Overdrawn overdrawnPayload = message.getPayload() ; <

CustomerOverdraft customerOverdraft =

customerOverdrafts.get (overdrawnPayload.customerNumber) ; G
// Create a new CustomerOverdraft if it's null. Full content in chapter
source

AccountOverdraft accountOverdraft =

Updates the customerOverdraft.accountOverdrafts.get (overdrawnPayload.accountNumber) ;
;uﬂonm: // Create a new AccountOverdraft if it's null. Full content in chapter
anda accoun
overdraft source Gets the current set of overdraft
events events for the customer

customerOverdraft.totalOverdrawnEvents++;
accountOverdraft.currentOverdraft = overdrawnPayload.overdraftLimit;

accountOverdraft.numberOverdrawnEvents++; .
Retrieves the

Overdrawn payload

return message.addMetadata (customerOverdraft) ; from inside the message

Returns a new Message instance containing the same payload,
but with CustomerOverdraft as metadata in the message

Listing 8.11 is a Publisher, defined earlier in the chapter, because it includes both
@Incoming and @outgoing on the method. In the next code listing, we extract the cus-
tomer overdraft details to determine the appropriate fee, then we create an Account -
Fee that is packaged into a message and sent to the outgoing channel.

Listing 8.12 ProcessOverdraftFee

A CDI bean with an application scope Receives the messages from the
means only one will be created. customer-overdrafts channel that
were added in listing 8.11
@ApplicationScoped
public class ProcessOverdraftFee {
. Creates a message to be sent
@Incoming ("customer-overdrafts")
) to the overdraft-fee channel
@Outgoing ("overdraft-fee")

How does it work? 175

—> public AccountFee processOverdraftFee (Message<Overdrawns> message) {
Overdrawn payload = message.getPayload() ;
CustomerOverdraft customerOverdraft =

message.getMetadata (CustomerOverdraft.class) .get () ; R ——

AccountFee feeEvent = new AccountFee () ; <
feeEvent.accountNumber = payload.accountNumber;
feeEvent.overdraftFee = determineFee (payload.overdraftLimit,
customerOverdraft.totalOverdrawnEvents,
customerOverdraft.accountOverdrafts.get (payload.accountNumber)
.numberOverdrawnEvents) ;
return feeEvent;

AccountFee is the payload that will

} be included in the new message

} the method produces.
Accepts a Message with Overdrawn payload, Retrieves the CustomerOverdraft
and returns an AccountFee payload that will metadata from the Message, which
be wrapped into a message was added in listing 8.11

OverdraftResourceEventsTest tests these interactions, which is in the chapter source
in the /chapter8/overdraft-service/src/test/java/quarkus/overdraft directory. Because
the content of OverdraftResourceEventsTest is quite similar to listing 8.9, it was not
included for brevity.

Running mvn verify in the /chapter8/overdraftservice/ directory runs the test.
Everything should pass without a problem.

Because the test used the in-memory connector, there was no need to configure
any of the channels with properties. However, they are needed when connecting with
Kafka, as shown next.

Listing 8.13 application.properties

mp.messaging.incoming.account-overdrawn.connector=smallrye-kafka
mp.messaging.incoming.account-overdrawn.topic=overdrawn
mp.messaging.incoming.account-overdrawn.value.deserializer=

_{ quarkus.overdraft.OverdrawnDeserializer

mp.messaging.outgoing.overdraft-fee.connector=smallrye-kafka

mp.messaging.outgoing.overdraft-fee.topic=account-fee

mp.messaging.outgoing.overdraft-fee.value.serializer=
io.quarkus.kafka.client.serialization.JsonbSerializer

mp.messaging.outgoing.overdraft-update.connector=smallrye-kafka

mp.messaging.outgoing.overdraft-update.topic=new-limit

mp.messaging.outgoing.overdraft-update.value.serializer=
io.quarkus.kafka.client.serialization.JsonbSerializer

OverdrawnDeserializer converts JSON into an Overdrawn
instance and is nearly identical to listing 8.7.

IMPORTANT Listing 8.13 does not include a channel definition for customer-
overdrafts. customer-overdrafts is purely an internal application channel;
@outgoing and @Incoming are present in the same application deployment,

176 CHAPTER 8 Reactive in an imperative world

so there is no need for it to be defined in configuration. Quarkus will auto-
matically create a Reactive Stream connecting them.

This section introduced the Message interface with methods for accessing the pay-
load, acknowledging a message, and retrieving metadata from the message. Message
consists of the payload with additional metadata wrapped together.

8.4.3 Messages in the stream

How does a Message fit within a Reactive Stream?

Figure 8.9 shows an internal view of an application where several CDI beans pub-
lish, process, and subscribe to messages, creating a Reactive Stream between them.
Between each CDI bean is a channel, enabling methods on CDI beans to be connected
together in a chain, where they can pass messages.

Channel Channel
Message Message

Bean 1 Bean 2 Bean 3

Figure 8.9 Connecting internal
code with streams

A channel can be within an application between components, as in figure 8.9, or con-
nect to remote brokers or message transport layers.

The architecture in figure 8.10 is an application receiving messages with one con-
nector and publishing messages to another connector.

Broker Broker
! NPt
' [Message| Application | Message :
")
i E Channel Channel E E
i Y E Message Message E S E
| |Message @(@ Bean 1 Bean 2 Bean 3 @% Message|!
! o] s {apst
— h)
' [Message| ! E Message E
p—a o

Figure 8.10 Integrating streams between microservices

In this architecture, channels connect external brokers to the application and
between components of the application internally. The connector transport could

8.5

8.5.1

Deploying to Kubernetes 177

be of the same or different types, such as a Kafka cluster or an AMQP broker. If the
connector transport utilizes a Kafka cluster, an external channel is a representation
of a Kafka topic. An example of this architecture can be seen in listing 8.11 and list-

ing 8.12.

Deploying to Kubernetes

To be able to deploy the application to Kubernetes, it’s necessary to have an Apache
Kafka cluster to send to and receive messages from topics.

Apache Kafka in Minikube

The Strimzi (https://strimzi.io/) project is a great way to run an Apache Kafka cluster
on Kubernetes. We will use it with Minikube for testing the application for the chap-
ter. Strimzi includes the following great features by default:

= Secured by default, with support for TLS

= Options for configuring NodePort, LoadBalancer, and Ingress

= Dedicated Kafka nodes

= Operation-based deployment
If Minikube is already running, stop it and run minikube delete before restarting it. It
is reccommended to use more than the default 2 GB RAM for Minikube when running
Apache Kafka.

To keep all the Kafka components separate from the applications, let’s put them
into their own namespace as follows:

kubectl create namespace kafka

Now install the Strimzi Kubernetes operator, as shown here:

kubectl apply -f 'strimzi-cluster-operator-0.25.0.yaml' -n kafka

NOTE Operators are software extensions to Kubernetes that utilize custom
resources to manage applications or their components. In this instance, the
operator is managing an Apache Kafka cluster.

To create the cluster, some YAML, shown in the next code listing, is required to inform
the Strimzi operator of the type of cluster needed.

Listing 8.14 kafka_cluster.yml

apiVersion: kafka.strimzi.io/vlbeta2

kind: Kafka : Sets the resource kind to Kafka, which

metadata: is recognized by the Strimzi operator
name: my-cluster

spec:

Kafka- Indicates the name

for the cluster

https://strimzi.io/

178

CHAPTER 8 Reactive in an imperative world

r?pllcas 2 Number of Kafka
listeners: replicas to create

- name: plain

port: 9092 Defines the plain
type: internal and tls listeners
tls: false for the broker

- name: tls
port: 9093

type: internal

tls: true .
Number of Zookeeper replicas. Zookeeper

is a key-value store used in distribution

zookeeper: N)
systems for storing configuration.

replicas: 2

NOTE In a production environment, it is recommended to have three repli-
cas of Kafka and Zookeeper, at a minimum, for failover purposes. However,
in the constrained environment of a local machine, two replicas shouldn’t
overwhelm the local system while still showcasing multiple brokers.

Now create the cluster defined in listing 8.14 as follows:

kubectl apply -f kafka cluster.yml -n kafka

Creating the cluster can take a few minutes because it needs to download container
images for Kafka and Zookeeper and configure all the instances. There are a couple
of alternatives to wait for it to be ready. Run a wait command that will complete when
the cluster is ready like so:

kubectl wait kafka/my-cluster --for=condition=Ready --timeout=300s -n kafka
Or keep checking the status of the Kubernetes Pods as follows:
kubectl get pods -n kafka

The expected result of the above command is shown here:

NAME READY STATUS RESTARTS AGE

my-cluster-entity-operator-574bcbc568-xbdxr 3/3 Running 0 86s

my-cluster-kafka-0 1/1 Running 0 115s
my-cluster-kafka-1 1/1 Running 0 115s
my-cluster-zookeeper-0 1/1 Running 0 3m2s
my-cluster-zookeeper-1 1/1 Running 0 3m2s
strimzi-cluster-operator-54f£55979f-89517j 1/1 Running 0 4mlés

Let’s run a quick test to verify the Kafka cluster is operating correctly. First, start a pro-
ducer that accepts messages in the terminal as follows:

kubectl -n kafka run kafka-producer -ti
--image=quay.io/strimzi/kafka:0.25.0-kafka-2.8.0 --rm=true
--restart=Never -- bin/kafka-console-producer.sh --broker-list
my-cluster-kafka-bootstrap.kafka:9092 --topic my-topic

8.5.2

Deploying to Kubernetes 179

When the producer is ready to accept input, it will display “>” on the left-hand side of
the terminal window. To send a message, type anything into the terminal and press
Enter. Pressing Enter creates a message, adding it to the my-topic topic.

Now run the consumer in a different terminal to read the messages, as shown next:

kubectl -n kafka run kafka-consumer -ti
--image=quay.io/strimzi/kafka:0.25.0-kafka-2.8.0 --rm=true
--restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server
my-cluster-kafka-bootstrap.kafka:9092 --topic my-topic --from-beginning

A delay of a few seconds occurs while it downloads and starts the container image.
Once started, the messages entered into the producer appear in the order they were
entered. When the messages have been received, stop the consumer and producer by
typing Ctrl-C in each terminal window.

For the Account service and Overdraft service to operate, topics in Kafka are
needed, so add them as follows:

kubectl apply -f kafka topics.yml -n kafka

The kafka_topics.yml asks for three topics to be created, named overdrawn, new-
limit, and account-fee. Each topic defines three partitions and two replicas. The
kafka_topics.yml can be found in the /chapter8 directory.

In the next section, we retrieve messages directly from a Kafka topic.

Putting it all together

With the Apache Kafka cluster in place, it’s time to deploy the Account service and
Overdraft service. Before deploying the services, we need the following PostgreSQL
database:

kubectl apply -f postgresqgl_ kubernetes.yml

NOTE Run eval $(minikube -p minikube docker-env) before the next com-
mand to ensure the container image build uses Docker inside Minikube.

Next, deploy the Account service. Change to the /chapter8/accountservice/ direc-
tory in a terminal and run the following code:

mvn verify -Dquarkus.kubernetes.deploy=true
Next, deploy the Overdraft service in the same manner.

When complete, run minikube service list to show the deployed services, as
shown in the next code listing.

180

CHAPTER 8 Reactive in an imperative world

Listing 8.15 Services present in Minikube

default
default
default
default
kafka
kafka
kafka
kafka

kube-system

account-service http/80 http://192.168.64.15:30704 |
kubernetes No node port
overdraft-service http/80 http://192.168.64.15:31621

http://192.168.64.15:31615 |
my-cluster-kafka-bootstrap No node port
my-cluster-kafka-brokers No node port
my-cluster-zookeeper-client No node port
my-cluster-zookeeper-nodes

kube-dns

No node port
No node port

With everything in place it’s time to test it all out!
Let’s withdraw $600 from an account that will make it overdrawn. Open a terminal
and run the following:

|
|
|
|
|
|
postgres | http/5432
|
|
|
|
|
|

ACCOUNT URL="minikube service --url account-service~
curl -H "Content-Type: application/json" -X PUT -d "600.00"
${ACCOUNT URL}/accounts/123456789/withdrawal

The response we should receive is shown in the next code sample.

Listing 8.16 Account details response

nidn.1, Status ot: the
account is

"accountNumber":123456789,
OVERDRAWN.

"accountStatus": "OVERDRAWN",
"balance":-49.22,
"customerName" : "Debbie Hall",

The account

is reduced from
"customerNumber":12345, $550.78 to -$49.22.

"overdraftLimit":-200.00

With an account becoming overdrawn, a message should have been added to the
account - fee topic. To find out if there is one, use the kafka-console-consumer.sh
script from the Kafka installation. In a terminal run the following:

Uses the topic consumer Runs an interactive instance Uses the Strimzi Kafka
script within the instance named kafka-consumer container image

kubectl -n kafka run kafka-consumer -it \ , .
. .. Doesn’t restart the container
--image=strimzi/kafka:0.25.0-kafka-2.8.0 \ .
and remove it when done
--rm=true --restart=Never \

-- bin/kafka-console-consumer.sh \
--bootstrap-server my-cluster-kafka-bootstrap.kafka:9092 \
server

The Kafka bootstrap

Deploying to Kubernetes 181

--topic account-fee \

--from-beginning Connects to
the account-
Reads messages from fee topic

offset 0 of the topic

NOTE Ensure the kafka-consumer from earlier in the chapter was stopped
first to prevent errors.

Assuming the message was correctly sent to the Kafka topic, the result of the previous
command should be the following:

{

"accountNumber":123456789,
"overdraftFee":15.00

For the same account, now verify what the current overdraft limit is set to as follows:

curl -X GET ${ACCOUNT URL}/accounts/123456789

The response should be the same as listing 8.16. It will show a current overdraft-
Limit of -200.00. Now call the Overdraft service to adjust the limit as follows:

OVERDRAFT_URL="minikube service --url overdraft-service~
curl -H "Content-Type: application/json" -X PUT -d "-600.00"
${OVERDRAFT URL}/overdraft/123456789

Now verify a message was sent through Kafka and the limit is updated in the Account
service, as shown next:

curl -X GET ${ACCOUNT URL}/accounts/123456789

The response should be the following:

nidn :1,
"accountNumber":123456789,
"accountStatus": "OVERDRAWN",
"balance":-49.22,
"customerName" : "Debbie Hall",

"customerNumber" :12345, The overdraftLimit for the
"overdraftLimit":-600.00 account has been updated
to -$600.00.

This section explained how to use the Strimzi operator for creating an Apache Kafka
cluster. Whether in Minikube or a production Kubernetes cluster, the Strimzi opera-
tor can be used for it all. With a Kafka cluster in place, we can create topics with the
Strimzi operator. With the services deployed, the reader ran curl commands to inter-
act with the different services for interacting with the topics.

182

CHAPTER 8 Reactive in an imperative world

Exercise for the reader

Copy the Transaction service from a previous chapter, and modify it to process mes-
sages from the account-fee topic in Kafka. The messages on the topic will have
AccountFee instances as a payload. Retrieve the content of AccountFee, and create
a transaction against the accountNumber with the specified amount.

Summary

Reactive Streams consist of a Publisher to create a message, a Subscriber to
receive a message terminating the stream, and any number of Processors in

between.

By adding @Incoming to a method, a Subscriber listens to messages from a Reac-

tive Stream.

Whether connecting to Apache Kafka, AMQP brokers, MQTT brokers, or other
types of messaging systems, developers are able to switch configuration between

them without needing to modify application code.

Include @Blocking on a method to indicate it should occur on a separate
thread, because the work required is potentially blocking. An example is storing

records in a database.

Use the Strimzi operator for creating an Apache Kafka cluster in Kubernetes, or

Minikube, and creating topics.

Developing Spring

macroservices with Quarkus

This chapter covers

= Comparing Spring and Quarkus/MicroProfile APls

= Replacing Quarkus/MicroProfile APls with Spring
APIs

= How Quarkus implements Spring APl compatibility

Spring is a popular Java microservices runtime with a large developer base that
has invested a lot of time learning Spring APIs. By offering compatibility with
commonly used Spring APIs, Quarkus enables Spring developers to leverage that
investment and get started quickly. Spring developers can then benefit from
Quarkus development features like live coding and production efficiencies like
low memory usage and fast boot time. This chapter is intended for experienced
Spring developers and will not cover Spring APIs in depth. The examples for
this chapter update the examples from chapters 3 and 7 to use Spring APIs
where possible. By updating existing examples, the following two concepts will
become apparent:

Spring APIs can be used side by side with Quarkus and MicroProfile APIs.
Spring APIs and Quarkus/MicroProfile APIs have similar programming
models.

183

184

9.1

CHAPTER 9 Developing Spring microservices with Quarkus

The next section gives a more in-depth overview of the compatibility between Quarkus
and Spring APIs.

Quarkus/Spring APl compatibility overview

When adopting Quarkus, Spring developers can bring their existing API knowledge
with them. The list of Quarkus/Spring compatibility extensions follows:

Quarkus Extension for Spring Boot properties

Quarkus Extension for Spring Cache API (not covered in this chapter)
Quarkus Extension for Spring Cloud Config Client

Quarkus Extension for Spring DI API

Quarkus Extension for Spring Data JPA API

Quarkus Extension for Spring Scheduled (not covered in this chapter)
Quarkus Extension for Spring Security API

Quarkus Extension for Spring Web API

The Spring and Quarkus ecosystems are much larger in scope than the extensions
outlined in this list. Migrating existing Spring applications to Quarkus using the
Spring compatibility APIs is not a primary goal of the Spring compatibility APIs. The
goal is to offer enough of the Spring ecosystem APIs to make Spring developers imme-
diately comfortable and productive with Quarkus. Regardless, organizations have
been using the compatibility APIs to facilitate the migration of existing Spring appli-
cations where sufficient API coverage is available and supported APIs, like Micro-
Profile Fault Tolerance, are available.

Once familiar with Quarkus, some developers decide to switch from the Spring
APIs to the Quarkus and MicroProfile APIs because the APIs are similar and they pre-
fer developing to industry standards when possible. For example, table 9.1 shows a
simple method using both the JAX-RS and Spring Web APIs. The APIs are similar, and
both can run on Quarkus.

Table 9.1 Comparing a method written using JAX-RS vs. Spring Web annotations

JAX-RS Spring Web

@GET @GetMapping ("/{accountNumber}/balance")

@Path ("/{accountNumber} /balance") public BigDecimal getBalance (

public BigDecimal getBalance (@PathVariable ("accountNumber")
@PathParam ("accountNumber") Long accountNumber) {

Long accountNumber) {

.
}

The following sections focus on applying the Spring compatibility APIs to the Bank
service, Account service, and Transaction service. To a surprising degree, it is a simple
mapping, similar to table 9.1.

9.2

9.2.1

Spring dependency injection and configuration compatibility 185

Spring dependency injection and configuration

compatibility

Spring popularized Java dependency injection more than a decade ago, and CDI pop-
ularized annotation-based dependency injection a few years later. Today, both frame-
works offer annotation-based dependency injection with similar functionality. The
configuration annotations are also similar between Spring and Quarkus. Table 9.2
shows how Quarkus converts Spring annotations to CDI and MicroProfile Config
annotations during compilation.

Table 9.2 Spring-to-CDI/MicroProfile annotation compile-time conversions

Spring CDI/MicroProfile Comments

@Autowire @Inject Injects a component.

@Bean @Produces Defines a factory method.

@Configuration @ApplicationScoped

@ConfigurationProperties @ConfigProperties Injects multiple properties.

@Qualifier @Named Differentiates between different
beans of the same type in the
same scope.

@Value @ConfigProperty Injects a property value;
@Value provides expression
language support.

@Component @Singleton By default, Spring stereotypes

@Service are singletons.

@Repository

The next section will set up a Spring Cloud Config Server as a configuration source
for the Bank service, followed by a section that uses Spring DI annotations to obtain
properties from the Spring Cloud Config Server.

Setting up the Spring Cloud Config Server

The Spring Cloud Config Server (Config Server) is a configuration source that provides
common access to configurations stored in Git repositories, Redis, Vault, and more. By
supporting the Config Server, Quarkus applications can more easily run in existing
Spring environments. The instructions for installing the Config Server are available from
the Spring community (https://spring.io/guides/gs/centralized-configuration).

NOTE Optionally, use the Config Server included in the book’s Git reposi-
tory in the chapter 9 spring-config-server subdirectory.

Listing 9.1 shows the properties from the chapter 3 Bank service that have been added
to the Config Server Git repository at https://github.com/jclingan/banking-config-
repository in the bank-service.properties file. The properties have minimal differences,

https://github.com/jclingan/banking-config-repository
https://github.com/jclingan/banking-config-repository
https://spring.io/guides/gs/centralized-configuration

186

9.2.2

CHAPTER 9 Developing Spring microservices with Quarkus

like the (“Config Server”) text appended to some properties to make the configura-
tion source apparent.

Listing 9.1 Config Server bank-service.properties

Configuration file
key = value

Bank names

bank.name=Bank of Quarkus (Config Server)
%$dev.bank.name=Bank of Development (Config Server)
$prod.bank.name=Bank of Production (Config Server)

Using @ConfigProperties
bank-support.email=support@bankofquarkus.com (Config Server)
bank-support .phone=555-555-5555 (Config Server)

Devmode properties for expansion below
username=quarkus_banking
password=quarkus_banking

Property expansion
db.username=${username}
db.password=${password}

The next listing shows the required properties to configure the Config Server in src/
main/resources/application.properties.

Listing 9.2 Config Server application.properties

Specifies a port that does not
conflict with other services

server.port=18888
spring.cloud.config.server.git.uri=https://github.com/jclingan/banking-

fig- it . . .
config-repository/ The location of the Git repository

that defines properties used by
the Bank service

Package the Config Server using mvn package, and then start it with java -jar tar-
get/ spring-config-server-0.0.1-SNAPSHOT.jar. With the Config Server running,
the next step is to update the Bank service to use the server as a configuration source.

Using the Spring Config Server as a configuration source

The Bank service requires updates to use the Config Server. First, run mvn quarkus:
add-extension -Dextensions=quarkus-spring-cloud-config-client to add the Con-
fig Server as a configuration source.

The Config Server will provide most of the properties defined in the chapter 3
Bank service. However, the Bank service properties outlined in the next code listing
have to be defined locally because they are Quarkus build-time properties.

L
—>

9.2.3

Enables the Config Server
as a configuration source

Spring dependency injection and configuration compatibility 187

Listing 9.3 Bank service application.properties

The Config Server selects the configuration based
on the application name. This maps to bank-
service.properties in the Git repository.

Spring Cloud Config Server Client configuration

quarkus.application.name=bank-service
quarkus.spring-cloud-config.enabled=true
quarkus.spring-cloud-config.url=http://localhost:18888
$prod.quarkus.spring-cloud-config.url=http://spring-config-server:18888

Provides the URL to the Config Server when Provides the URL to the Config
running locally during development Server when running in Minikube

From the bank-service directory, test the results by running mvn quarkus:dev, and
then check an endpoint using curl localhost:8080/bank/secrets.
The output should match the text in the next listing.

Listing 9.4 Bank service application.properties

{"password": "quarkus_banking", "db.password":"quarkus banking", "db.username":"
quarkus banking", "username":"quarkus banking"}

Converting the Bank service to use Spring Configuration APIs

To use the Spring DI and Spring Boot Configuration APIs, add the quarkus-spring-di
and quarkus-spring-boot-properties extensions using mvn quarkus:add-extension
-Dextensions=quarkus-spring-di, quarkus-spring-boot-properties.

Referring to table 9.2, update the BankSupportConfig.java source code to use
Spring’s @ConfigurationProperties annotation as shown next.

Listing 9.5 Converting to Spring’s @ConfigurationProperties

@ConfigurationProperties
public class BankSupportConfig {

o

Changes the MicroProfile
@ConfigProperties annotation to Spring
Boot’s @ConfigurationProperties

Update BankResource.java to replace MicroProfile’s @ConfigProperty annotation
with Spring’s @Value annotation as shown in the following code.

Listing 9.6 Converting to Spring’s @value annotation in BankResource.java

@Value ("${bank.name:Bank of Default}") Replaces @ConfigProperty with
String name; @Value. The @ConfigProperty
defaultValue parameter value is now
@Value ("${db.username:Missing}") defined in the @Value expression.

String db username;

188

9.3

CHAPTER 9 Developing Spring microservices with Quarkus

@Value ("${db.password:Missing}") <
String db password;

@Value ("app.mobilebanking") <+ Replaces @ConfigProperty with

Optional<Boolean> mobileBanking; @Value. The @ConfigProperty
defaultValue parameter value is now

@Value ("username") <+— defined in the @Value expression.

String username;

@Value ("password") <+
String password;

Check an endpoint using curl localhost:8080/bank/secrets. The output should
match the earlier output in listing 9.4. Stop the Bank service to avoid port conflicts
with upcoming services.

As shown, converting the Bank service to using Spring property and DI annota-
tions is seamless, including using a Config Server as a configuration source.

Exercise for the reader

Update the remaining services to Spring DI APIs. The book’s Git repository contains
working updated code for the Bank service, Account service, and Transaction service.

The next section will convert the Account service to use Spring Web APIs.

Quarkus/Spring Web API compatibility

This section will change JAX-RS APIs in the Account service to their Spring Web
equivalents. As with using Spring configuration and DI annotations, the JAX-RS and
Spring Web APIs are similar enough to make the conversion straightforward. A list of
Spring Web annotations supported by Quarkus follows:

@CookieValue

@DeleteMapping

@ExceptionHandler (with Quarkus, usable only in the @RestControllerAdvice
class)

@MatrixVariable

@RequestBody

@RequestMapping

@RequestParam

@ResponseStatus

@RestController

@RestControllerAdvice (with Quarkus, supports only the @ExceptionHandler
capability)

@PatchMapping

@PathVariable

@PostMapping
replaces JAX-RS
@PATH and
@POST
annotations.

replaces

Quarkus/Spring Web API compatibility 189

" @PostMapping
" @PutMapping

Before updating the code to Spring Web APIs, execute the following steps:

1 Add Spring Web compatibility—From the accountservice directory, add the quarkus-
spring-web extension to the Account service to enable the Spring Web annota-
tions. Run mvn quarkus:add-extension -Dextensions=quarkus-spring-web.

2 Start the PostgreSQL database—The Account service requires the PostgreSQL
database. If it is not already running, deploy the PostgreSQL database to Mini-
kube by running kubectl apply -f postgresql kubernetes.yml from the
chapter 9 top-level directory.

2 Proxy database requests—To forward local database requests to the Minikube Post-
greSQL instance, run kubectl port-forward service/postgres 5432:5432.

The next code listing converts AccountResource java to the Spring Web APIs.

Listing 9.7 Converting the Account service to Spring Web APls

@RestController replaces (@RestMapping and its

the @ApplicationScoped parameters replace JAX-RS
@rh, @Frodces nd
@RequestMapping (path = "/accounts", :

produces=MediaType.APPLICATION JSON_ VALUE,
consumes=MediaType .APPLICATION JSON VALUE)
public class AccountResource {

@GetMapping

@GetMapping 4—{ replaces JAX-RS
public String hello() { @GET. @RequestHeader replaces
return "hello"; @Context HttpHeaders. For the
} moment, directly injecting a
@RequestHeader MultiValueMap
@PostMapping (" {accountNumber}/transaction") is not supported. This will be
@Transactional addressed in a Quarkus update.

public Map<String, List<String>>
transact (@RequestHeader ("Accept") String acceptHeader, <

@RequestBody BigDecimal amount) { @RequestBody has no JAX-RS

@PathVariable (D @PathVariable ("accountNumber") Long accountNumber,

@PathParam.

ResponseStatus
Exception
replaces JAX-RS
WebApplication
Exception.

equivalent. By default, JAX-RS attempts
to bind JSON to a specified data type.

if (account == null) {
throw new ResponseStatusException (HttpStatus.NOT FOUND,
"Account with " + accountNumber + " does not exist.");

if (entity.getAccountStatus().equals (AccountStatus.OVERDRAWN)) {
throw new ResponseStatusException (HttpStatus.CONFLICT,
"Account is overdrawn, no further withdrawals permitted");

190 CHAPTER 9 Developing Spring microservices with Quarkus

—> List<String> list = new ArrayList<>();

list.add((acceptHeader)) ;

Map<String,List<String>> map = new HashMap<String,List<String>>();
map.put ("Accept", list);

} @GetMapping

replaces JAX-RS @GET.
@GetMapping ("/{accountNumber} /balance")

public BigDecimal getBalance (@PathVariable ("accountNumber") Long
accountNumber) { @PathVariable replaces
Co JAX-RS @PathParam.
if (account == null) {

throw new ResponseStatusException (HttpStatus.NOT FOUND,
"Account with " + accountNumber + " does not exist.");

ResponseStatusException replaces JAX-RS
WebApplicationException and uses Spring’s
HttpStatus class to return the HTTP status code.

This section of code “manually” creates Spring’s MultiValueMap with one entry that can be
returned to the caller. This code will be removed once MultiValueMap injection is supported in
a future Quarkus update (https://github.com/quarkusio/quarkus/issues/14051).

AccountResource java also defines an exception handler, which catches application
exceptions and returns an HTTP 500 status code. This code is slightly more complex
than previous examples because the annotations do not map one to one, and some
new data types are involved, such as ResponseEntity. The next code snippet replaces
the JAX-RS ExceptionMapper with a Spring Web @RestControllerAdvice class.

Listing 9.8 Converting ExceptionMapper to @RestControllerAdvice

The JAX-RS ExceptionMapper interface is converted to

a Spring Web @RestControllerAdvice annotation and

also replaces the JAX-RS @Provider annotation. The JAX-RS toResponse() interface
method is converted to a method
annotated with the Spring Web
(@ExceptionHandler annotation.

@RestControllerAdvice
public static class ErrorMapper {
@ExceptionHandler (Exception.class)
public ResponseEntity<Object> toResponse (Exception exception) ({

Spring HttpStatus code = HttpStatus.INTERNAL SERVER ERROR;
HttpStatus if (exception instanceof ResponseStatusException) ({
replaces code = ((ResponseStatusException) exception).getStatus();
integer }
status
code. JsonObjectBuilder entityBuilder = Json.createObjectBuilder ()
.add ("exceptionType", exception.getClass () .getName ())
.add ("code", code.value()) ;
if (exception.getMessage() != null) {

entityBuilder.add ("error", exception.getMessage()) ;

}

https://github.com/quarkusio/quarkus/issues/14051

—

Quarkus/Spring Web API compatibility 19

return new ResponseEntity(entityBuilder.build(), code) ;
J Spring ResponseEntity

} replaces JAX-RS Response.

Listing 9.9 Searching for valid account

curl -i localhost:8080/accounts/444666/balance

Listing 9.10 Account balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12
Test the POST endpoint and verify posting works as shown as follows.

Listing 9.11 POSTing to the account

curl -i \
-H "Content-Type: application/json" \
-X POST \
-d "2.03" \
localhost:8080/accounts/444666/transaction

Listing 9.12 Updating the account balance

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json

{"Accept": [u*/*n] }

Listing 9.13 Getting the updated balance

curl -i localhost:8080/accounts/444666/balance

Listing 9.14 Updating the account balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3501.15

Exercise for the reader

Update the remaining services to Spring Web APIs. The book’s Git repository contains
working converted code for the Bank service and the Transaction service.

192

9.4

CHAPTER 9 Developing Spring microservices with Quarkus

With the Spring DI and Spring Web conversions completed, the next section covers
updating Hibernate ORM with Panache to Spring Data JPA.

Quarkus/Spring Data JPA compatibility
The final major Quarkus/Spring compatibility API to cover is the Spring Data JPA API
to persist data. The Hibernate ORM with Panache repository pattern is based on the
repository pattern popularized by Spring Data JPA, giving the two comparable func-
tionality and a similar API. The following Spring Data JPA repositories, and the inter-
faces that extend them, are supported:

= Repository

= CrudRepository

= PagingAndSortingRepository

= JpaRepository
To use the Spring Data JPA APIs, add the quarkus-spring-data-jpa extension using mvn
quarkus:add-extension -Dextensions=quarkus-spring-data-jpa.

Use the following three steps to update the current Account service to use the
Spring Data JPA APIs:

1 Create the AccountRepository interface.

2 Revert the Hibernate ORM with Panache entity to a JPA entity.

3 Update Account service to use the Spring Repository APIs.

First, create the AccountRepository as shown next.

Listing 9.15 Creating the AccountRepository interface

public interface AccountRepository extends JpaRepository<Account, Longs> { <+

—> public Account findByAccountNumber (Long accountNumber) ;

) The JpaRepository replaces the
findByAccountNumber is updated to follow PanacheRepository covered in
the JpaRepository interface method-naming chapter 4. Hibernate ORM with
pattern using query creation keywords. The Panache is implemented as a
query creation keywords are available in class, whereas JpaRepository
the Spring Data JPA documentation is an interface
(http://mng.bz/Ix85).

Next, update the Account class to follow JPA entity rules as shown in the following list-
ing. This is the same entity defined in the JPA example in chapter 4.

Listing 9.16 Reverting Account.java to a JPA entity

@Entity
public class Account { Creates a |PA entity ID field that
@Id was provided by the Hibernate

@GeneratedvValue ORM with Panache entity
private Long id;

http://mng.bz/Zx85

Quarkus/Spring Data JPA compatibility 193

private Long accountNumber; Although not required, changes field access
private Long customerNumber; modifiers from public to private as the code
private String customerName; reverts back to traditional JPA entities
private BigDecimal balance;

private AccountStatus accountStatus = AccountStatus.OPEN;

@Override

public int hashCode () {
return Objects.hash(id, accountNumber, customerNumber) ;

}

public Long getId() ({ <G
return id;

public void setId(Long id) <
this.id = id;

public Long getAccountNumber () { <+
return accountNumber;

public void setAccountNumber (Long accountNumber) { <+
this.accountNumber = accountNumber;

public Long getCustomerNumber () { <
return customerNumber;

public void setCustomerNumber (Long customerNumber) { <— Creates field
. accessors

this.customerNumber = customerNumber;

public String getCustomerName () { <+
return customerName;

public void setCustomerName (String customerName) { <+
this.customerName = customerName;

public BigDecimal getBalance () { <+
return balance;

public void setBalance (BigDecimal balance) <+
this.balance = balance;

public AccountStatus getAccountStatus() { <

return accountStatus;

194 CHAPTER 9 Developing Spring microservices with Quarkus

public void setAccountStatus (AccountStatus accountStatus) { 4—1 Creates field

} this.accountStatus = accountStatus; accessors

@Override
public boolean equals(Object o) ({
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Account account = (Account) o;
return id.equals (account.id) &&
accountNumber.equals (account .accountNumber) &&
customerNumber.equals (account.customerNumber) ;

Note that, developers have successfully used Lombok with Quarkus. However, edge
case issues exist, and Lombok is not included in the Quarkus test suite. For these rea-
sons, Lombok is not shown here.

Last, update the Account service to use the repository as shown in the following
code sample, which is similar to the panache-repository example in chapter 4.

Listing 9.17 Updating the Account service to use the Spring Data JPA repository

The Account service currently uses the active record data
access pattern, introduced in chapter 4, to invoke methods
on the entity directly. The Account service needs to be
updated to use the Spring Data JPA repository pattern

for data access. Spring Data JPA requires a repository
instance to access the entity.

@RestController

@RequestMapping (path = "/accounts",
produces=MediaType.APPLICATION JSON VALUE,
consumes=MediaType. APPLICATION_JSON_ VALUE)

public class AccountResource {

> AccountRepository repository; Injects an
instance of the
public AccountResource (AccountRepository repository) { AmcountReposkory
this.repository = repository; using constructor
} injection
@GetMapping

public String hello() {
return "hello";

}

@GetMapping ("/{accountNumber} /balance")
public BigDecimal getBalance (
@PathVariable ("accountNumber") Long accountNumber) {

Quarkus/Spring Data JPA compatibility 195

Account account = repository.findByAccountNumber (accountNumber) ; <

}

Finds the accountNumber
by calling the repository
findByAccountNumber ()

method

@PostMapping (" {accountNumber}/transaction")
@Transactional
public Map<String, List<Strings>> transact (
@RequestHeader ("Accept") String acceptHeader,
@PathVariable ("accountNumber") Long accountNumber,
@RequestBody BigDecimal amount) {
Account entity = repository.findByAccountNumber (accountNumber) ; <+

entity.setBalance (entity.getBalance () .add (amount)) ;
repository.save (entity) ;

Updates the entity
Persists the using an entity field
updated entity accessor method

}
}

To test the JPA repository, run the following commands. These are the same com-
mands that are provided in the previous section.

Listing 9.18 Searching for valid account

curl -i localhost:8080/accounts/444666/balance

Listing 9.19 Account balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Listing 9.20 POSTing to the account

curl -i \
-H "Content-Type: application/json" \
-X POST \
-d "2.03" \

localhost:8080/accounts/444666/transaction

Listing 9.21 Updating the accountBalance

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json

{"Accept": [nx/*xn] }

196

9.5

CHAPTER 9 Developing Spring microservices with Quarkus

Listing 9.22 Getting the updated balance

curl -i localhost:8080/accounts/444666/balance

Listing 9.23 The updated balance

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3501.15

This completes the conversion of the Quarkus and MicroProfile APIs to the Spring
API equivalents, all running on Quarkus! The next section gives more detail on how
Quarkus implements the Spring API compatibility.

NOTE The completed examples for this chapter in the Git repository use
Spring APIs for most functionality in the Bank service, Account service, and
Transaction service. The primary API exceptions are the MicroProfile Fault
Tolerance APIs and MicroProfile Rest Client, which do not have equivalent
Spring compatibility APIs. However, the MicroProfile Rest Client and Micro-
Profile Fault Tolerance APIs can be used side by side with the Spring compat-
ibility APIs.

Deploying to Kubernetes

With everything running successfully locally, deploy the services to Kubernetes using
the following steps:

1 Use Minikube Docker daemon—Run eval $(/usr/local/bin/minikube docker-
env) to use the Docker daemon running in Minikube. This needs to be run for
any terminal that is used to deploy the Bank, Account, or Transaction services.

2 Create the Config Server container image—From the spring-config-server directory,
run mvn package to create the uber-JAR, and then docker build -t quarkus-
mp/spring-config-server:0.0.1-SNAPSHOT . to generate the container image.
This will build the image using the Minikube Docker registry.

3 Deploy the Config Server—From the spring-config-server directory, run kubectl
apply -f minikube.yml.

4 Deploy the Bank service—From the bank-service directory, deploy the Bank service
to Kubernetes with mvn clean verify -Dquarkus.kubernetes.deploy=true.

Test the service using the following commands:

Gets the service URL from Minikube
(repeat for each service below)

export BANK SERVICE URL="minikube service bank-service --url~

curl $BANK SERVICE URL/bank/secrets .
Accesses the service (repeat
for each service below)

9.6

9.7

Common Quarkus/Spring compatibility questions 197

Deploy the Account service—From the account-service directory, deploy the Account
service to Kubernetes with mvn clean verify -Dquarkus.kubernetes.deploy
=true.

Test the service using the following commands:

export ACCOUNT_SERVICE URL="minikube service account-service --url®
curl -i SACCOUNT SERVICE URL/accounts/444666/balance

Deploy the Transaction service—From the transaction-service directory, deploy the
Transaction service to Kubernetes with mvn clean verify -Dquarkus.kubernetes
.deploy=true.

Test the service using the following commands:

export TRANSACTION SERVICE URL="minikube service transaction-service --url®
curl -i S$STRANSACTION SERVICE URL/transactions/444666/balance

How Quarkus implements Spring API compatibility

Due to their similarity, using the Spring APIs in place of the existing Quarkus APIs
(and vice versa) is straightforward. This section adds details that are helpful to know
when using the Spring Compatibility APIs.

Quarkus implements Spring APIs in a Quarkus-native manner so developers have a
consistent developer experience when combining Spring APIs with Quarkus and Micro-
Profile APIs. To accomplish this, Quarkus implements Spring compatibility using the
following three techniques:

Annotation substitution—Quarkus replaces Spring annotations with annotations
supported by existing extensions during compilation. For example, Spring
Dependency Injection annotations are replaced with CDI annotations during
compilation.

Interface implementation—Quarkus provides implementations for Spring inter-
faces. Its support of Spring Data JPA takes this approach, leveraging Hibernate
and Hibernate with Panache framework functionality to implement Spring
Data interfaces.

Spring-aware extensions—Update Quarkus-supported extensions to under-
stand Spring annotations and Spring concepts. For example, RESTEasy and
Quarkus Cache extensions were updated to understand Spring Web and Spring
Cache APIs.

Common Quarkus/Spring compatibility questions

Answers to a few common Spring Compatibility API questions follow:

Can Spring Starters be used with Quarkus? Spring framework jar files, like those
that are defined in Spring Starters, are not compatible with Quarkus. The two
frameworks take very different application-bootstrapping approaches, for

198

9.8

CHAPTER 9 Developing Spring microservices with Quarkus

example. The next section compares the two application bootstrapping
approaches in more detail.

Which versions of Spring is Quarkus compatible with? The Quarkus Spring API com-
patibility does not target a specific minor version of Spring, but it generally tar-
gets Spring 5 and Spring Boot 2 APIs. Quarkus can be updated as Spring APIs
evolve to remain compatible.

What is the Spring compatibility performance overhead? Because the Spring APIs are
implemented in a Quarkus-native manner, no performance penalty exists for
using the Spring compatibility extensions with Quarkus. In fact, as covered in
chapter 1, the result is faster startup time with lower memory utilization.

Can Spring properties like server.port be used? No. Only Quarkus properties,
which begin with quarkus. *, can be used. However, the “Quarkus: All Configu-
ration Options” guide (https://quarkus.io/guides/all-config) contains a search
field for helpful lookup of Quarkus properties that can help to find a Quarkus
equivalent.

Comparing the Spring Boot and Quarkus startup
processes

Quarkus and Spring Boot optimize application bootstrapping differently. Spring Boot
optimizes for late binding, where it makes dynamic decisions based on its environ-
ment while it is starting. Figure 9.1 illustrates the Spring Boot startup process.

Spring Boot does very little during build time.

The application is compiled. Java class files and static content are packaged
into a jar file.

Spring Boot conducts most of its work during startup (run time). The jar file is
booted using java -jar. The process is similar for Spring Boot .war deployments.
The application configuration is loaded and parsed.

The classpath is scanned for annotated classes.

The metamodel (Spring application context) is created.

Business logic is executed.

Spring boot
Build time 0 E ' Run time 9 i
Package 0 : E Load and 0 Classpath 9 Build G Execute 0 H
(build .jar) 10 parse config scanning metamodel app logic i

Figure 9.1 The Spring Boot startup processing

https://quarkus.io/guides/all-config

Summary 199

The run-time steps occur every time a Spring Boot application is started.
Quarkus, as shown in Figure 9.2, optimizes for immutable containers and Kuber-
netes infrastructure using ahead-of-time (AOT) compilation:

Quarkus does most of the work up front during the application build.

The configuration is loaded and parsed.

The classpath is scanned for annotations.

Quarkus builds the metamodel based on the parsed configuration and scanned
annotations. The metamodel is stored as precompiled bytecode in generated
.class files.

Package the precompiled metamodel, class files, and static content in the .jar
file. Quarkus extension designers use build-time configuration properties, dis-
cussed in chapter 3, to enable or disable extension features to achieve a form
of “dead code elimination,” which eliminates startup code that might other-
wise be executed.

Quarkus does very little work during startup (run time).

The precompiled metamodel is loaded and followed by application business
logic execution.

Quarkus
: Build time @ ! Runtime @'
E Load and e _| Classpath 0 _ | Build 0 _| Package 9 : E‘ Execute 0 E
1 | parse config scanning metamodel (build jar) HH app logic 0

Figure 9.2 The Quarkus startup processing

Quarkus optimizes its Spring API compatibility for AOT (build-time) compilation,
often delivering significant startup time improvement. Quarkus AOT compilation can
also significantly reduce run-time memory consumption by avoiding the heap mem-
ory associated with run-time configuration parsing and annotation scanning.

Summary

Quarkus offers Spring compatibility for popular Spring APIs.

Spring developers can quickly become productive with Quarkus.

Spring APIs can be used side by side with Quarkus and MicroProfile APIs in the
same application and even in the same Java class.

200

CHAPTER 9 Developing Spring microservices with Quarkus

With Spring Cloud Config Server support, Quarkus applications can be more
easily run side by side with Spring Boot applications on the same infrastructure.
Spring Starters do not run properly with Quarkus due to Quarkus relying more
heavily on build-time annotation scanning and Spring relying more heavily on
run-time annotation scanning. Use the available Quarkus Spring Compatibility
extensions (https://quarkus.io/guides/#compatibility) instead.

https://quarkus.io/guides/#compatibility

Part 3

Observability,
API definition, and
security of microservices

Part 3 dives into key topics beyond the mere development of microservices.
This part covers key pillars for observability, metrics and tracing, microservice
API definitions with OpenAPI, and, finally, securing microservices.

Capturing metrics

This chapter covers

The role of metrics in a microservices
architecture

Types of metrics

Creating custom metrics

Metrics scopes

Viewing metrics in Grafana

MicroProfile Metrics and Micrometer metrics

MicroProfile Metrics exposes runtime metrics like CPU and memory utilization
and can also expose custom application performance and business metrics. We can
forward exposed metrics to graphing systems like Grafana and view them in dash-
boards representing a live view of running microservices. A live view of metrics can
improve business performance and improve application availability.

In this chapter, we instrument the chapter 7 Account service and Transaction
service with metrics using MicroProfile Metrics APIs, with a section covering the
Quarkus Micrometer metrics extension.

The following section explains the benefits of metrics.

203

204

10.1

10.2

CHAPTER 10 Capturing metrics

The role of metrics in a microservices architecture

Instrumenting runtimes and applications with metrics offer benefits such as the
following:

= Facilitate troubleshooting—Instrumenting runtimes and applications with metrics
gives administrators and developers insights into microservice failures and
hopefully avoids failures before they occur. For example, a microservice contin-
ually approaching maximum allocated resources like memory or CPU gives
administrators insights into Kubernetes cluster resource allocation.

= Monitor telemetry and generate alerts—Telemetry delivers a continuous stream of
live data to provide a basis for decision making. As an analogy, modern auto-
mobiles constantly monitor their state in the context of their environment.
More concretely, lane departure assist nudges the steering wheel to inform
the driver to stay in the proper lane. Similarly, Prometheus alerts can monitor
a live system instrumented with metrics and react to predefined conditions
and thresholds. Alerts can take actions as simple as sending warning messages
to an actively monitored Slack channel or scaling a service by adding instances
to a Kubernetes cluster.

= Monitor service level agreement (SLA) compliance—Service deployments are often
accompanied by SLAs agreed to by business units, developers, and administra-
tors. Metrics like requests per second and average service request time often
form the foundation for SLAs.

With these benefits in mind, let’s quickly look at metrics in action.

Getting started with MicroProfile Metrics

This section will enable Account service and Transaction service metrics provided by
Quarkus extensions and give some context for the remainder of the chapter.

The services require the PostgreSQL database to be running. To start the database
in Minikube, run the following commands from the chapterl0 directory in a new ter-
minal window.

Listing 10.1 Starting PostgreSQL

kubectl apply -f postgresqgl kubernetes.yml

Wait for the pod to start running (CTRL-C to exit)
kubectl get pods -w

Forward requests from localhost to PostgreSQL running in minikube
kubectl port-forward service/postgres 5432:5432

With the database up and running, add the quarkus-smallrye-metrics extension to
each service and start the service in a new terminal window, as shown in the next list-
ing. This extension implements MicroProfile Metrics.

Getting started with MicroProfile Metrics 205

Listing 10.2 Adding the quarkus-smallrye-metrics extension and starting the services

cd account-service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-metrics"
mvn gquarkus:dev

In another terminal window

cd ../transaction-service

mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-metrics"
mvn quarkus:dev -Ddebug=5006

As shown in listing 10.2, in a new terminal window, repeat these commands, replacing
account-service with transaction-service and specifying a different debugging
port that doesn’t conflict with the default port used by the Account service.

MicroProfile Metrics requires that runtimes expose metrics at the /metrics end-
point. Quarkus does this indirectly by redirecting the HTTP call to /g/metrics, as
shown in the next code sample.

Listing 10.3 Requesting metrics from the Account service /metrics endpoint

curl -i localhost:8080/metrics

Listing 10.4 Metrics redirect output

HTTP/1.1 301 Moved Permanently
location: /g/metrics
content-length: 0

In Quarkus, all non-application HTTP/s endpoints are on the /q/ subpath with a sim-
ilar redirect. Next, make an HTTP request to the /g/metrics/ endpoint directly, as
shown in the next listings, with detailed explanations to follow.

Listing 10.5 Requesting metrics from the Account service /gq/metrics endpoint

curl -i localhost:8080/g/metrics

Listing 10.6 Metrics request output (explained in more detail later)

Metric HELP metadata
HELP base classloader loadedClasses count Displays the number of classes
that are currently loaded in the Java virtual machine.

TYPE base classloader loadedClasses count gauge <+——— Metric TYPE metadata
base classloader loadedClasses count 13010.0 4———w Metric name
The output has been shortened to display only the and value

first metric. In a real-world running system, there
could be hundreds of metrics!

NOTE The output order may change across Quarkus versions. If this output is
not easily found, then run curl -i localhost:8080/qg/metrics | grep
base classloader loadedClasses_count.

206

10.2.1

CHAPTER 10 Capturing metrics

This command and its output look simple, and, on the surface, they are. However, we
will explain in detail a lot of context and capability behind these in the remaining sec-
tions. Before digging deeper, let’s install Prometheus and Grafana to graph the metric
output to make viewing metrics easier to follow.

Graphing metrics with Prometheus and Grafana

Grafana graphs the Account service and Transaction service metrics using Prometheus
as the time-series metrics data source, with the metrics flow shown in figure 10.1.

Minikube
Default namespace Monitoring namespace
Account service o
= Prometheus Grafana
Transaction service 1~ @)

1. Prometheus scrapes the Account service metrics and stores them in its
time-series database.

2. Prometheus scrapes the Transaction service metrics.

3. Grafana pulls the Account service and Transaction service metrics
from Prometheus and graphs them.

Figure 10.1 Chapter 10 metrics visualization architecture

NOTE This metrics architecture is based on scraping, or pulling, data. The
Prometheus installation scrapes service metric endpoints every 3 seconds.
Grafana scrapes Prometheus every 15 seconds. The Grafana graphs refresh
every b seconds. Metrics data is never pushed from one service to another.

The source code for the book includes manifests for Prometheus and Grafana installa-
tion in the /chapter10/manifests-prometheus-grafana directory. These files are from
the 0.7 release of https://github.com/prometheus-operator/kube-prometheus.

To ensure we have sufficient memory for all the components of Prometheus and
Grafana, we start Minikube with at least 4 GB of memory as follows:

minikube start --memory=4g

With that done, change into the top-level /chapterl0 directory of the book source and
install Prometheus, Grafana, and ServiceMonitor custom resource definitions (CRDs; they
specify how services should be monitored) with the provided manifests, as shown next.

https://github.com/prometheus-operator/kube-prometheus

Getting started with MicroProfile Metrics 207

Listing 10.7 Installing Prometheus, Grafana, and the ServiceMonitor CRDs

Waits for the Creates the Kubernetes CRDs first. A CRD extends Kubernetes with a
ServiceMonitor new feature, like monitoring. The CRD installs a Prometheus operator
CRDs to be created that is responsible for managing the Prometheus life cycle.

kubectl create -f metrics/manifests-prometheus-grafana/setup
until kubectl get servicemonitors --all-namespaces ; do date; sleep 1; echo "";
done

kubectl create -f metrics/manifests-prometheus-grafana/ <Fw Installs the

Prometheus and
Grafana services

kubectl apply -f metrics/servicemonitor.yml

Specifies custom Kubernetes ServiceMonitor CRDs to
monitor the Account service and Transaction service

The Prometheus Operator uses ServiceMonitor CRDs to determine which services to
monitor. The next listing explains the ServiceMonitor CRD in more detail.

Listing 10.8 Transaction service ServiceMonitor CRD

The name of the ServiceMonitor is transaction-

service. It can have any name but is called The CRD API version
transaction-service for consistency.
apiVersion: monitoring.coreos.com/vl Tmsﬁocumentfecﬂoq
. . . specifies a ServiceMonitor.
kind: ServiceMonitor
metadata:

name: transaction-service Crea'tes the'trar!sactlon-?erwce
namespace: default ServiceMonitor in the default

labels: Kubernetes namespace

app.kubernetes.io/name: transaction-service Adds a transaction-service
Spec: Kubernetes label to the
namespaceSelector: ServiceMonitor
matchNames : Searches for the service
- default to monitor in the default .
selector: Kubernetes namespace Selects (scrapes) services
matchLabels : ;”Il;ols? atpp.kub(t-:.rnetes.u?/name
Scrapes the app.kubernetes.io/name: transaction-service abel s transaction-service
?ndpomt endpoints: .
using HTTP - port: http Scrapes the endpoint
. every 3 seconds
interval: 3s

path: /q/metrics : Scrapes the endpoint subpath

Account service ServiceMonitor is

removed from the example for brevity.

Figure 10.2 explains the monitoring process, at a high level, from end to end:

1 During the installation outlined in listing 10.7, the Prometheus operator
instructs Prometheus to monitor for ServiceMonitor definitions and to create a
Prometheus configuration for it when one is found.

2 During installation, Grafana is preconfigured to scrape metric data from
Prometheus.

208

CHAPTER 10 Capturing metrics

Prometheus operator and monitoring

servicemonitor.yml 3. Monitor applicaton.properties 6. Set .
kind: ServiceMonitor transaction- quarkus.kubernetes.name=transaction-service service
spec: service. name.
S?rl'nz(t:é?\rl:_abels 7. Quarkus Maven goal
i generates YAML.
app.kubernetes.io/name: transaction-servicé T
?lgllfsubg.yml 8. Name
ind: Service
metadata: Fsed
labels: in label
capp.kubernetes.io/name: transaction-service>
4. Definition stored in etcd kind: Deployment
metadata: 9. Scrape
annotations: H
prometheus.io/scrape: “true” serwc? at
prometheus.io/path: /g/metrics endPOInt-

10. Pod is created
when YAML applied.

minikube

Monitoring namespace Default namespace

etcd Pod

transaction-service

Prometheus operator

servicemonitor

1. Operator manages
prometheus and 11. Prometheus

5. Definition read Grafana life cycle./ scrapes metrics.

from etcd \

Prometheus

2. Grafana scrapes
Prometheus data.

Grafana

Figure 10.2 Monitoring flow

The servicemonitor.yaml, shown in listing 10.8, defines the Transaction service
ServiceMonitor. This definition instructs the consumer—Prometheus in this
case—to search for Pods labeled with app.kubernetes.io/name transaction-
service.

The servicemonitor.yaml is applied in listing 10.7. When applied, the Service-
Monitor CRD (definition) is added to the Kubernetes etcd registry.

As defined in the ServiceMonitor, Prometheus waits for Pods labeled with
app . kubernetes.io/name transaction-service.

The Transaction service application.properties define the Kubernetes name as
transaction-service.

The Maven package phase (e.g., mvn package) generates minikube.yml. The

app.kubernetes.io/name label value is defined by the quarkus.kubernetes
.name property.

Getting started with MicroProfile Metrics 209

When applied, the Transaction service-related Kubernetes objects like Service,
Deployment, and Pod are labeled with app.kubernetes.io/name: transaction-
service.

The prometheus.io/scrape="true" and prometheus.io/path: /q/metrics
deployment annotations inform Prometheus to scrape the service (“true”) at
the specified path (/q/metrics).

When the Transaction service is deployed (e.g., mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true), the Kubernetes objects are cre-
ated, and the transaction-service Pod is created.

Prometheus identifies a new Pod based on the ServiceMonitor definition and

begins to scrape the container metrics.

NOTE The key to “binding” the Pod to the ServiceMonitor is the Pod label.
The binding relationship is highlighted with a circle. The ServiceMonitor in
step 3 is looking for an app.kubernetes.io/name=transaction-service
match. In step 6, the quarkus.kubernetes.name specifies the transaction-
service service name in application.properties. When building the Transac-
tion service, Quarkus will generate the YAML in step 8, which generates the
app . kubernetes.io/name=transaction-service key-value pair that will be
matched by the ServiceMonitor, circled. Also, to simplify the diagram, only
the Transaction service is shown. This flow applies to all services with a Service-
Monitor, like the Account service. Last, the monitoring processes are running
in the monitoring namespace. Run kubectl get pods -n monitoring to see
the running Pods related to monitoring.

To access Grafana in Minikube, port 3000 will need to be forwarded from the desktop

to the cluster, as follows:
Forwards local Grafana Grafana is running in the
requests to Minikube monitoring namespace.
kubectl port-forward \ Forwards requests from desktop
port 3000 to the Grafana service

-n monitoring \

service/grafana 3000:3000 running in Minikube on port 3000

Open http://localhost:3000 in a browser, and log in with username “admin” and pass-

word “admin.” Figure 10.3 shows the Grafana home page. When the URL first opens,

it requires login credentials. Use “admin” for the username and password; it will ask to

set a new password before opening the home page.

Next, load the preconfigured Grafana dashboard as shown in figure 10.4. Deploy
the Account service and Transaction service to Minikube as shown in the listing 10.9.

210 CHAPTER 10 Capturing metrics

88 Home & o
Welcome to Grafana Need help? o ion Tutorisls Community ~Public Slack

[]

Basic

The steps below will COMPLETE COMPLETE

quide you to quickly Add your first data Create your first

finish setting up your Grafana fundamentals source dashboard

Grafana installation. Set up and understand Grafana if you have no prior experience. This -
tutorial guides you through the entire process and covers the “Data
source” and “Dashboards” steps to the right. @ oo

oo
° o) Learn how in the docs & Learn how in the docs &
Dashboards Latest from the blog

Figure 10.3 Grafana home page

1. Click the + button to add a dashboard.

2. Import an existing dashboard.

Import

Import dashboard from file or Grafana.com

¥

' 2, Upload JSON file
4 grafana.com

port via panel json

Iocalhost:3000/dashboard/ew

3. Upload Banking_Microservices_Dashboard.json located in the
chapter10/metrics directory.

4. Click the Import button (not shown).

Figure 10.4 Import the Banking Microservices dashboard

ng 10.9 Deploying services to Minikube

Uses the Docker engine running in Minikube

In the account-service and transaction-service directories, run:
cd account-service
eval $(/usr/local/bin/minikube docker-env)

mvi

cd

Getting started with MicroProfile Metrics 211

clean package -DskipTests -Dquarkus.kubernetes.deploy=true
Deploys the

service to
Kubernetes

../transaction-service
mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

View the dashboard and notice the Used Heap panel, shown in figure 10.5, is updated
in 15 to 30 seconds with the JVM heap used by each service.

48 MiB

43 MiB

38 MiB

33 MiB

29 MiB \

24 MiB

19 MiB

14 MiB
15:53

— Transaction Service

Graph title

Used Heap

S A The graph body shows the
//r \ / \ used heap for each service,
/ \ /o / between roughly 15 MB and
/ \ [~ \ / 45 MB, depending on when
_J garbage collection occurs.

/ A

15:54 15:55 15:56 15:57

Account Service

The graph legend shows the Transaction service and Account
service. For each service, the value is an average of all
running service instances, which is the case for most graph

panels. Exceptions are identified later.

Figure 10.5 Grafana JVM Used Heap graph

10.2.2

NOTE Only the JVM Used Heap panel will update. The remaining panels will
update as we instrument the services with metrics throughout the remainder
of this chapter.

With the successful deployment and graphing of the Banking microservices, it’s time

to dig into MicroProfile Metrics.

MicroProfile Metrics
The Java platform has shipped with the Java Management Extensions (JMX) since

JDK 5. JMX does not meet the metric needs of modern Enterprise Java applications.
For example, the JMX API is somewhat complex and was created before annotations
were added to the Java platform. Also, JMX does not expose metric metadata, nor
does it expose metrics in a modern cloud-friendly format. The MicroProfile commu-

nity created MicroProfile Metrics to address all of these concerns.

212 CHAPTER 10 Capturing metrics

MICROPROFILE METRICS OUTPUT FORMATS

MicroProfile Metrics requires implementations to support two output formats. The
first is OpenMetrics (https://openmetrics.io) format, a standard text format defined
under the Cloud Native Computing Foundation (CNCF). OpenMetrics is the default
MicroProfile Metrics output format when the HTTP accept header is text/plain.
As shown in listing 10.6, it contains useful metadata such as HELP and TYPE, which can be
consumed by external metrics tooling. The next listing expands on listing 10.6.

Listing 10.10 OpenMetrics output explained

OpenMetrics metadata begins with a hashtag ("#"). The first field, the metadata keyword
HELP, offers help text that is used by external tooling. The second field in the HELP metadata
is the metric name, base_classloader_loadedClasses_count. The remainder of the line
describes the intent of base_classloader_loadedClasses_count.

HELP base classloader loadedClasses count Displays the number of classes
that are currently loaded in the Java virtual machine.
TYPE base classloader_ loadedClasses_count gauge

base classloader loadedClasses count 13010.0 The metric name and value

The metric TYPE metadata. The second field, base_classloader_ Quarkus had loaded 13010
loadedClasses_count, is the metric name. The third field is the cla‘sses into memory when
metric type—gauge, in this case. We describe metric types in this value was read.

detail in an upcoming section.

Metrics output is machine readable, but the format is easy to understand, even for
developers. Metrics are helpful when debugging an application by querying the
/q/metrics endpoint. For example, to view the metric displayed in listing 10.10, run
the curl command shown next.

Listing 10.11 Obtaining a metric directly using the metric name

curl -i localhost:8080/g/metrics/base/classloader.loadedClasses.count

Note that the curl command is using the inherent metric name, whereas OpenMetrics replaces
the "' character with underscores, and MicroProfile Metrics prefixes base. Therefore, the
OpenMetrics metric name equivalent is base_classloader_loadedClasses_count.

We explain the MicroProfile Metrics naming convention in the next section.

MicroProfile also requires support for metrics output in JSON format. JSON-formatted
metric output can be obtained by using the application/json HTTP request header,
as shown in the following code snippet.

Listing 10.12 Requesting metrics in JSON-formatted output

curl -i \
-H "Accept:application/json" \
localhost:8080/g/metrics

Sample output is shown next, with some output excluded for brevity, as identified by
the ellipses.

https://openmetrics.io

Getting started with MicroProfile Metrics 213

Listing 10.13 JSON-formatted metrics output

i The output uses base, vendor, and
application JSON objects. These objects

"bage": { will be explained in the next section.
The output "cpu.systemLoadAverage": 2.1865234375,
ici n n.
'fs in JSON) thread.count": 60, . Metrics are JSON name-value
‘ormat. classloader.loadedClasses.count": 9667, pah&lntMsexmnpk,the

st Account service has created
b 60 threads.
"vendor": { <G

o The output uses base, vendor, and
} application JSON objects. These objects
are explained in the next section.

"application": { <4

Note that the JSON format does not include the TYPE and HELP metadata available in
OpenMetrics format and instead focuses on the efficient machine-consumable J[SON
format. This chapter focuses on OpenMetrics output because it is a standard format
easily consumed by Prometheus later in the chapter.

This section used the annotated MicroProfile Metrics naming convention. The fol-
lowing section explains the naming convention in more detail.

ANNOTATED METRICS NAMING CONVENTION
MicroProfile Metrics follows a naming convention. The naming convention shown in
the next listing is explained in detail in table 10.1.

Listing 10.14 MicroProfile Metrics annotated metrics naming convention

<scope>.<class>.<methods>.<name>1

Table 10.1 MicroProfile Metrics naming convention details

Convention Description
Scope Must be base, vendor, or application. Scopes are explained in the next section.
Class The package and class name the annotation applies to.
Method The method the annotation applies to.
Name The name of the metric, like classloader.loadedClasses.count.

Upcoming sections discuss topics like tags, scope, and absolute that can influence the
metric name. This section references scope a couple of times, so the next section digs
into that a bit deeper.

214

CHAPTER 10 Capturing metrics

MicROPROFILE METRICS SCOPES
MicroProfile categorizes metrics into the three scopes outlined in table 10.2.

Table 10.2 Metric scopes

Scope Description

Base Metrics required by all MicroProfile Metrics implementations. For example, the
base_thread count metric exposes the number of live threads in the running
application process. Base metrics are portable across implementations.

Vendor Metrics specific to a runtime. Vendor metrics are not portable across implementa-
tions. For example, the vendor cpu_processCpuTime seconds metric, which
is specific to Quarkus, exposes the CPU time used by the application process. Each
Quarkus extension exposes metrics specific to that extension. As the number of
extensions used by an application grows, so does the number of available metrics.

Application Metrics defined by the application or on behalf of the application.

Scopes can be queried directly by appending the scope to the metrics URL. For exam-
ple, the next code listing requests only base metrics.

Listing 10.15 Requesting base metrics

curl -i localhost:8080/g/metrics/base

A few lines of query output is shown next. The list of required base metric names will
be the same across all MicroProfile Metrics implementations, although the metric val-
ues will differ.

Listing 10.16 Requesting base metrics output

HELP base_ REST request_total The number of invocations and total response
=» time of this RESTful resource method since the start of the server.

TYPE base REST request_total counter

base REST request total{class="gquarkus.accounts.AccountResource",

=» method="transact_ javax.ws.rs.core.HttpHeaders java.lang.Long java.

=» math.BigDecimal"} 24.0

TYPE base_ REST request_elapsedTime_seconds gauge

base REST request elapsedTime seconds{class="gquarkus.accounts.

= AccountResource",method="transact_ javax.ws.rs.core.HttpHeaders

> java.lang.Long java.math.BigDecimal"} 0.767486469

HELP base_classloader_ loadedClasses_count Displays the number of classes
=» that are currently loaded in the Java virtual machine.

TYPE base_classloader_ loadedClasses_count gauge

base classloader_ loadedClasses_count 13925.0

NOTE If no scope is specified, then all available metrics are returned. In
OpenMetrics format, metric names are preceded by their scope. In this exam-
ple, all metrics are preceded with base_.

Getting started with MicroProfile Metrics 215

MiCROPROFILE METRICS—SUPPORTED TYPES

The OpenMetrics and JSON-formatted outputs reference metric types, like gauge.
MicroProfile Metrics offers support for the commonly used metric types outlined in
table 10.3.

Table 10.3 Metric types (as defined in the specification)

Metric Annotation Description

Counter @Counter A monotonically increasing numeric value.
Concurrent gauge @ConcurrentGauge Incrementally increasing or decreasing value.
Gauge @Gauge Metric sampled to obtain its current value.

Meter @Metered Tracks mean throughput and 1-, 5-, and 15-minute expo-
nentially weighted moving-average throughput.

Metric @Metric This is not a metric type but an annotation that contains
the metadata information when requesting a metric to
be injected or produced.

Histogram N/A Calculates the distribution of a value.

Timer @Timed Aggregates timing durations and provides duration sta-
tistics, plus throughput statistics.

Metric annotations accept a number of parameters, as shown in table 10.4.
Table 10.4 MicroProfile Metrics specification annotation field descriptions

Metric field Description

name Optional. Sets the name of the metric, like concurrentBlockingCalls. If not
explicitly given, the name of the annotated object is used, such as
newTransaction when the annotated object is the newTransaction method.

absolute If true, uses the given name as the absolute name of the metric, like new-
Transaction current. If false, prepends the package name and class name
before the given name, like io _quarkus transactions Transaction-
Resource newTransaction current. The default value is false. The metric
names can get quite long, so it is more readable to set absolute to true when
there is no risk of metric name collision across multiple objects within an applica-
tion. Base metrics are absolute. Quarkus vendor metrics are also absolute. By
default, metrics in the application scope are not absolute.

displayName Optional. A human-readable display name for metadata. Useful metadata for third-
party tooling to consume.

description Optional. A description of the metric. Useful metadata for third-party tooling to
consume.

unit Unit of the metrics, like gigabytes, nanoseconds, and percent. Check the
MetricUnits class for a set of predefined units.

tags A list of key-value pairs. We will describe tags in more detail later.

216

10.2.3

CHAPTER 10 Capturing metrics

With a list of available metrics in hand, the next step is to instrument the Account ser-
vice with a useful metric.

Instrumenting the Account service

A useful place to start is to count the number of times the ExceptionMapper is called.
Based on the count, perhaps a frontend web UI could be improved or the API
enhanced. The Counter metric will count ExceptionMapper invocations, as shown in
the next code snippet.

Listing 10.17 AccountResource.java

Injects a metric. If the metric does not exist, then it will be created.

Specifies
the metric
name

@Provider
public static class ErrorMapper implements ExceptionMapper<Exception> {
@Metric (

name = "ErrorMapperCounter",
description = "Number of times the AccountResource ErrorMapper is invoked"
éounter errorMapperCounter; Specifies
pp i The injected metric the metric
is a counter. description
@Override
public Response toResponse (Exception exception) {
errorMapperCounter.inc() ; Increments
the counter

—

Invoking an endpoint with an invalid value will increment the counter. The next two
code listings pass an invalid account number to invoke the ErrorMapper and show
the output.

Listing 10.18 Incrementing ErrorMapper counter

curl -i localhost:8080/accounts/234/balance

Listing 10.19 ErrorMapper output

HTTP/1.1 404 Not Found
Content-Length: 109
Content-Type: application/json

{"exceptionType":"javax.ws.rs.WebApplicationException",
"code":404,
"error":"Account with 234 does not exist."

}

To validate the counter has been incremented, along with validating the counter
metadata is available, run the following code.

Getting started with MicroProfile Metrics 217

Listing 10.20 Validating ErrorMapper counter output

curl localhost:8080/g/metrics | grep ErrorMapper <

Gets only the ErrorMapper metrics output. Using grep is often easier than remembering the
format to access the metric directly as was done in listing 10.11. To access the metric directly, use curl
localhost:8080/q/metrics/application/quarkus.accounts.AccountResource\$ErrorMapper.ErrorMapperCounter.

Listing 10.21 ErrorMapper counter output

The MicroProfile metric description maps
to the OpenMetrics HELP metadata.

HELP application_gquarkus_accounts_AccountResource ErrorMapper ErrorMapper
=» total Number of times the AccountResource ErrorMapper is invoked

TYPE application_ quarkus_accounts_AccountResource_

“» ErrorMapper_ ErrorMapper total counter
application_quarkus_accounts_AccountResource ErrorMapper

=» ErrorMapper total 1.0
The metric name and value. When creating a metric

The MicroProfile using the @Metric annotation, the metric name uses
metric type maps to the MicroProfile Metrics Annotated Naming Convention,
the OpenMetrics TYPE which prefixes the scope, package, and class name to
metadata. the metric name.

The ErrorMapperCounter is the only Account service custom metric. In the next sec-
tion, we heavily instrument the Transaction service.

10.2.4 Instrumenting the TransactionService

MicroProfile Metrics stores metrics and their metadata like the ErrorMapperCounter
in a MetricRegistry. There is a metric registry for each scope: base, vendor, and
application. Custom metrics created by the developer are stored in the application
scope. A unique MetricID, consisting of the metric name and an optional list of tags,
identifies a metric in the MetricRegistry.

Metric tags are key-value pairs that add a dimension to metrics that share a com-
monality. Metrics with tags can be queried by tag or holistically (in aggregate). For
example, consider the TransactionServiceFallbackHandler java, which maps Java
exceptions to HTTP response codes. It is useful to track the overall number of fall-
back invocations (“holistically”) and track each exception type resulting in a fallback.

The next listing updates TransactionServiceFallbackHandler java to use a fall-
back metric and the MetricRegistry to track fallbacks by the resulting HTTP status
code.

Listing 10.22 TransactionServiceFallbackHandler.java: track fallbacks by exception

public class TransactionServiceFallbackHandler implements Specifies the registry type
Injects the FallbackHandler<Responses { to inject. MetricRegistry
MetricRegistry .Type.APPLICATION is
into a metric- @Inject used because the metric is
Registry @RegistryType (type = MetricRegistry.Type.APPLICATION) specific to this application.

variable MetricRegistry metricRegistry;

218 CHAPTER 10 Capturing metrics

@Override
public Response handle (ExecutionContext context) {
Logger LOG =
Logger.getLogger (TransactionServiceFallbackHandler.class) ;

Response response;
String name;

if (context.getFailure().getCause() == null) {
name = context.getFailure() .getClass () .getSimpleName () ;
} else {

name = context.getFailure () .getCause ().getClass () .getSimpleName () ;

}

switch (name)
case "BulkheadException":
response = Response.status (Response.Status.TOO MANY REQUESTS)
Lbuild() ;
break;

case "TimeoutException":
response = Response.status (Response.Status.GATEWAY TIMEOUT)
build() ;
break;

case "CircuitBreakerOpenException":
case "ConnectTimeoutException":
case "SocketException":
response = Response.status (Response.Status.SERVICE_UNAVAILABLE)
Lbuild() ;
break;

case "ResteasyWebApplicationException":
case "WebApplicationException":
case "HttpHostConnectException":
response = Response.status (Response.Status.BAD GATEWAY)
build() ;
break;

default:
response =
Response.status (Response.Status.NOT IMPLEMENTED) .build() ;

} Counts the number of fallbacks using a
The tag value counter metric named fallback. If the counter
is the HTTP metricRegistry.counter ("fallback" does not exist, the counter will be created.
response

new Tag("http status_code",

status code. Creates a metric using a Tag,

F "" + response.getStatus())) which is a name-value pair. The
Increments 5 Anc () tag name is http_status_code.
the counter
LOG.info ("****x%x*x " 4 context.getMethod().getName() + ": " + name + "

********!I) ;

return response;

Getting started with MicroProfile Metrics 219

To test the fallback counter, run the next command.

Listing 10.23 Running the overload bulkhead. sh script

metrics/scripts/overload bulkhead.sh

Overloads the local transaction-service started with mvn
quarkus:dev -Ddebug=5006 to generate BulkheadExceptions

After the script has finished, run the following commands to see the metric output.

Listing 10.24 Getting fallback total metric

Uses the local Transaction
service listening on port 8088

export TRANSACTION_ URL=http://localhost:8088
curl -i -s $TRANSACTION URL/g/metrics/application | grep -i fallback total

Requests application metrics from the metrics
endpoint, and narrows the output to fallback_total

Listing 10.25 fallback total metric output

TYPE application fallback total counter
application fallback total{http status code="429"} 290.0

The BulkheadException maps to HTTP status code 429 (TOO_MANY_REQUESTS) in TransactionFallback-
Handler.java. There were 290 BulkheadExceptions (after multiple runs of the overload_bulkhead.sh).

Redeploy the Transaction service to Minikube with mvn clean package -DskipTests
-Dguarkus.kubernetes.deploy=true.

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue at https://github.com/quarkusio/
quarkus/issues/19701 for updates on a resolution. We can work around the
problem by removing the application first with kubectl delete -f /target/
kubernetes/minikube.yaml.

The next step is to generate failures and view the results in the Grafana dashboard.
First, generate BulkheadExceptions, resulting in an HTTP status code of TOO
MANY REQUESTS. Second, make requests to the Transaction Service while the Account
service is scaled to zero and then scaled back to one. Scaling the Account service in
this manner will trip the circuit breaker and result in exceptions like Circuit-
BreakerOpenException and WebApplicationException. These exceptions result in
SERVICE UNAVAILABLE (HTTP status code: 503) and BAD GATEWAY (HTTP status code:
502), respectively. We can accomplish these steps with the heavily commented
force multiple fallbacks.sh, which executes against the Transaction service run-
ning in Minikube, as shown in listings 10.26 and 10.27.

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

220

CHAPTER 10 Capturing metrics

Listing 10.26 Running force multiple fallbacks.sh

export TRANSACTION URL="minikube service --url transaction-service”
metrics/scripts/force multiple fallbacks.sh

Listing 10.27 Shortened force multiple fallbacks.sh output

HTTP/1.1 200 EK Some requests will
Content-Length: 0 execute successfully.

HTTP/1.1 429 Too Many Requests Some requests exceed

Content-Length: 0 the Bulkhead limit of one
simultaneous request.

HTTP/1.1 429 Too Many Requests

Content-Length: 0

HTTP/1.1 200 OK
Content-Length: 0

The script will scale the
Account service down to

**%x%x% DISABLING ACCOUNT SERVICE **%%x% - A
trip the circuit breaker.

deployment .apps/account-service scaled

HTTP/1.1 200 OK

Content-Length: 0 A request made to a service
that is down before the circuit

HTTP/1.1 502 Bad Gateway breaker has tripped

Content-Length: 0

CircuitBreakerOpen
HTTP/1.1 503 Service Unavailable exception
Content-Length: 0

Scales the Account
service to one instance

k%% %k%k%* RESTARTING ACCOUNT SERVICE ****%%n A :
and waits for it to start

deployment .apps/account-service scaled
Waiting for container to start
Waiting for container to start

HTTP/1.1 200 OK Generates more requests
Content-Length: 0 after service is up

With forced fallbacks in place, the dashboard should update accordingly. Figure 10.6
show the fallbacks by type.

To demonstrate an additional metric, add the @Timed metric to the Transaction-
ServiceFallbackHandle.handle () method shown in listing 10.28. This metric will
track how much time is spent in the fallback handler and the number and rate of calls
to the fallback handler.

Sets the
metric
name

Optional—
sets the
metric
display name

Getting started with MicroProfile Metrics 221

Transaction Service - Fallback Count by HTTP Status Code

Layered time-series graph.
The force_fallback_errors.sh
oK / script was run multiple times,

- which explains the multiple
w0 T T | “steps” in the chart.

?5.14.00 16:14:30 16:15:00 16:15:30 16:16:00 16:16:30 16:17:00 16:17:30 16:18:00 16:18:30
— Too Many Requests (429)

— Service Unavailable (503)

— Bad Gateway (502)

— Not Implemented (501)

Legend, with HTTP status code in parentheses

Figure 10.6 Number of Transaction service fallbacks by HTTP status code

Listing 10.28 Timing the fallback handler

public class TransactionServiceFallbackHandler
implements FallbackHandler<Responses> {

@Inject
@RegistryType (type = MetricRegistry.Type.APPLICATION)
MetricRegistry metricRegistry;

Tracks amount of time spent
) in the fallback handler
@Timed (
> name = "fallbackHandlerTimer", .
.) Optional—sets the
——> displayName = "Fallback Handler Timer", . ..
o . , metric description
description = "Time spent handling fallbacks",

absolute = true,

. : . Optional—the absolute
unit=MetricUnits.NANOSECONDS

parameter is true, which
will remove the prepended

)

Optional— | @Override class and method from the
the timer public Response handle (ExecutionContext context) { metric name because this
counts in s is the only metric under

nanoseconds. } this name.

The @Timed annotation tracks the frequency of invocations of the annotated object
and how long it takes for invocations to complete. Sample OpenMetrics output of the
@Timed annotation in listing 10.28 is shown here.

Listing 10.29 Timed fallback handler output

TYPE application fallbackHandlerTimer rate per second gauge

application fallbackHandlerTimer rate per second 2.426100958072672

TYPE application fallbackHandlerTimer one min rate per second gauge
application fallbackHandlerTimer one min rate per second 0.21734790157044565
TYPE application fallbackHandlerTimer five min rate_per second gauge
application fallbackHandlerTimer five min_rate_ per second 1.1224561659490684
TYPE application fallbackHandlerTimer fifteen min rate per second gauge

222

CHAPTER 10 Capturing metrics

application_fallbackHandlerTimer fifteen min rate_per second 0.6479305746101738
TYPE application fallbackHandlerTimer min seconds gauge

application fallbackHandlerTimer min seconds 1.35104E-4

TYPE application fallbackHandlerTimer max seconds gauge

application fallbackHandlerTimer max seconds 0.05986594

TYPE application fallbackHandlerTimer mean seconds gauge

application fallbackHandlerTimer mean seconds 3.792392736865503E-4

TYPE application fallbackHandlerTimer stddev seconds gauge

application fallbackHandlerTimer stddev seconds 0.001681891771616228

HELP application_fallbackHandlerTimer seconds Time spent handling fallbacks

TYPE application fallbackHandlerTimer seconds summary

application fallbackHandlerTimer seconds count 768.0

application fallbackHandlerTimer seconds{quantile="0.5"} 2.78085E-4
application fallbackHandlerTimer seconds{quantile="0.75"} 3.65377E-4
application fallbackHandlerTimer seconds{quantile="0.95"} 6.51634E-4
application fallbackHandlerTimer seconds{quantile="0.98"} 8.98868E-4
application fallbackHandlerTimer seconds{quantile="0.99"} 0.001348871
application fallbackHandlerTimer seconds{quantile="0.999"} 0.004710182

Redeploy the application using mvn clean package -DskipTests -Dquarkus.kuber-
netes.deploy=true. Once deployed, rerun metrics/scripts/force multiple
fallbacks.sh.

The dashboard Transaction Service Fallback Call Rate Rolling One Minute Aver-
age gauge displays a sample application fallbackHandlerTimer one min rate_per
second metric value, which is the rate of method invocations, per second, over the last
minute. Figure 10.7 shows sample requests per second over the last minute.

Transaction Service - Fallback Call Rate Rolling One Minute Average

Values between 0 and 5

are acceptable, as identified
by the thin green outside
band. The minimum
requests-per-second

value over the last

minute was 0.01.

Values over 5 are
unacceptable,

as identified by
/ the thin red band.
(53}

The maximum recorded
request rate over the
last minute was 5.75
requests per second.

Requests/second
over last minute

J
4.5 reqps

SZ‘S-

Figure 10.7 Grafana Transaction service fallback call rate

NOTE The “acceptable” and “unacceptable” requests per second are defined
in the Grafana gauge configuration, not in the application code. These are
hypothetical values to demonstrate the gauge.

Another approach to monitoring performance, perhaps tied to an SLA, is to track
concurrent requests on a method. To see this in action, add the @ConcurrentGauge

Getting started with MicroProfile Metrics 223

annotation to the TransactionResource.newTransaction () method as shown in the
following listing.

Listing 10.30 Applying the @ConcurrentGauge annotation

Adds the @ConcurrentGauge to newTransaction() to The package and class name
track the number of concurrent requests to the method prefix will be removed from
eConcurrentGauge (the metric name. There is no
. . name conflict with another
The metric name = "concurrentBlockingTransactions", metric of the same name.
name absolute = true,
should be description = "Number of concurrent transactions using blocking API"
representative) Provides a description
of intent. | @POST representative of the metric intent

@Path ("/{acctNumber}")
public Map<String, List<String>> newTransaction (@PathParam("acctNumber")
Long accountNumber,
BigDecimal amount) {
try {
updateDepositHistogram (amount) ;
return accountService.transact (accountNumber, amount) ;
} catch (Throwable t)
t.printStackTrace () ;
Map<String, List<Strings>> response = new HashMap<>() ;
response.put ("EXCEPTION - " + t.getClass(),
Collections.singletonList (t.getMessage())) ;
return response;

With the code updated, redeploy the application using mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true and invoke each endpoint using the
script shown next.

Listing 10.31 Generating concurrent requests to the blocking transaction endpoint

metrics/scripts/concurrent.sh <

Scales the Transaction service to two replicas, and runs 8,000 requests (eight sets
of 1,000 parallel requests). It will then scale the Transaction service to one replica,
and run 8,000 requests (eight sets of 1,000 parallel requests).

Figure 10.8 shows the number of concurrent requests.
We have covered a lot of ground in this chapter, but we have one last code modifi-
cation to make to the Transaction service: creating business metrics.

10.2.5 Creating business metrics

Metrics are not only about application performance; they can also encompass busi-
ness performance. For example, it may be helpful to a business to have a live view of
the distribution of customer deposits. It is better for the bank if customers tend

224 CHAPTER 10 Capturing metrics

Pod transaction-service-85f4b4fc9f-m5ps2 Pod transaction-service-85f4b4fc9f-hx527
handled up to three concurrent blocking calls handled up to one concurrent call before
during load generation. it was scaled down.

Transaction Service Concurrent Blocking Calls

23:29 23:30 23:31 23:32 23:33

— transaction-service-85f4b4fc9f-m5ps2

transaction-service-85f4b4fc9f-hx527 \’\
Two Transaction service Pods running

during load generation

Figure 10.8 Transaction service concurrent blocking calls graph

toward larger deposits. Accomplishing this is trivial with MicroProfile Metrics, as shown
in the next listing.

Listing 10.32 TransactionResource.java

The Histogram class is not an annotation,
although an instance can be injected. The
Histogram metadata, name, and description

public class TransactionResource {

@Inject
eMetric (are provided using the @Metric annotation.
name = "deposits",
description = "Deposit histogram"
)
Histogram histogram; Provides the update-

DepositHistogram()
method that adds a
deposit amount to

void updateDepositHistogram(BigDecimal dollars) { the histogram

histogram.update (dollars.longValue()) ; A histogram can be updated

} only with integer and long
values, which is accurate
enough for this use case.

@POST
@Path ("/{acctNumber}")
public Map<String, List<Strings>> newTransaction(

Updates @PathParam ("acctNumber") Long accountNumber, BigDecimal amount) {
newTransaction() try {
to update the updateDepositHistogram(amount) ;
deposit return accountService.transact (accountNumber, amount) ;

histogram } catch (Throwable t) {

Getting started with MicroProfile Metrics 225

t.printStackTrace() ;

Map<String, List<String>> response = new HashMap<>() ;

response.put ("EXCEPTION - " + t.getClass(),
Collections.singletonList (t.getMessage())) ;

return response;

@POST
@Path ("/async/{acctNumber}")
public CompletionStage<Map<String,
List<String>>> newTransactionAsync (@PathParam("acctNumber") Long

tNumber, .
accountiumber Updates newTransactionAsync()

BigDecimal t e
tgecimat amoun) 4 to update the deposit histogram
updateDepositHistogram (amount) ;

return accountService.transactAsync (accountNumber, amount) ;

@POST
@Path ("/api/{acctNumber}")
@Bulkhead (1)
@CircuitBreaker (
requestVolumeThreshold=3,
failureRatio=.66,
delay = 1,
delayUnit = ChronoUnit.SECONDS,
successThreshold=2
)
@Fallback (value = TransactionServiceFallbackHandler.class)
public Response newTransactionWithApi (@PathParam("acctNumber") Long
accountNumber, BigDecimal amount)
throws MalformedURLException {
AccountServiceProgrammatic acctService =
RestClientBuilder.newBuilder () .baseUrl (new URL (accountServiceUrl))
.connectTimeout (500, TimeUnit.MILLISECONDS) .readTimeout (1200,
TimeUnit .MILLISECONDS)
.build (AccountServiceProgrammatic.class) ;

acctService.transact (accountNumber, amount) ;

updateDepositHistogram (amount) ; Updates newTransaction-
return Response.ok () .build() ; WithApi() to update the
} deposit histogram

With the code updated, redeploy the application using mvn clean package -Dskip-
Tests -Dquarkus.kubernetes.deploy=true, and invoke each endpoint using the
script shown next.

Listing 10.33 Invoking each deposit endpoint

metrics/scripts/invoke deposit endpoints.sh

The Grafana Deposits Distribution panel should be updated with data, as shown in fig-
ure 10.9.

226

10.2.6

CHAPTER 10 Capturing metrics

Transaction Service - Deposits Distribution

$1.2K

$1.0K

$800

$600

$400
23:39 23:40 23:41 23:42 23:43

— Quantile .5
— Quantile .75
— Quantile .95
— Quantile .99

The deposit distribution after running the
invoke_deposits_endpoints.sh multiple
times

Figure 10.9 Grafana Deposits Distribution panel

In the next section, we discuss how MicroProfile Metrics integrates with other specifi-
cations to provide additional built-in metrics.

MicroProfile Fault Tolerance and JAX-RS integration
with MicroProfile Metrics

MicroProfile Fault Tolerance automatically registers metrics for @Retry, @Timeout,
@CircuitBreaker, @Bulkhead, and @Fallback annotations. The Transaction service
uses all of these fault tolerance annotations. As a result, a plethora of metrics is avail-
able by probing the endpoint, as shown in the next listing, with the metrics output
shown in listing 10.35.

Listing 10.34 Transaction Service fault tolerance metrics

Forces fallbacks Uses the Transaction service running in Minikube

export TRANSACTION URL="minikube service --url transaction-service~
metrics/scripts/force multiple fallbacks.sh
curl -is $TRANSACTION URL/g/metrics/application | grep ft | grep -v " #"

Views the MicroProfile Fault Tolerance
metrics only and without the metadata

Listing 10.35 Fault tolerance metrics output (output reduced)

application ft io quarkus_transactions TransactionResource newTransactionWith
Api_bulkhead callsAccepted total 110.0

application ft io quarkus transactions TransactionResource newTransactionWith
Api bulkhead executionDuration min 8816204.0

Getting started with MicroProfile Metrics 227

application ft io_quarkus_transactions_ TransactionResource newTransactionWith
Api bulkhead executionDuration max 1.28532238ES8

application ft io gquarkus_transactions_ TransactionResource newTransactionWith
Api_bulkhead executionDuration mean 1.4306619234752553E7

application ft io quarkus_ transactions TransactionResource newTransactionWith
Api circuitbreaker callsSucceeded total 110.0

application ft io_quarkus_transactions_ TransactionResource newTransactionWith
Api circuitbreaker closed total 1.038171586389E12

application ft io gquarkus_transactions_ TransactionResource newTransactionWith
Api_circuitbreaker halfOpen total 0.0

application ft io quarkus_ transactions TransactionResource newTransactionWith
Api circuitbreaker open total 0.0

application ft io quarkus_transactions TransactionResource newTransactionWith
Api invocations total 110.0

A few notes about MicroProfile Fault Tolerance metrics integration follow:

= The metric names are not absolute and are in the application scope.

= The metrics are customized by the metric type. For example, the @Bulkhead
metrics are a histogram covering the number of calls and the distribution of
execution time in the method (not shown). The @CircuitBreaker metrics
count the number of invocations for each state of the circuit breaker.

= To disable registration of fault tolerance metrics, set the property MP_Fault
Tolerance Metrics Enabled=false.

As an optional feature for MicroProfile implementations, JAX-RS can integrate with
MicroProfile Metrics and provide time spent in REST endpoints and count REST
endpoint invocations. To enable this feature in Quarkus, set the property quarkus
.smallrye-metrics.jaxrs.enabled=true. REST metrics enabled in this manner are
created in the base scope. Once the property is set, run the following commands.

Listing 10.36 Generating JAX-RS metrics

Uses the Transaction service running in Minikube Deploys the application

mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true
export TRANSACTION_ URL="minikube service --url transaction-service~
metrics/scripts/invoke deposit endpoints.sh

-) Deposits funds
curl -is $TRANSACTION URL/g/metrics/base | grep base REST using the blocking,
Views the JAX-RS metrics async, and client

API endpoints
Sample REST metric data is shown here.

Listing 10.37 REST metrics output

HELP base REST request_total The number of invocations and total response
= time of this RESTful resource method since the start of the server.

TYPE base REST request_total counter

base REST request total{class="io.quarkus.transactions.TransactionResource",
“» method="newTransactionAsync java.lang.

228

>

10.2.7

CHAPTER 10 Capturing metrics

Long java.math.BigDecimal"} 10.0

TYPE base_ REST request_elapsedTime_seconds gauge

base REST request elapsedTime seconds{class="io.quarkus.transactions.
TransactionResource",method="newTransactionAsync_java.lang.
Long java.math.BigDecimal"} 0.231018078

base REST request total{class="io.quarkus.transactions.TransactionResource",
method="newTransactionWithApi java.lang.Long java.math.BigDecimal"}
610.0

base REST request elapsedTime seconds{class="io.quarkus.transactions.
TransactionResource",method="newTransactionWithApi java.lang.Long java.
math.BigDecimal"} 6.058761321

base REST request total{class="io.quarkus.transactions.TransactionResource",
method="newTransaction java.lang.Long java.math.BigDecimal"} 10.0

base REST request elapsedTime seconds{class="io.quarkus.transactions.
TransactionResource",method="newTransaction java.lang.Long java.math.
BigDecimal"} 0.193222971

A gauge is available for each REST endpoint that
samples the time spent in a REST endpoint (latency).

A counter is available for each REST endpoint that counts
the number of REST invocations on that endpoint.

Before wrapping up, Quarkus not only supports MicroProfile Metrics, it also supports
Micrometer metrics. The next section will explain the difference and why both
Quarkus and MicroProfile Metrics are moving towards Micrometer.

Micrometer metrics

Since Quarkus 1.8, Micrometer (https://micrometer.io/) is included as an alterna-
tive approach to metrics. Micrometer was popularized with widespread use within
Spring and Spring Boot projects but also has wide adoption within the broader Java
ecosystem.

Why another metrics implementation? Though Micrometer does not implement
the MicroProfile Metrics specification, its use is a de facto standard within the Java
ecosystem. This is an important factor to consider. When operations or site reliability
engineers monitor many Java services, it’s critical for metrics to be named alike to
enable the aggregation of data across instances. MicroProfile Metrics defines a hierar-
chical naming scheme, whereas Micrometer utilizes a dimensional naming scheme
with labels, or tags, associated with a name for additional context. With the popularity
of Micrometer, it’s important for Quarkus to provide identically named metrics in
environments with many Java frameworks in deployments. For this reason, Quarkus
recommends the use of the Micrometer extension for exposing metrics.

NOTE At the time of this writing, MicroProfile Metrics is considering adop-
tion of Micrometer as the engine under the MicroProfile application APIL.

Let’s see Micrometer in action. Open the book source to the /chapter10/micrometer-
account-service directory. The example comes from the active record in chapter 4.
Only one additional dependency is needed, as shown next.

https://micrometer.io/

Getting started with MicroProfile Metrics 229

Listing 10.38 Quarkus Micrometer Prometheus registry extension dependency

<dependencys>
<groupld>io.quarkus</groupld>
<artifactIds>quarkus-micrometer-registry-prometheus</artifactIds>
</dependency>

The quarkus-micrometer-registry-prometheus dependency brings in the base
Micrometer extension, as well as the Micrometer Prometheus registry dependency.
This dependency activates the /g/metrics endpoint with metrics in the Prometheus
format.

NOTE Alternative metrics backends are available with Micrometer and Quarkus.
Check the additional registries in the Quarkiverse at https://github.com/
quarkiverse/quarkus-micrometer-registry.

Time to see the Micrometer extension in action! Run the commands shown in list-
ings 10.39 and 10.40.

Listing 10.39 Deploying account-service-micrometer

Uses Docker engine in Minikube

eval $(minikube -p minikube docker-env) :ewzgiézf
mvn clean package -Dquarkus.kubernetes.deploy=true PP

ACCOUNT URL="minikube service --url account-service-micrometer™
curl -X GET ${ACCOUNT URL}/g/metrics

Saves the account-service-
Gets the Micrometer- micrometer URL. This will
generated metrics be used multiple times.

Listing 10.40 Micrometer metrics output (sample)

jvm_threads live threads 11.0
jvm_threads _daemon_ threads 7.0
process_uptime_seconds 322.512
jvm_threads peak threads 11.0

It is immediately evident that the Micrometer
metrics are not following the MicroProfile
naming convention, with metric names like
jvm_threads_live_threads missing the
MicroProfile Metrics scope.

With no requests having executed on the endpoints, there are no metrics covering
HTTP requests. Let’s change that now, as shown in the next code listing and a sample
of the metrics output in listing 10.42.

Listing 10.41 Invoking HTTP endpoints to get accounts

curl -X GET ${ACCOUNT URL}/accounts
curl -X GET ${ACCOUNT URL}/accounts/87878787
curl -X GET ${ACCOUNT URL}/g/metrics

https://github.com/quarkiverse/quarkus-micrometer-registry
https://github.com/quarkiverse/quarkus-micrometer-registry
https://github.com/quarkiverse/quarkus-micrometer-registry

230

10.2.8

CHAPTER 10 Capturing metrics

Listing 10.42 Account service sample metrics output

HELP http_server requests_seconds

TYPE http server requests seconds summary

http server requests seconds count{method="GET", outcome="SUCCESS", status="200
",uri="/accounts/{acctNumber}",} 2.0

http server requests seconds sum{method="GET",outcome="SUCCESS", status="200",
uri="/accounts/{acctNumber}",} 0.015225187

http server requests seconds count{method="GET", outcome="SUCCESS", status="200
",uri="/q/",} 1.0

http server requests seconds sum{method="GET", outcome="SUCCESS", status="200",
uri="/q/",} 0.052366224

http server requests seconds count{method="GET", outcome="SUCCESS", status="200
",uri="/accounts",} 2.0

http server requests seconds sum{method="GET", outcome="SUCCESS", status="200",
uri="/accounts",} 0.285417871

HELP http_ server requests_seconds_max

TYPE http_server_ requests_seconds_max gauge

http server requests seconds max{method="GET",outcome="SUCCESS", status="200",
uri="/accounts/{acctNumber}",} 0.011469553

http server requests seconds max{method="GET", outcome="SUCCESS", status="200",
uri="/g/",} 0.052366224

http server requests seconds max{method="GET", outcome="SUCCESS", status="200",
uri="/accounts",} 0.277971268

Without adding anything other than a dependency, the service is now producing
many useful metrics using Micrometer!

We have covered a lot of content in this chapter. Before finishing up, let’s simulate
a busy production environment that generates a lively dashboard.

Simulating a busy production system

The run all.sh script runs the commands and scripts used in this chapter to gener-
ate load. The result is a busy Grafana dashboard that looks like a busy production sys-
tem. From the top-level chapter10/ directory, run the following command.

Listing 10.43 From chapterl0 directory, running the run_all. sh script

metrics/scripts/run all.sh

Press CTRL-C to stop

Figure 10.10 shows the overall Grafana dashboard after running the metrics/
scripts/run_all.sh command for five minutes.

Summary 231

88 Banking Microservices ¥ & W B @ | O |OlsSmintes v | Q| Qs
Used Heap Aceount service ErtorMapper calls

asme 2

oM s

s 0

me B

me N

21030 7100 nn30 21200 751230 210 7330 700 230 2500
o8 Eronsppercals Enonsppercals — Erondappercals — Eroagpercals
200 @mne mNW ;o 22 B0 20D AU BUBD 750
Transacton Senice Account Sevce

Transaction Service - Fallback Count by HTTP Status Code ~

Transaction Service Concurrent Blocking Calls

21030 nnw anw m2w anw mw 210 muw 20 7500
Too Many Requests (29)
2ma 2200 a0 7300 eren 20 2w 7500 s

tansacton senice SSUBHAH NS

Transaction Service - Deposits Distrbution

21030 21100 nn0 21200 21220 2w 2N 2w 2 21500

3.3 regps

Figure 10.10 Grafana Deposits Distribution panel

Summary
MicroProfile Metrics offers multiple types of metrics to address varying perfor-
mance use cases, like counters, histograms, gauges, meters, and timers.
MicroProfile Metrics separates metrics into scopes: base, vendor, and application.

MicroProfile Fault Tolerance and (optionally) JAX-RS integrate with Micro-
Profile Metrics.

MicroProfile Metrics exports metrics in JSON and OpenMetrics formats.
Quarkus supports JSON and OpenMetrics output formats.

Metrics output can be observed live using external tools like Prometheus and
Grafana.

Quarkus supports MicroProfile Metrics and Micrometer.

Tracing microservices

This chapter covers

Using tracing between microservices
Viewing traces with the Jaeger Ul

Injecting a tracer to customize attributes
on a span

Tracing beyond HTTP

Any form of application observability requires tracing execution paths within a dis-
tributed system. With the rise of distributed systems, developers can no longer
debug and step through code because they are now dealing with many services.
Tracing is the new debugging when dealing with distributed systems. In addition,
being able to visualize the bottlenecks in services by observing higher execution
times is critical. By no means does this discount the importance of observing met-
rics, discussed in chapter 10, but it is often necessary to drill deeper into a specific
execution path to determine the root of a problem.

In essence, tracing is a key tool in the operations toolbox for observing a run-
ning production system. It is the best means of debugging the execution path of a
distributed system.

In this chapter, we update the example architecture from chapter 8 to include trac-
ing to highlight the impact of tracing across different communication mechanisms.

232

11.1

How does tracing work? 233

These include HTTP calls, both into a service and to another service, database inter-
actions, and sending or receiving messages from Apache Kafka.
For a reminder of the services from chapter 8 and how they interact, see figure 11.1.

Transactions Accounts
microservice microservice Data

Apache Kafka

Overdraft
topic

Update overdraft
topic

Overdraft

microservice Figure 11.1 Microservice

architecture

In this chapter, we won’t change any of the functionality with respect to how the ser-
vices interact, but instead we focus on tracing the existing interactions.

How does tracing work?

When tracing a specific service, or even a series of services within a single monolith,
there is no need to propagate trace information because all calls are within a single
JVM process. Every service within the single monolith can access a tracer, creating or
ending spans as necessary without regard to service boundaries. That’s not the case
when dealing with distributed systems, or even two services in different JVMs calling
each other. Propagating the trace context is required.

Whether it’s HTTP, Apache Kafka, or another transportation protocol, each pro-
vides the ability to include headers along with the payload being sent. Figure 11.2
shows both these pieces of content on a request as it passes between services. In the
header of such a request, there could be a header representing an existing trace cre-
ated by the caller. If no tracing header is already present, the receiving service pre-
sumes no trace exists and will create one if tracing is enabled.

Figure 11.2 also highlights what happens to a trace when a service call completes.
In the case of service A or service B, when processing is complete, any trace and span
information that was captured will be passed to a collector. The collector might be
known by different names, depending on the tracing implementation, but its purpose

234

11.2

CHAPTER 11 Tracing microservices

Request Request

Payload [1 Payload
Service A

Service B

Collector

Figure 11.2 Tracing headers

is to receive trace information from any service that has captured traces throughout a
distributed system. Once collected, all the trace information can be combined to pro-
vide a visualization of the trace execution path between services.

Jaeger

Jaeger (www.jaegertracing.io/) is a distributed tracing system that facilitates creating a
view of the interaction between services within a distributed system. It’s not the only
tracing system available—Zipkin (https://zipkin.io/) is another. In this chapter, we
use Jaeger in the examples for visualizing traces. Irrespective of the distributed tracing
system used, they all provide the ability to visualize a trace through a system.

Before delving into some examples, it’s worth mentioning the terms that are
related to tracing to familiarize the reader with them. The execution path through a
system captured by Jaeger is a trace, because it traces a path through different services.
Each trace comprises one or more spans. A span represents a single unit of work within
a trace.

Collecting traces does require time to gather the information a service captured
during execution and time to send the tracing data to the collector in an external ser-
vice. Depending on what’s captured in a trace, large pieces of data could require
memory as well. When handling several dozen requests, the extra time and memory
requirements are likely minimal, but when dealing with thousands, or tens of thou-
sands, of requests, the extra time and memory requirements to capture every execu-
tion can significantly impact service response times and throughput.

Because the collection of traces can be expensive in time and memory, compared
to metrics, Jaeger provides the ability to define a sampling rate to indicate how many
traces should be captured.

IMPORTANT Though the examples in this chapter have a sampling rate of 1,
meaning to capture every trace, doing so in a production situation is appro-
priate only when the throughput is low enough to not be impacted. Or, if an
application is critical, it’s necessary to trace every execution if something
goes wrong.

https://zipkin.io/
http://www.jaegertracing.io/

11.2.1

11.2.2

11.2.3

Jaeger 235

Trace sampling

The previous section introduced the concept of a sampling rate and how it can impact
the cost of collecting traces. Understanding the sampling of traces is important,
because each type of sampling has different features. The type of sampling chosen
impacts the number of traces captured within an application.

Jaeger offers the following sampling options:

= Constant—The constant sampler always makes the same decision for every pos-
sible trace. All traces are sampled when set to 1, or ignored when set to 0.
Most demo applications use a constant sampler with a value of 1 to capture all
traces. For production, using constant sampling is beneficial only for applica-
tions that don’t have many requests; otherwise, the cost of storing the traces
grows too quickly.

= Probabilisti—The probabilistic sampler uses weighting to determine the likeli-
hood of sampling a trace. Given a value of 0.2, for example, approximately two
traces will be sampled out of 10 traces.

= Rate limiting—A leaky bucket rate limiter ensures traces are sampled at a constant
rate. A value of 4.0 informs Jaeger to sample requests at a rate of four traces
every second.

= Remote—Remote is the default sampling type used if no other configuration is
set. The Jaeger agent provides the sampling type remotely, as defined by the
configuration in the Jaeger backend.

Setting up the Minikube environment

Chapter 8 contains all the details of how to set up Minikube with Apache Kafka, a
PostgreSQL database, the Account service, and the Overdraft service. We use Apache
Kafka and PostgreSQL in the later tracing examples. The steps to deploy everything,
details of which are available in chapter 8, follow.

Listing 11.1 Environment setup

Identical to listing 8.14, except for having

minikube start --memory 4096 . N
Y one replica of Apache Kafka instead of two

kubectl create namespace kafka
kubectl apply -f 'strimzi-cluster-operator-0.25.0.yaml' -n kafka
kubectl apply -f kafka cluster.yml -n kafka

kubectl wait kafka/my-cluster --for=condition=Ready --timeout=300s -n kafka
kubectl apply -f kafka_ topics.yml -n kafka

kubectl apply -f postgresqgl kubernetes.yml

Installing Jaeger
Jaeger has several installation options, depending on the environment it will run in.

In this chapter, we use the Jaeger operator to install it into Minikube.

NOTE An operator is a software extension to Kubernetes for managing appli-
cations and their components. Operators can perform many varied tasks in

236

CHAPTER 11 Tracing microservices

Kubernetes. In this case, the Jaeger operator performs the installation of the
collector, UI, and dependent services.

With Minikube started, run the following commands to install the Jaeger operator.

Listing 11.2 Jaeger operator installation

Creates an observability namespace Installs the CRDs
for the Jaeger components (custom resource

kubectl create namespace observability definitions) for Jaeger

kubectl create -f https://raw.githubusercontent.com/jaegertracing/
jaeger-operator/master/deploy/crds/
jaegertracing.io jaegers crd.yaml

kubectl create -n observability -f https://raw.githubusercontent.com/
jaegertracing/jaeger-operator/master/deploy/service account.yaml

kubectl create -n observability -f https://raw.githubusercontent.com/
jaegertracing/jaeger-operator/master/deploy/role.yaml

kubectl create -n observability -f https://raw.githubusercontent.com/

jaegertracing/jaeger-operator/master/deploy/role binding.yaml Creates
kubectl create -n observability -f https://raw.githubusercontent.com/ the]a:ger
operator

jaegertracing/jaeger-operator/master/deploy/operator.yaml

With the commands complete, run kubectl get deployment jaeger-operator -n
observability to verify the Jaeger operator is present and ready to create instances.
To be ready, the jaeger-operator needs to be in a READY state of 1/1.

The Jaeger operator creates an ingress route for Kubernetes, enabling access to
the Jaeger console. Ingress routes are the Kubernetes means for exposing a service to
the outside world. Because Minikube doesn’t include ingress providers by default, one
needs to be installed, as follows:

Installs the ingress add-on for Minikube. minikube

minikube addons enable ingress " .
J addons list shows all the available add-ons.

To simplify the deployment of Jaeger, we use the all-in-one image (all-in-one combines
all the pieces needed for using Jaeger, without having to deploy storage, query, and UI
components separately), as shown next:

kubectl apply -n observability -f - <<EOF
apiVersion: jaegertracing.io/vl
kind: Jaeger
metadata:
name: simplest
EOF

Use kubectl get pods -n observability to see when all the Jaeger components have
started successfully.

IMPORTANT The all-in-one image is not recommended for production usage.
There is no single image available for production, because it requires working
through the necessary storage requirements, collectors, and querying.

Jaeger Ul

Search

Service (0)

Jaeger 237

With all the components started, the URL of the Jaeger console is available by query-
ing the ingress object, as follows:

kubectl get -n observability ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
simplest-query <none> * 192.168.64.18 80 65s

Open a browser at http://192.168.64.18 to see the Jaeger console, shown in figure 11.3.

JSON File

Select A

Operation (0)

Tags @

Lookback

Last Hour

Min Duration

Max Duration

Limit Results

20

Figure 11.3 The Jaeger console

11.2.4

Now that Jaeger is installed, in the next section, we trace the microservices, showing
how they appear in the Jaeger console.

Microservice tracing with Jaeger

Distributed tracing is difficult to describe; it’s far easier to see the traces that are pro-
duced and how they change as a service is altered. To that end, let’s deploy all the
microservices from figure 11.1 to see what’s traced, as shown in the next code listing.

Listing 11.3 Microservice deployment

eval $(minikube -p minikube docker-env)

/chapterll/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapterll/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapterll/transaction-service> mvn verify -Dquarkus.kubernetes.deploy=true

http://192.168.64.18

238

CHAPTER 11 Tracing microservices

Before proceeding, verify the three services are up and running by executing kubect1
get pods. The terminal returns three Pods, one for each service, in the state of RUN-
NING. Once they’re ready, withdraw funds from an account, making it overdrawn, as
shown here:

TRANSACTION_URL="minikube service --url transaction-service~
curl -H "Content-Type: application/json" -X PUT -d "600.00"
${TRANSACTION URL}/transactions/123456789/withdrawal

A JSON response is returned, showing the new account balance of —49.22. In the
browser, refresh the Jaeger console page, and select the Service drop-down menu. Fig-
ure 11.4 shows the services available for selection.

Search JSON File

Service (3)

7 Select A Service
account-service
jaeger-query

transaction-service Figure 11.4 Jaeger console
service selection

We expected account -service and transaction-service, but what’s jaeger-query?
jaeger-query is the service the Jaeger console interacts with when the console is
refreshed or a tracing search is made. When the Jaeger console was first loaded in fig-
ure 11.3, jaeger-query wasn’t present because there hadn’t been any queries issued
until the page was actually loaded. In figure 11.4, select transaction-service from
the dropdown and click Find Traces.

Figure 11.5 explains the parts of the Jaeger Ul seen. The lefthand pane labeled
Search includes different parameters that can be used to retrieve available traces.

In the usage so far, we’ve used only the Service drop-down menu, but if we have
hundreds of traces for a particular service, we can use additional parameters to filter
the results. Parameters include Operation name, any Tags on a trace, over what
period to search for traces, Min Duration and Max Duration of a trace—which is help-
ful when trying to find problematic traces taking too long to execute—and Limit
Results to a specific number of traces. Depending on the number of traces found, the
top portion of the right-hand side of the page displays a dot for every trace found over
time based on the search. Dots, or traces, toward the top of the page had a higher
duration than lower-placed dots, and traces are spread left to right from oldest to
most recent. As has already been seen, the bottom part of the page is the list of all the
traces found from a search.

Jaeger 239

Search JSON File

Duration

Service (3) ops

transaction-service
00004

Operation (2, 06:13:20 pm 07:00:00 pm 09:46:40 pm
all

1 Trace Sort: Most Recent Deep Dependency Graph
Tags (.

Compare traces by selecting result items
Lookback

Last Hour
jice: PUT:io.quarku i i i ct4139 1.35s

Min Duration 3 Spans B account-service (1) transaction-service (2) Today 6:51:04 pm

aminute ago

Figure 11.5 Transaction service trace results

Figure 11.5 shows all the traces currently found, which is only a single trace resulting
from the withdrawal consisting of three spans. To see more detail about the captured
trace, and the included spans, click the trace.

Figure 11.6 includes useful information about the request. The very top of the
page highlights the method that triggered the creation of the trace—in this case,
PUT—against the transaction-service that resulted in TransactionResource.with-
drawal being called.

 transaction-service: PUT:io.quark
TransactionResource.withdrawal

ansactions.

98 Trace Timeline v

art December 12020, 18:51:04.552

n1.35s S

67522ms. 1.01s 1.355

Service & Operation vV > V¥ » ops 337.61ms. 675.22ms. 1.01s 1.35s
v | transaction-service PUTio quarkus.transactions TransactionRieso...
~ transaction-service FUT

| account-service PUT.quarkus accounts AccountResoure...

Figure 11.6 Transaction service trace detail

Below the header is pertinent information on the trace, including the date and time
it started, total duration of the trace, number of services in the trace, total trace
depth, and the number of spans. Each span is visualized as a separate horizontal bar.
The bar’s length indicates the time a span took to complete. Its position shows when
it began and ended, and its color indicates which service the span belongs to. In fig-
ure 11.6, spans in the transaction-service appear in one color (yellow when
viewed in the browser), whereas the account-service span is a different color (a
blue-green color).

The bottom half of figure 11.6, under Service & Operation, lists every span within
the trace, broken down by which service and methods within a service were called.

240 CHAPTER 11 Tracing microservices

The timeline on the right provides a visualization of each span and its execution
within the overall trace. For instance, the span for the account-service took 591.87
ms to complete but didn’t commence until about 600 ms into processing on the
transaction-service.

When looking at figure 11.6, clicking the first transaction-service span heading

expands it to provide further information such as that in figure 11.7, after expanding
each section.

oot (I s oo SwemAchiesue

¢ v transaction-service: PUT:io.quarkus.transactions.
TransactionResource.withdrawal ci4139¢

About Jaeger v

98 Trace Timeline v

Trace Start December 1 2020, 18:51:04.552 Duration 1.355
ous 675.22ms. 1.01s 1358
Service & Operation V> V¥ > ops 337.61ms. 675.22ms. 1.01s 1.35s
v transaction-service PUTo.quarkus transactions TransactionReso...

PUT:io.quarku: {0 Tr ionResource.withdrawal Service: transaction-service Duration: 1.35s ~ Start Time: Ops

v Tags

component Jaxrs

http.method »uT

http.status_code 200

http.url http://192.168.99.100:31692/transactions/123456789 /withdrawal

internal.span.format jaeger

sampler.param true

sampler.type const

span.kind server

 Process

hostname transaction-service-5chb656£4-b286v
ip 172.17.0.14

jaeger.version Java-0.34.3

cf41390c0d03base &
v transaction-service PUT

I joo s

Figure 11.7 Transaction service span detail

Figure 11.7 shows the list of all the Tags present on the trace and the Process informa-
tion that was collected. The Tags present will be dependent on the component being
traced. In this instance, Tags include jaxrs for the type of component, HTTP method,
HTTP status code response, HTTP URL being executed, and details on the sampling.
Process captured the Kubernetes Pod name as the hostname, the IP address, and the
version of Jaeger being used. The span ID is displayed in the bottom right-hand corner.

Figure 11.8 includes similar information as figure 11.7 but for the account -service.

PUTG

591.87ms.

PUT:quarkus. 1ts.AccountR withdrawal Serv

/ice: account-service Duration: 591.87ms Start Time: 591ms

> Tags: component-jaxrs http.method =PUT | http.status_code =200 | http.url

ternal.span.format - jaeger span.kind
> Process: hostname - account-service-774b65¢f67-155dt ip=172.17.0.11 jaeger.version - Java-0.34.3

3d6f2cttBebdszdd

Figure 11.8 Account service span detail

Jaeger 241

The Tags and Process sections are collapsed by default, but a particular tag and infor-
mation are shown as a single line until it’s expanded. Examining figure 11.8, we see
the actual time at which the account-service span began on the right-hand edge.
Spend some time exploring the different parts of the Jaeger console to understand
the different pieces of information available and where they can be found.

From the Jaeger console search page, select account-service from the Service
drop-down menu and click Find Traces. It should return the same trace but from the
perspective of the Account service. In the list of available services to search on, there
are no traces from the Overdraft service! No services or spans are being captured after
the message is sent to Kafka. The trace is not being propagated from one side of Kafka
to the other. We discuss how to implement propagation with Kafka in section 11.4.4.

Figure 11.9 highlights where the trace and spans fall in terms of the Banking archi-
tecture. What’s interesting to note is that a single service, the Transaction service, con-
tains multiple spans. Multiple spans within a single service can be a good way to break
down the various pieces of work that are performed in a single request to better visual-
ize where time is spent.

Transactions Accounts B —
Mmicroservice Microservice
" Span1, 2 Span3 !

Apache Kafka

Figure 11.9 Banking

Overdraft ' >
microservice architecture with trace

and spans

In view of the traces in the Jaeger console from a transaction withdrawal request, what
was necessary to make that possible?

Each of the services needs the dependency for OpenTracing in Quarkus. This
dependency includes the OpenTracing APIs, discussed in section 11.3.1, and the trac-
ing implementation from Jaeger, shown next:

242

CHAPTER 11 Tracing microservices

<dependency>
<grouplds>io.quarkus</groupIds>
<artifactIds>quarkus-smallrye-opentracing</artifactIds>
</dependency>

It’s not necessary to add a dependency for the Jaeger implementation—it is transi-
tively brought in through OpenTracing. With an implementation present, Jaeger
needs to be informed about where to send traces collected during execution. The fol-
lowing updates to application.properties are needed:

URL for the Jaeger collector. Microservices send any traces to the collector. Defining it as a
production configuration means the default URL, http://jaeger-collector:14268/api/traces,
will work running locally with Docker.

11.3

11.3.1

http://simplest-collector.observability:14268/api/trac through the service will
quarkus.jaeger.service-name=account-service use this name on spans.
quarkus.jaeger.sampler-type=const
quarkus.jaeger.sampler-param=1

$prod.quarkus.jaeger.endpoint= Any traces passing
es

The type of sampling to perform.
Options include const, probabilistic,
Value used in conjunction rate-limiting, and remote.

with sampler-type

The configuration for Jaeger needs to be included in all the services, along with the
quarkus-smallrye-opentracing dependency. Don’t forget to change the service-
name value when copying it between the files. If it’s not changed, every trace will be
from account-service, making it very confusing to understand what has actually
been traced.

Those are all the changes that we made to capture a trace. Though it still misses
the use of the Overdraft service, the trace was correctly propagated from Transaction
service to Account service without any intervention from developers to make it hap-
pen. For that matter, other than adding a dependency and configuration, developers
don’t need to add any code to begin tracing what their application is doing!

The next section provides details on the various specifications for tracing, explain-
ing how they’re related and which ones are used in Quarkus.

Tracing specifications

This section provides details on the key projects and specifications related to tracing,
both inside and outside of MicroProfile, while also providing some insight into what’s
coming with OpenTelemetry.

OpenTracing

OpenTracing (https://opentracing.io/) consists of an API specification and frame-
works and libraries implementing the specification for various languages. Open-
Tracing itself is not a standard, because it is not part of any official standards body.
The OpenTracing project is part of the Cloud Native Computing Foundation (CNCF)
(https://www.cncf.io/).

http://jaeger-collector:14268/api/traces
https://opentracing.io/
https://www.cncf.io/

11.3.2

11.3.3

Tracing specifications 243

OpenTracing began in 2015 with a goal of enabling application and framework
developers to include instrumentation for tracing within their projects, but without
being tied to a specific tracing vendor. Without this ability, there is no guarantee
that a trace started in one application will be correctly propagated down the chain
of execution.

Jaeger is one possible backend that can accept traces created with OpenTracing.
OpenTracing and Jaeger have seen wide adoption within the open source community
and within enterprises needing to trace their services.

What is MicroProfile OpenTracing?

MicroProfile OpenTracing chose to build upon the foundations of OpenTracing and
not define its own API for creating or interacting with traces. The beauty of this
approach is any trace format OpenTracing supports will be supported by MicroProfile
OpenTracing. Additionally, the mere inclusion of a MicroProfile OpenTracing imple-
mentation facilitates the capturing and propagation of traces without any interaction
on the part of a developer in their application code.

Implementations enable no code propagation of traces by extracting SpanContext
information from incoming JAX-RS requests. No code instrumentation, where every
JAX-RS resource method has a new Span of its execution, ensures tracing of every
JAX-RS endpoint in a microservice by default. MicroProfile OpenTracing adds the
@Traced annotation for developers to indicate that specific methods, or all methods on
a class, should have a Span created to represent the processing of the method. @Traced
can be used on non-JAX-RS resource methods to have spans created, and the creation
of a Span can be prevented by adding @Traced (value = false) onto a method.

@Traced can modify the default span name for any traced method. The default for
inbound requests follows:

<HTTP-method>:<package-name>.<class-name>.<method-name>

However, the span name can be overridden with @Traced (operationName = "my-
method").

OpenTelemetry

In March 2019, members of the OpenTracing and OpenCensus communities decided
to merge under a single project named OpenTelemetry. Both projects focus on unify-
ing application instrumentation to make observability a built-in feature for modern
applications. However, each project tackled a different aspect. OpenTracing imple-
ments tracing APIs, whereas OpenCensus has APIs for metrics. Combining the two
into a single project for all observability is the right approach.

Because both OpenCensus and OpenTracing are well-established projects in their
own right, it takes time to combine them into a single project while ensuring each
project is considered equally. In early 2021, OpenTelemetry released tracing APIs as

244

114

114.1

account-service withdraw-from-account 550.77ms.

CHAPTER 11 Tracing microservices

GA (generally available). The release included finalized tracing features. As of August
2021, Metrics is close to being finalized, but Logging is not expected until 2022.

Readers might be wondering why we discuss OpenTelemetry if it will not be final
for a while. The reason is the MicroProfile community is only beginning to explore
OpenTelemetry. In particular, how it will impact the existing Metrics and OpenTracing
specifications, what becomes of MicroProfile Metrics and OpenTracing, and whether
an OpenTelemetry specification should be added to the MicroProfile platform will be
discussed in 2022.

Quarkus has initial support for OpenTelemetry already. However, because the book
focuses on MicroProfile functionality, we won’t cover the OpenTelemetry features.

Customizing application tracing

We have several ways to customize what’s traced, both in terms of what’s being cap-
tured in a trace but also what is being traced. The following sections detail how each
of these can be achieved with existing services.

Using @Traced

As we described in a previous section, @Traced enables developers to customize the
name of the span to provide more meaning to the name. Let’s modify Account-
Resource by adding the following annotation to the withdrawal method:

@Traced (operationName = "withdraw-from-account")

With the change made, redeploy the Account service as follows:

mvn verify -Dquarkus.kubernetes.deploy=true

Once it’s deployed, make a withdrawal from an account, as shown next:

curl -H "Content-Type: application/json" -X PUT -d "2500.00"
${TRANSACTION URL}/transactions/111222333/withdrawal

Refresh the Jaeger console browser page, and search for account-service traces.
Click the most recent trace result, and expand the account-service span section.
The reader will see content similar to figure 11.10, showing the span name is now
withdraw_ from account.

withdraw-from-account Service: account-service Duration: 559.77ms Start Time: 634ms.

> Tags: component-jaxrs http.method = PUT http.status_code=200 http.url i 11 internal.span.format - jaeger span.kind...
> Process: hostname - account-service-ddfd6{769-9mqgj ip - 172.17.0.15 | jaegerversion - Java-0.34.3

e815fea3d60deted &

Figure 11.10 Account service: custom span name

114.2

11.4.3

Customizing application tracing 245

Exercise for the reader

Try out different scenarios with @Traced, such as changing span names, disabling
tracing, and making withdrawal and deposit requests. Take a look at how they appear
in the Jaeger console.

Injecting a tracer

Let’s take the customization a step further. Injecting a Tracer instance provides the
ability to interact with the trace and span through an API. Modify AccountResource
.withdrawal to inject a tracer, and modify the span to have the account number as a
tag and the withdrawal amount as a baggage item, as shown in the next listing. A bag-
gage item enables propagation of state across process boundaries within a trace.

Listing 11.4 AccountResource

public class AccountResource { Injects an

i Sets a tag on the currentl
@Inject OpenTracing a tag |)
Tracer instance active span with a key of
Tracer tracer; accountNumber

public CompletionStage<Account> withdrawal (@PathParam("accountNumber") Long
accountNumber, String amount) {

tracer.activeSpan() .setTag ("accountNumber", accountNumber) ; <+

tracer.activeSpan() .setBaggageltem("withdrawalAmount", amount) ; N
} o Sets a baggage item on the current
} span with a key of withdrawalAmount

With the changes made, redeploy the Account service. When the deployment is ready,
withdraw money from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "950.00"
${TRANSACTION URL}/transactions/87878787/withdrawal

With the response received, reload the Jaeger console in the browser. Search for
account-service traces, and select the most recent one to see the details.

Figure 11.11 shows the span with the new tag and baggage item that were added.
All the tags seen on previous spans are still there, but the span now includes the tag
added directly through the tracer APL

Tracing database calls

Having seen how it’s possible to modify details of the span operation and customize
the tags and baggage items on the span with the API, now let’s trace the database
interactions. Although knowing how long a particular method takes to execute is
important for diagnosing performance issues, it doesn’t provide enough of a picture
when a method interacts with many other methods or services, such as a database.

246 CHAPTER 11 Tracing microservices

withdraw-from-account

Vv Tags
accountNumber 87878787
component jaxrs
http.method PUT
http.status_code 200
http.url http://account-service:8080/accounts/87878787/withdrawal

internal.span.format jaeger

span.kind server

> Process: hostname = account-service-76f49c4cd7-7gmxp ip=172.17.0.11 jaeger.version = Java-0.34.3

v Logs (1)

v 1.51s

event baggage
key withdrawalAmount
value 950.00

Log timestamps are relative to the start time of the full trace.

Figure 11.11 Account service: modify span content

Maybe a method takes two seconds to complete, but most of that occurs performing
database operations. Data needs to be of the correct granularity to be useful; other-
wise, it is just as likely to be harmful as helpful.

We need to make a few modifications to be able to trace database calls. First we add
a tracing dependency for JDBC as shown here:

<dependency>
<groupld>io.opentracing.contrib</groupIlds>
<artifactIds>opentracing-jdbc</artifactIds>
</dependency>

The JDBC tracer from OpenTracing sits between a service and the database. For that
to work, an application needs to know the tracer must be used instead of the driver for
a specific database. It’s also necessary to inform Hibernate which database is being
used, because it’s no longer possible to deduce it from the JDBC driver. That’s a lot of
pieces! Thankfully, all it means is a few changes to the application.properties of the
Account service:

$prod.quarkus.datasource.db-kind=postgresql
$prod.quarkus.datasource.username=quarkus_banking

Customizing application tracing 247

$prod.quarkus.datasource.password=quarkus_banking

$prod.quarkus.datasource.jdbc.url=
jdbc:tracing:postgresql://postgres.default:5432/quarkus_banking

$prod.quarkus.datasource.jdbc.driver=io.opentracing.contrib.jdbc.TracingDriver <—

$prod.quarkus.hibernate-orm.dialect=org.hibernate.dialect.PostgreSQLl10Dialect

Adds tracing to Informs Hibernate that the underlying database type is PostgreSQL.
the JDBC URL from Without this configuration property, Quarkus is unable to

previous chapters determine the database type from the chosen driver.

Specifies the JDBC driver for tracing. With multiple JDBC drivers on the class
path, PostgreSQL, and Tracing, it’s necessary to specify which one to use.

All the properties for the database are set to the prod profile. Doing so prevents the
tracing driver from interfering with Dev Services starting the PostgreSQL. database.

With the changes made, redeploy the service. When the deployment is ready, with-
draw money from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "900.00"
${TRANSACTION URL}/transactions/987654321/withdrawal

Once the response has been received, head back to the Jaeger console in the browser,
and search for account-service. A new trace will be retrieved from the most recent
request, similar to that shown in figure 11.12, where the number of spans for the
account-service has increased from one to three.

transaction-service: PUT:io.quarkus. ions.Trar { withd | 529c79a 1.28s

5 Spans B account-service (3) transaction-service (2) Today = 7:22:57 pm

afew seconds ago

2s

-]

withd | ba6a97c

transaction-service: PUT:io.quarkus.]

3 Spans [| ice (1) i vice (2) Today = 7:15:05 pm

8 minutes ago

Figure 11.12 Account service traces

Click the trace with the new spans from figure 11.12.

The Jaeger console should show details like those in figure 11.13. There are now
two additional spans in the trace that were not previously present. Named Query
and Update, they represent the two database interactions that were performed during
the request.

Looking at the AccountResource.withdrawal() method, the first line calls
Account . findByAccountNumber (accountNumber), which is the Query. Though it’s
within the persistence framework handling inside Quarkus, and not in application
code, Update results from committing the transaction to the database.

248 CHAPTER 11 Tracing microservices

Jaeger Ul _ Search Compare System Architecture About Jaeger v
transaction-service: PUT:io.quarkus.transactions.

v n ; Trace Timeline v

N TransactionResource.withdrawal 520:792 38 | {Trce Timeine

Trace Start December 12020, 19:22:67.733 Duration 1.28s Services2 Depthd4 Total Spans

ous 320.05ms 640.1ms. 960.15ms 1.285

Service & Operation v >V >» ops 320.05ms 640.1ms. 960.15ms 1.28s
v | transaction-service PUTio quarkus transactions Transactionfleso...

~ transaction-service PUT

v | account-service rom-account

| account-service aue: '

| account-service upazto

Figure 11.13 Account service trace with a database call

Let’s take a look at what the detail for each of them contains. Figure 11.14 includes
details of the database interaction that retrieved the account, including the database
type and the SQL select statement used to retrieve the account.

Query Service: account-service = Duration: 5.16ms Start Time: 734ms
v Tags
component java-jdbc
db.instance default
db.statement select account0_.id as idl_0_, account0_.accountNumber as 0_, . tus as 3.0, unt0_.balance
as balance4_0_, as 5_0_, accoun u r as 6_0_, account0_.overdraftLimit as overd

raf7_0_ from Account aCCgl:lnt07 where account0_.accountNumber=? Limit 2
db.type h2
internal.span.format jaeger
peer.address localhost:-1

span.kind client

> Process: hostname = account-service-d4ccébcb9-jc296 ip=172.17.0.15 jaeger.version = Java-0.34.3

badd1ad7efe3bs67 ¢

Figure 11.14 Database query trace detail

Though this particular select executed in 5.16 ms, having the ability to know the
called SQL enables us to investigate whether the statement is as efficient as it can be
when the execution time is longer.

Figure 11.15 shows the Update database transaction trace. As with figure 11.14, we
see information about the database the trace connected to and the SQL statement
executed to update the record.

The traces being collected now include information about the database calls, but
there’s still nothing from the pesky Overdraft service. Time to fix that! In the next sec-
tion, we explain how to propagate OpenTracing traces with Kafka, filling the gap in
tracing end to end with the example code.

Customizing application tracing 249

Update

Service: account-service Duration: 1.56ms ~ Start Time: 902ms
v Tags

component java-jdbe

db.instance default

db.statement update Account set =2,

tus=?, balance=?, =2, er=?, overdraftLimit=? where id=?

db.type h2
internal.span.format jaeger
peer.address localhost:-1

span.kind client
> Process: hostname = account-service-d4cc6bcb9-jc296 ip = 172.17.0.15 jaeger.version = Java-0.34.3

3b50312894a5b9bb

Figure 11.15 Database update trace detail

11.4.4 Tracing Kafka messages

At the moment, some spans exist for JAX-RS resource methods and database calls, but
nothing for the producing and consuming of messages with Kafka! Let’s fix that right

now. For both the Account service and Overdraft Service, add the following depen-
dency to pom.xml:

<dependency>
<groupld>io.opentracing.contrib</groupIlds>
<artifactIds>opentracing-kafka-client</artifactId>
<version>0.1.15</version>

</dependency >

Similar to the dependency for JDBC tracing, this dependency is an extension to Open-
Tracing for Kafka. With the dependency in place, the tracing interceptors for Kafka
need to be identified to the connectors for consuming and producing messages. The
necessary changes to application.properties for the Account service follow:

The connector to the account-overdrawn topic will use the
TracingProducerinterceptor when producing messages.

mp.messaging.outgoing.account-overdrawn. interceptor.classes=
io.opentracing.contrib.kafka.TracingProducerInterceptor

mp.messaging.incoming.overdraft-update.interceptor.classes=
io.opentracing.contrib.kafka.TracingConsumerInterceptor

Consuming messages from the overdraft-update topic uses
the TracingConsumerlinterceptor for consuming messages.

NOTE Existing mp.messaging properties were left out for brevity, because
they were not altered.

The required interceptor configuration for the Overdraft service is shown next:

mp.messaging.incoming.account-overdrawn. interceptor.classes=
io.opentracing.contrib.kafka.TracingConsumerInterceptor

250 CHAPTER 11 Tracing microservices

mp.messaging.outgoing.overdraft-fee.interceptor.classes=
io.opentracing.contrib.kafka.TracingProducerInterceptor

mp.messaging.outgoing.overdraft-update.interceptor.classes=
io.opentracing.contrib.kafka.TracingProducerInterceptor

Without adding anything more than a dependency and configuration, redeploy the
Account service and Overdraft service as follows:

/chapterll/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapterll/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true

Once they’re both deployed and running, verify with kubectl get pods that each ser-
vice has a Pod running, and withdraw funds from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "400.00"
${TRANSACTION URL}/transactions/5465/withdrawal

Once the response is received, open the Jaeger console in the browser and refresh
the page.

When selecting the Service drop-down menu, we now see an entry for overdraft-
service when there wasn’t one before, as seen in figure 11.16. Getting back to the
earlier problem of not having traces from the Overdraft service, the answer is that the
execution being performed is around Kafka and not JAX-RS.

Service (4)
transaction-service
account-service
jaeger-query
overdraft-service

transaction-service Figure 11.16 The Jaeger
rays (o console service list

Though the methods interacting with Kafka are on OverdraftResource, a JAX-RS
resource, without a JAX-RS incoming request, there is nothing for it to trace. With the
Kafka interceptor installed, traces are now present. Search for traces for the account -
service, and for now, it will find traces such as those depicted in figure 11.17.

Comparing these with previous traces, the main trace of five spans containing the
call from Transaction service to Account service still exists. However, we now have a
new trace named account-service: To_overdrawn with spans in the Account service
and Overdraft service. Select the trace to take a closer look.

Search JSON File

Service (4)

account-service

Operation (5)

all

Tags

Lookback

Last Hour

Min Duration

Max Duration

Limit Results

Customizing application tracing

Duration

s00ms

07:44:40 pm 07:45:00 pm

14 Traces

Compare traces by selecting result items

account-service: To_overdrawn aace131

2 Spans B 2coount-service (1) | [l] overdratt-service (1)
PUT:io.quarku: i i i 583aa5e
5 Spans (B account-service (3) | | transaction-service (2)

Figure 11.17 Traces for Account service

251

Time

07:45:20 pm 07:45:40 pm

Sort: Most Recent Deep Dependency Graph

651.19ms

Today = 7:45:43 pm

3 minutes ago

1225

Today = 7:45:42 pm

3 minutes ago

Figure 11.18 shows two spans in the trace—one span for producing a message to a

Kafka topic, and another span to consume the message.

Service & Operation

account-service To_overdrawn

overdraft-service From overdrawn

Ops

| 938ps.

162.8ms 325.6ms.

488.39ms 651.19ms.

To_overdrawn

v Tags
component
internal.span.format
message_bus.destination
peerservice
sampler.param
sampler.type

span.kind

java-katka
jaeger
overdraun
xatka
true
const

producer

> Process: hostname - account-service-696f694594-rowjh ip = 172.17.0.9 jaeger.version - Java-0.34.3

Service: account-service ~ Duration: 938ps Start Time: Ops.

2a6013157d57a392 &7

1.19ms

From_overdrawn

> Tags: component - java-kafka

> Process: hostname - overdraft-service-5c6b6767c5-cdvié | ip = 172.17.0.15 jaeger.version - Java-0.34.3

Figure 11.18 Account service trace detail

Service: overdraft-service ~ Duration: 1.19ms Start Time: 650ms

internal.span.format - jaeger | message_bus destination - overdrawn offset=1 partition =0 = peerservice - kafka | span.kind - consumer

a2b1159122366014 &

The tags on the To_overdrawn span provide details as to what’s happening, such as
message bus.destination, peer.service, and span.kind. The From overdrawn

span provides additional information, because it’s a consumer, such as offset and

partition. All these tags are Kafka-specific and are present only on spans connecting
to Kafka topics.

Searching for overdraft-service traces shows two traces; see figure 11.19. One is
the trace from figure 11.18, but there is also a trace for putting a message onto the
account-fee topic.

252 CHAPTER 11 Tracing microservices

overdraft-service: To_account-fee 644250f 59us
1 Span B overaratt-service (1) Today ~ 7:45:43 pm
11 minutes ago

account-service: To_overdrawn aage131 651.19ms
2 Spans [| vice (1) . draft-service (1) Today | 7:45:43 pm

11 minutes ago

Figure 11.19 Traces for the Overdraft service

Figure 11.20 is a representation of the traces in Jaeger so far. Currently, there are
three separate traces, but it’s all from one request!

Call from the Transaction service to the Account service, including the database
call in the Account service

Message passed from the Account service to Kafka, which is consumed by the
Overdraft service

An overdraft fee message from Overdraft service to Kafka

Accounts
microservice

Transactions
microservice

[l
1
Il

Apache Kafka

AL

B T T NS 1
e ¢ 99

Overdraft fee

- iOverdraft
;7" topic '

1 topic

Overdraft
microservice

Figure 11.20 Microservice architecture traces

Having separate traces makes it difficult to manually correlate which traces are actually
part of the same request. As a developer, the preference would be for all the spans in

Customizing application tracing 253

each of the three traces to be within a single trace. Notice the points where trace con-
tinuation breaks is when moving from JAX-RS to Kafka, and also between receiving a
Kafka message and sending out another one.

Now that we know what the problems are, let’s look at fixing them. The first step is
propagating the trace from JAX-RS to Kafka. Instead of calling emitter.send (payload),
we need to add information about the trace to the Kafka message, as shown next.

Listing 11.5 AccountResource

Creates an instance of Kafka RecordHeaders. The

headers are added to the Kafka message, enabling the

information on them to be available in consumers.

Uses the TracingKafkaUtils utility class
X to inject the details of the trace and
@Inject span into the RecordHeaders instance
Tracer tracer; created inthe previous line

public class AccountResource {

public CompletionStage<Account> withdrawal (@PathParam ("accountNumber") Long
accountNumber, String amount) {

e RecordHeaders headers = new RecordHeaders() ;
TracingKafkaUtils.inject (tracer.activeSpan() .context (), headers, tracer); <—
OutgoingKafkaRecordMetadata<Object> kafkaMetadata =
OutgoingKafkaRecordMetadata.builder ()

.withHeaders (headers)

.build() ; B —
CompletableFuture<Account> future = new CompletableFuture<s();
emitter.send (Message.of (payload, Metadata.of (kafkaMetadata),

ack handler,
. nack handler

Emits a new Message containing the payload

. and OutgoingKafkaRecordMetadata instance

£ ; . .
return future; Creates an OutgoingKafkaRecordMetadata instance and sets the

) RecordHeaders instance on it. This metadata instance can be used
to set Kafka-specific metadata on an outgoing message.

On the other side of the Kafka topic, the Overdraft service needs to retrieve the span
information. Doing so involves two steps: extracting the span information from Kafka
headers, and then creating a child span for additional method calls, as shown in the
next code listing.

Listing 11.6 OverdraftResource creating a child span

public class OverdraftResource {

) Verifies there is IncomingKafka-
@Inject

RecordMetadata in the metadata;
Tracer tracer; otherwise doesn’t handle traces

public Message<Overdrawns> overdraftNotification (Message<Overdrawn> message) {

Builds a new span RecordHeaders headers = new RecordHeaders () ;
named process- if (message.getMetadata (IncomingKafkaRecordMetadata.class) .isPresent()) {
overdraft-fee Span span = tracer.buildSpan ("process-overdraft-fee")

254 CHAPTER 11 Tracing microservices

Makes the new span -asChildof (,
a child of the span TracingKafkaUtils.extractSpanContext (Extracts the
extracted from the message.getMetadata (IncomingKafkaRecordMetadata SpanContext from
Kafka message on -class) .get () .getHeaders (), the incoming
the next line tracer)) Kafka message
.start () ;
Utilizes a Scope try (Scope scope = tracer.activateSpan(span)) {
within a try-with- TracingKafkaUtils.inject (span.context (), headers, tracer);
finall .
resources block, so 1 1Is1aaan i en) Retrieves the current span
the scope closes pan- ' context, and injects it into
automatically at 1 RecordHeaders

the end of the }
code block OutgoingKafkaRecordMetadata<Object> kafkaMetadata =
OutgoingKafkaRecordMetadata.builder ()
.withHeaders (headers)
.build() ;

return message.addMetadata (customerOverdraft) .addMetadata (kafkaMetadata) ;

) In addition to the metadata about the customer overdraft,
also attaches metadata for OutgoingKafkaRecordMetadata
containing the trace headers

Listing 11.6 extracts the encoded span information from the Kafka headers. The span
is recreated within the Tracer instance of the Overdraft service, as if it had been
called from within the same service. To ensure the trace continues, we need to create
a new child span to handle further processing.

There’s one more change that needs to be made to propagate the trace back into
Kafka. ProcessOverdraftFee.processOverdraftFee needs to return Message<Account -
Fee> instead of just AccountFee. Changing the return type enables the trace information
in the metadata to be propagated by returning message.withPayload (feeEvent).
Using message.withPayload retains all the metadata within the message but uses a
different payload for the outgoing message.

Redeploy the Account service and Overdraft service to enable the changes, as
shown here:

/chapterll/account-service> mvn verify -Dquarkus.kubernetes.deploy=true
/chapterll/overdraft-service> mvn verify -Dquarkus.kubernetes.deploy=true

Once they’re both deployed and running, withdraw funds from an account as follows:

curl -H "Content-Type: application/json" -X PUT -d "500.00"
${TRANSACTION URL}/transactions/78790/withdrawal

Now to see how the traces look! Open the Jaeger console in the browser, and refresh
the page. Select transaction-service from the drop-down menu, and click Find
Traces.

Figure 11.21 shows a trace containing nine spans—success!

Summary 255

service: PUT:io. ions. i witk | 25d153e 1.43s

9 Spans B account-service (4) overdraft-service (3)] transaction-service (2) Today 11:17:49 pm

aminute ago

Figure 11.21 Trace for the Transaction service

All the previous traces containing spans are now present within a single trace. With all
the spans properly connected, developers can now accurately observe traces through
the entire distributed system. Let’s dive in and click the trace to see the details.

In figure 11.22, we now have a visualization of all the pieces of a single request
through the entire system. This is fantastic!

Trace Timeline v

¢« lransaction-service: PUT:io.quarkus.transactions. s
TransactionResource.withdrawal 254153

Trace Start December 12020, 23:17:49.641 Duration 1.43s Services3 Depth7 Total Spans 9
ops 357.05ms 714.09ms 1,075 1435

Service & Operation vV > VY>> ops 357.05ms. 714.09ms 1.07s. 1.43s.

~ | transaction-service puT

v | account-service withdraw-from-account
| account-service auery e
v | account-service To_overdrawn

v overdraft-service Fr

v overdraft-service process-overdrat-fee
overdraft-service To.

| account-service updste

Figure 11.22 Transaction service trace detail

It might have taken some time to put all the pieces into place to enable a full single
trace through it all, but the benefits of doing so are worth it. Diagnosing slow execu-
tion in a request is now possible with the wider context of all methods being called.

Exercise for the reader

As an exercise for the reader, modify the Transaction service processing of messages
from the account - fee topic to extract the trace from metadata. Execute a withdrawal
from an account, and see the captured trace include the span for handling the fee in
the Transaction service.

Summary

= Including the quarkus-smallrye-opentracing dependency and Jaeger config-
uration to define the sampling type and rate is all that’s necessary to achieve
traces within JAX-RS resources.

256 CHAPTER 11 Tracing microservices

By adding @Traced to a method, it’s possible to customize the name of the span,
or to not trace the method at all.

Injecting a Tracer into application code enables the addition of custom tags to
the span or adding objects into Baggage for propagation to later services.
Similar to out-of-the-box tracing, database transactions can be traced with a
dependency and Hibernate configuration changes to indicate the new JDBC
driver to use.

Use Kafka interceptors for OpenTracing to handle spans when producing and
consuming messages from Kafka.

API visualization

This chapter covers

Generating OpenAPI (previously known as
Swagger Ul) specifications for a project
Accessing OpenAPI project specifications
Visually inspecting project endpoints with the
Swagger Ul

Utilizing the design-first approach to developing
APls—the process of creating an API design
before implementing it with code

Originally developed in 2010 as a way for defining machine-readable interfaces to
describe RESTful services, in 2016, the Swagger specification was rebranded as the
OpenAPI specification under a new OpenAPI initiative sponsored by the Linux Foun-
dation. Other benefits to an OpenAPI specification of a service follow:

= Creating interactive documentation of a service
= Automation of test cases based on a specification
= Generating clients or services aligned with a specification

The ability to visualize an API, including its definition and expected behavior,
can be tremendously helpful when a developer wants to interact with an external

257

258

12.1

12.1.1

CHAPTER 12 API visualization

service, particularly when the service is developed by another team or another com-
pany entirely. Why? How does it help?

When a developer must communicate with another service, they need to know
about the service, everything from expected inputs and return types to possible error
responses. Sometimes it’s possible to review the implementation code to elicit the
needed information, but doing so is not ideal and leads to misinterpretation. In par-
ticularly complex implementations, it could require detailed knowledge of the imple-
mentation to determine all possible response types and their exceptions.

Other times a developer can speak with the team implementing the service to ask
necessary questions. However, though such an approach is feasible with a few teams
wanting to use a service, it quickly becomes impossible for the implementors of a ser-
vice to meet the demands of questions from clients of the service as the number of cli-
ents grows.

A single source of truth for a service defining the behavior and expected outcomes
is the only way to effectively communicate to developers of external clients how a ser-
vice operates. The OpenAPI specification (OAS) is designed for such a purpose. The ver-
sion of the specification is currently v3. In the remainder of the chapter, we refer to it
as “OpenAPI specification” only, and not the “OpenAP]I specification v3.”

The code for both examples in this chapter uses the chapter 2 Account service as a
starting point. Follow along with the changes throughout the chapter by copying the
source from /chapter2/accountservice. The two completed versions of the chapter
examples are in the /chapter12 folder of the book source code.

Viewing OpenAPI documents with Swagger Ul
We cover two features in this chapter: providing an OpenAPI specification file, and
visualizing it with Swagger UI. Without the former, the latter has nothing to show.
Using Swagger Ul is a great way to provide a means of testing an API from a browser if
there isn’t a Ul for the application already present.

Time to get started! Copy the code from /chapter2/accountservice to another
location for updating to use OpenAPI and Swagger Ul as the code starting point for
the chapter.

Enabling OpenAPI
With the source code in place, let’s add the following dependency needed for OpenAPI:

<dependency>
<groupld>io.quarkus</groupId>
<artifactIds>quarkus-smallrye-openapi</artifactIds>
</dependency>

An alternative way to add the dependency is by using the Quarkus Maven plugin, as
shown here:

mvn quarkus:add-extension -Dextensions="quarkus-smallrye-openapi"

Viewing OpenAPI documents with Swagger UI 259

That’s it! With the addition of one dependency, the Account service will have an
OpenAPI document produced from the code. Let’s try it out.
Start the service in live coding mode as follows:

mvn quarkus:dev

When started, access http://localhost:8080/q/openapi either with a browser or curl.
The default format for the OpenAPI document is YAML. If the OpenAPI document
was accessed in a browser, it will download a file with the following content.

Listing 12.1 The Account service-generated OpenAPIl document

openapi: 3.0.3

info:
title: Generated API
version: "1.0"

Version of the OpenAPI
specification with which
the document conforms

paths: Information about the service. In this
/accounts: case, there isn’t any information
get: because it was generated.
responses:
"200": ;
o The paths, or API endpoints,
description: OK exposed by the service
content:
application/json:
schema:
Sref: '#/components/schemas/SetAccount'
post:
requestBody:
content:
application/json:
schema:
Sref: '#/components/schemas/Account'
responses:
n 2 O O n :

description: OK
/accounts/ {accountNumber} :
get:
parameters:
- name: accountNumber
in: path
required: true
schema:
format: inté4
type: integer
responses:
"200":
description: OK
content:
application/json:
schema:
Sref: '#/components/schemas/Account'
delete:
parameters:

260 CHAPTER 12 API visualization

- name: accountNumber
in: path
required: true
schema:

format: inté4
type: integer
responses:
"200":
description: OK
components:
schemas:

SetAccount:
uniqueltems: true
type: array
items:

All the entities that the APl endpoints
require and the schema for each,
defining their structure

Sref: '#/components/schemas/Account'’
Account:

type: object
properties:
accountNumber:
format: inté4
type: integer
accountStatus:
Sref: '#/components/schemas/AccountStatus'
balance:
type: number
customerName :
type: string
customerNumber :
format: inté4
type: integer
status:
Sref: '#/components/schemas/AccountStatus'
AccountStatus:
enum:
- CLOSED
- OPEN
- OVERDRAWN
type: string

NOTE Some methods were removed from the OpenAPI document shown

here for brevity. Viewing the document locally will also include the API meth-
ods for withdrawal and deposit.

The same OpenAPI document can be served in JSON format instead by accessing
http://localhost:8080/q/openapirformat=json. If explicitness is desired, the YAML
format can be used as well: http://localhost:8080/q/openapirformat=yaml.

NOTE Instead of using query parameters on a URL, the desired format of the
OpenAPI document can be specified with the Accept HTTP request header.
Setting it to application/json will retrieve JSON instead of YAML.

Viewing OpenAPI documents with Swagger UI 261

It’s by no means a great OpenAPI document to use with clients, but it’s a good first
representation of what the Account service offers and is far better than no OpenAPI
document at all.

Readers may have noticed when the service was started earlier that the console out-
put didn’t show only smallrye-openapi as a feature. There is also swagger-ui. With
Quarkus, Swagger Ul is packaged as part of the OpenAPI extension. Let’s take a look
at Swagger Ul in the next section.

12.1.2 Swagger Ul

As mentioned earlier, with the OpenAPI extension, Swagger Ul is automatically
included. There is one caveat, though. The Swagger Ul is present only during live
coding and testing, not as part of a final, packaged build. Quarkus views Swagger Ul as
beneficial during development and testing with the application directly, but for pro-
duction, it is recommended to use a separate Swagger Ul instance that can be prop-
erly secured using the OpenAPI document produced from a service.

WARNING The default behavior can be overridden by adding quarkus. swag-
ger-ui.always-include=true to application.properties. However, the con-
figuration is for build time only, which means the configuration value can not
be altered once a service is built. Setting this property for production use is
not recommended.

Open http://localhost:8080/q/swagger-ui in a browser, as shown in figure 12.1.

o Sweosers ki _

Generated AP| ® &

Iqfopenapi

default A
EEER /accounts v
/accounts v
Sl /2ccounts/{accountNumber} v
/accounts/{accountNumber} v
/accounts/{accountNumber}/deposit v

PUT { }/wi 1 v

Schemas >
Account >

AccountStatus >

Figure 12.1 The Account service OpenAPl document in Swagger

262

CHAPTER 12 API visualization

Clicking on the GET /accounts section header expands the details for that particular
endpoint, as illustrated in figure 12.2.

GET /accounts

Parameters

No parameters

Responses

Code

200

Try it out

Description Links
No links
OK

Media type

application/json v

Controls Accept header.
Example Value | Schema
"accountNumbe

"accountStatu:
"balance"

"customerName'
"customerNumbe
"status": "CLOSEI

Figure 12.2 Get all Accounts details

With an endpoint section detail expanded, click Try It Out. In this case, the endpoint
doesn’t require any parameters to be passed, so click Execute.

Figure 12.3 shows the response received when executing the API endpoint to
retrieve all accounts. Swagger Ul shows the request URL it executed and also the equiv-
alent command for use with curl. Below the request details, the response received is
detailed, including the HTTP response code, response body, and response headers.

Take some time to explore the content of the OpenAPI document in the Swagger
UI and learn how it works. Looking through the endpoints, the only response code
defined for any of them is 200, which means OK. Why is that? The OpenAPI docu-
ment right now is generated based on the methods on the JAX-RS resource class.
Though it’s possible to make reasonable assumptions about what the methods do,
such as returning an HTTP response code of 200 if they work, anything beyond that is
more effort than what would be offered.

For instance, expand the POST endpoint to see the response code documented
there. The code returns a 201 for the response, but the documentation shows a 200.
This is a problem wiith the generation assuming an OK response is always 200.

We need to make some modification to the automatically generated OpenAPI doc-
ument! The next section explains how we can add customizations.

Responses

curl

MicroProfile OpenAPI 263

curl -X GET "http://localhost:8080/accounts” -H "accept: application/json”

Request URL

http://localhost:8080/accounts

Server response

Code

200

Details.

Response body

"accountNumber": 123456789,
EN",

George Baird",
: 987654321,

"accountNumber"
"accountStatus”:
by

: Diana Rigg",
"customerNumber”: 222444999,
"status": "OPEN

121212121,
EN",

Mary Taylor",
i 888777666,
"status": "OPEN"

Response headers

content-length

content-type

Figure 12.3 Get all Accounts response

12.2

12.2.1

MicroProfile OpenAPI

The MicroProfile OpenAPI specification provides annotations, making it easier for
Java developers to customize the contents of an OpenAPI document from existing
code. The specification does not replace the OpenAPI specification or seek to alter
how an OpenAPI document is defined. It does provide annotations, configurations,
and a programming model for customizing OpenAPI documents.

Application information

Quarkus allows the setting of most of the application information with configuration,
going beyond what is offered in MicroProfile OpenAPI. This approach has the added
benefit of allowing different values, depending on the selected configuration profile.
Add the following code to application.properties.

Listing 12.2 Application properties

mp.openapi.extensions.smallrye.info.title=Account Service
$dev.mp.openapi.extensions.smallrye.info.title=Account Service (development)
mp .openapi.extensions.smallrye.info.version=1.0.0
mp.openapi.extensions.smallrye.info.description=Service for maintaining

accounts, \

their balances, and issuing deposit and withdrawal transactions
mp.openapi.extensions.smallrye.info.license.name=Apache 2.0
mp.openapi.extensions.smallrye.info.license.url=https://www.apache.org/

licenses/LICENSE-2.0.html

264 CHAPTER 12 API visualization

Let’s see what it looks like. Figure 12.4 has the Swagger UI showing the new informa-
tion added by the configuration in application.properties, including a customized
application name for development!

Account Service (development) & =

Ig/openapi

Service for maintaining accounts, their balances, and issuing deposit and withdrawal transactions

Apache 2.0

default

/accounts

POST /accounts

Figure 12.4 Swagger output with application information

Stop the application with Ctrl-C, update application.properties with quarkus. swagger-
ui.always-include=true, run the mvn package, then start the service as follows:

java -jar target/quarkus-app/quarkus-run.jar

Open Swagger UI to see the application name using the production profile value!

It’s also possible to use an annotation to define the same information. @open-
APIDefinition enables the inclusion of information about an application such as
title, version, license, and contact information, as well as tags defining the application.
To work, the annotation must be added to a JAX-RS application class, as shown in the
next listing.

Listing 12.3 AccountServiceApplication

N Defines any tags for grouping methods or
@Ope:ig?ff:{mltlon(operations within the OpenAPI document

@Tag (name = "transactions",
description = "Operations manipulating account balances."),
@Tag (name = "admin",
description = "Operations for managing accounts.")
¥
info = @Info(
title = "Account Service",

Information about the service such as title,
description, version, and license. There is
additional data available to capture with
@Info that wasn’t used here.

1222

{

MicroProfile OpenAPI 265

description = "Service for maintaining accounts, their balances,
and issuing deposit and withdrawal transactions",
version = "1.0.0",
license = @License (
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0.html"

An empty JAX-RS application

) class with no methods

)

public class AccountServiceApplication extends Application {

}

Listing 12.3 has the same information as listing 12.2, with the addition of @Tag. Use
Swagger Ul to see how the OpenAPI document changed when tags were included.

By default, all methods in an OpenAPI document are under a default tag as seen
previously in Swagger Ul Using @Tag enables developers to group different methods
into a similar category. Adding them to the application allows a common description
to be applied to all methods with the same tag without copying the description in each
of them.

Though @openAPIDefinition supports tag definition, which is not possible cur-
rently in application.properties, it adds a class that isn’t needed. Tags can be included
with alternative approaches, which we cover later in the chapter.

Customizing the schema output

In Swagger Ul the automatically generated schemas are for SetAccount, Account-
Status, and Account. SetAccount refers to the Set<Account> returned by retrieving
all accounts. We discuss SetAccount further in section 12.7. Looking at AccountStatus,
it describes an enumeration with values of CLOSED, OPEN, and OVERDRAWN. Everything
looks good.

Now for Account. Though the presented information is accurate, it doesn’t pro-
vide detailed information on the type. There also is a weird problem of the status enum
being represented twice!

First off, use @Schema to customize the POJO itself and also the fields, as shown in
the next listing.

Customizes the field in the schema—specifying it is Defines the POJO name and

required—with a minimum length of 8, provides an description to be included in

example value, and defines its type as INTEGER the schema and its object type
@Schema (name = "Account", description = "POJO representing an account.",

type = SchemaType.OBJECT)
public class Account {
@Schema (required = true, example = "123456789", minLength = 8, type
SchemaType . INTEGER)
public Long accountNumber;
@Schema (required = true, example = "432542374", minLength = 6, type
SchemaType . INTEGER)

266

12.2.3

CHAPTER 12 API visualization

public Long customerNumber;
@Schema (example = "Steve Hanger", type = SchemaType.STRING)

. ; Provides an
public String customerName; example, because
@Schema (required = true, example = "438.32") it’s not a
public BigDecimal balance; requhedﬁem,
@Schema (required = true, example = "OPEN") andspedﬁesthe
public AccountStatus accountStatus = AccountStatus.OPEN; STRING type

Though the generator does a good job of identifying the type of field for the schema,
explicitly setting it—as opposed to staying with the default of no type—ensures there
isn’t a mistake in the generation that is missed. It never hurts to be more explicit than
necessary in defining schemas.

NOTE In a real application, a customerName would be required. However,
listing 12.4 states it is not required to enable Swagger Ul to show the differ-
ence between required and not-required fields.

Now the schema definition is looking better, but the enum field is still there twice.
What’s going on?

Taking a look at Account, the getter method to retrieve the account status is
named getStatus (). Although a shorter method name for convenience works, in this
case, the generator believes it’s a different field on Account. Change the method
name to getAccountStatus () and see how Swagger UI adjusts.

A nice side effect of providing example values for the Account POJO is that Swag-
ger Ul now shows example values that are more meaningful, as opposed to empty
strings or zeroed values.

Defining operations

@Ooperation defines the details of a particular endpoint method. Developers can pro-
vide a summary message of what the endpoint does, as well a detailed description
with additional details, possibly even example usage. The most important value to set
on @operation is operationId, because this provides a unique name for an endpoint
in the entire OpenAPI document.

It’s also possible to mark a method as hidden from the OpenAPI document. Try add-
ing @peration (hidden = true) to a method, then check out what the OpenAPI docu-
ment and Swagger UI show. Nothing! Any method marked as hidden is completely
removed. This is needed for methods on a JAX-RS resource that shouldn’t be executed
by clients but are required by the maintainers of the service. Depending on the service,
a better approach could be an entirely separate JAX-RS resource that is hidden in the
OpenAPI document, instead of hiding specific methods on the same resource.

Quarkus provides a means of defaulting the operationId for all endpoints using
the following configuration property:

mp .openapi.extensions.smallrye.operationIdStrategy=METHOD

1224

MicroProfile OpenAPI 267

The METHOD strategy uses the Java method name as the operationId name. Other
available strategies are CLASS METHOD and PACKAGE CLASS METHOD. With the setting in
place, look at the OpenAPI document to see the generated operationId generated
for each method. In Swagger UlI, there isn’t a visible way to see the name, but if a
method is selected, the operationId will be part of the new URL used to view a partic-
ular method’s information.

What happens if further customization is needed? Is the operationIdStrategy set-
ting ignored? No, developers do not need to replicate the name when wanting to
specify additional operation information. Add an @0peration to createAccount spec-
ifying a description, as shown here:

@Operation(description = "Create a new bank account.")
public Response createAccount (Account account) {}

Notice operationId was not set with @Operation. The OpenAPI document still con-
tains the operationId naming defined by the chosen strategy, while allowing descrip-
tions or other customizations to be made. Take a look at the OpenAPI document and
Swagger Ul to see the new description.

Operation responses

Time to ensure all possible HTTP responses are properly documented in OpenAPIL
Right now every method only defines a 200 response, which is a good start, but it
doesn’t cover all scenarios.

Let’s begin! Looking at GET /accounts, a Set is returned, but there is no possibility
for other response codes because there are no exceptions or custom responses
defined. However, the odd-looking SetAccount schema type is being generated. It
could be left as is, but there is no real need for a referencable schema type because it’s
the only method needing it.

Let’s add an @APIResponse as shown next to remove the autogenerated schema

type.

Listing 12.5 AccountResource.allAccounts ()

@APIResponse (responseCode = "200", description = "Retrieved all Accounts",
contzzie;a@fog;:g H<1 N Indicates the Defines the 200
- ¢ or response response with a
type = SchemaType.ARRAY, content description

implementation = Account.class)

) Specifies the schema

)) for the response is an
public Set<Account> allAccounts () { ARRAY with Account

return accounts; types within it
1

It’s not necessary to include mediaType = "application/json" for @Content because
the method has @Produces (MediaType.APPLICATION JSON), meaning only a single

268 CHAPTER 12 API visualization

media type for the response is possible. If the method supported multiple media
types, multiple @Content values would be needed for each supported media type.

Head over to Swagger UI, refresh it, and see the updated GET /accounts detail and
the removal of the SetAccount autogenerated schema.

Moving on to POST /accounts, AccountResource.createAccount, the response
code, is wrong for a success because 200 cannot happen. It also misses the 400 that
could be returned. To properly document the method, we need a couple of @API-
Response entries, shown in the next listing.

Listing 12.6 AccountResource.createAccount ()

Details the content of a response for code 201, A valid APIResponse for code 201 when
an instance of Account in JSON format successfully creating an account
@APIResponse (responseCode = "201", description = "Successfully created a new

account.",
content = @Content (sh failed
schema = @Schema (implementation = Account.class)) ows a failed response
) of 400 when no account
@APIResponse (responseCode = "400", number was provided
description = "No account number was specified on the Account.",

content = @Content (

schema = @Schema (
implementation = ErrorResponse.class,
example = "{\n" + <

The type to represent
the failed response. We
cover ErrorResponse
momentarily.

"\"exceptionType\": \"javax.ws.rs.WebApplicationException\",\n" +
"\"code\": 400,\n" +
"\"error\": \"No Account number specified.\"\n" +

"Hnt) Provides an example of the JSON

error response with actual values—
this appears nicely in Swagger Ul,
as well as provides good detail for
} consumers of the OpenAPI document.

)

public Response createAccount (Account account) {

Those following along will have noticed that right now the code doesn’t compile! The
400 failed response said it uses the ErrorResponse type as the schema, but it doesn’t
exist yet. With the custom exception mapper in AccountResource, a type is needed to
represent the JSON output the failed response can provide. Let’s add it now, as illus-
trated in the next listing.

Listing 12.7 ErrorResponse

private static class ErrorResponse {

@Schema (required = true, example = "javax.ws.rs.WebApplicationException")
public String exceptionType;
@Schema (required = true, example = "400", type = SchemaType.INTEGER)

public Integer code;
public String error;

}

Because the ErrorResponse type is not needed by any actual code, it was added to the
existing AccountResource as a private class.

MicroProfile OpenAPI 269

IMPORTANT In the recently released MicroProfile OpenAPI 2.0, a new anno-
tation, @SchemaProperty, was introduced to support inline schema type defi-
nitions. Once the release is available in Quarkus, ErrorResponse can be
replaced with @SchemaProperty for each property of ErrorResponse.

Head over to Swagger Ul to see how the POST method changed. The autogenerated
200 response is gone, replaced with the two valid responses added to createAccount.

NOTE Whether to use multiple @APIResponse annotations or place them all
inside a single @APIResponses annotation is entirely a matter of personal
choice for a developer. The OpenAPI document does not change based on
which approach is chosen.
Moving on to GET /accounts/ {accountNumber }, we need to make the following changes:
= @APIResponse for 200 and 400 HTTP response codes

= Document the accountNumber path parameter

Let’s add them, as shown next.

Listing 12.8 AccountResource.getAccount ()

@APIResponse (responseCode = "200", 200 response
description = "Successfully retrieved an account.", for successfully
content = @Content (retrieving an

schema = @Schema (implementation = Account.class)) Account
)
@APIResponse (responseCode = "400",

description = "Account with id of {accountNumber} does not exist.",
content = @Content (
schema = @Schema (
implementation = ErrorResponse.class,

400 response
when failing to
find an Account,
with an example
exception response example = "{\n" +
content "\"exceptionType\":
\"javax.ws.rs.WebApplicationException\",\n" +
"\"code\": 400,\n" +
"\"error\": \"Account with id of 12345678 does not
exist.\"\n" +

"}\n")
) Adds @Parameter to document the @PathParam
) parameter of accountNumber. @Parameter needs
public Account getAccount (to be added next to @PathParam for the
@Parameter (generation to know they’re related.
name = "accountNumber",
description = "Number of the Account instance to be retrieved.",
—> required = true,
in = ParameterIn.PATH <

Specifies the parameter
is a path parameter and
doesn’t come from a

} query string, header,
Indicates accountNumber is a required parameter. or cookie
If it wasn’t required, a different endpoint could
potentially be matched instead.

)

@PathParam("accountNumber") Long accountNumber) {

270 CHAPTER 12 API visualization

With listing 12.8 added, refresh Swagger UI and the OpenAPI JSON document to ver-
ify the changes. Try out the method call in Swagger Ul to make sure the defined
responses align with what is actually received by a request.

Let’s move on to PUT /accounts/{accountNumber}/deposit, shown next.

Listing 12.9 AccountResource.deposit ()

@APIResponse (responseCode = "200", description = "Successfully deposited
funds to an account.",
content = @Content (Names the attribute
schema = @Schema (implementation = Account.class)) where the body of
) the request will be
@RequestBody (passed into the
name = "amount", method
Adds the OpenAPI description = "Amount to be deposited into the account."
definition of the required = true, Passing an amount is
HTTP request body ~ content = @Content (definitely required.
the method should schema = @Schema (
receive name = "amount", Defines the possible content
type = SchemaType.STRING, of the request body
required = true,
Example minLength = 4), Schema of the request body. In this
value of a example = "435.61" case a String with a minimum length
request) of 4. The minimum deposit is 1.00.
body)
)) @Parameter similar to the one
1 A . .
public Account deposit(on getAccount(), with a modified
@Parameter (s e .
description for this method
name = "accountNumber",
description = "Number of the Account to deposit into.",

required = true,

in = ParameterIn.PATH
)
@PathParam ("accountNumber") Long accountNumber,
String amount) {

Where the @RequestBody annotation is placed is a little flexible. It can be above the
method name, as here, or inside the top of the method itself. Developer’s preference
is the only deciding factor. With listing 12.9, the content is always application/json
because the method is annotated with a @Consumes. If it wasn’t, multiple @Content
sections with different examples should be added for each media type.

Check out the changes in Swagger UI, shown in figure 12.5, noticing the @Request-
Body section is now marked required and has a meaningful example as well.

Exercise for the reader

As an exercise for the reader, add the necessary OpenAPIl annotations to close-
Account () and withdrawal () on AccountResource. Verify it did what was expected
in Swagger Ul and the OpenAPI document.

MicroProfile OpenAPI 271

/accounts/{accountNumber}/deposit

Name Description
accountNumber * "9v¢ Number of the Account to deposit into.
i[":::msmw” accountNumber - Number of the Account to ¢
pa
Request body “9"*¢ application/json v

Amount to be deposited into the account.

Example Value | Schema

435.61

Figure 12.5 Swagger: AccountResource.deposit method

12.2.5 Tagging operations

Earlier in section 12.4, @penAPIDefinition included multiple @Tag annotations
within the definition. When switching to using application.properties, it wasn’t possi-
ble to include @Tags. How can we add these back in?

First, add the @Tag entries from previously to the top of the AccountResource as
follows:

@Tag (name = "transactions",

description = "Operations manipulating account balances.")
@Tag (name = "admin",

description = "Operations for managing accounts.")
public class AccountResource {}

Two tags are defined: for transactions and admin. Looking at Swagger right now, we
see all methods duplicated under each tag group—not what we want at all.

What is needed is adding either @Tag (name = "admin") or @Tag (name = "transac-
tions") to each method on AccountResource to indicate which group a method falls
into. With that done, it should look something like figure 12.6.

If all methods within a JAX-RS resource fall under a single grouping, or @Tag, it’s
not necessary to add a @Tag to each method. There needs to be only a single instance
on the class. If it’s possible to split methods across different resource classes, aligned
with their grouping, it saves having to add @Tag to every method!

We haven’t covered all possible annotations, such as @Header, @Callback, and
@Link. Take some time to review them in the MicroProfile OpenAPI specification
(http://mng.bz/xXD7), and try them out.

http://mng.bz/xXD7

272

12.2.6

CHAPTER 12 API visualization

admin Operations for managing accounts.

GET /accounts

POST /accounts

GET /accounts/{accountNumber}

ISR /accounts/{accountNumber}

transactions Operations manipulating account balances.

PUT /accounts/{accountNumber}/deposit

PUT /accounts/{accountNumber}/withdrawal

Figure 12.6 Swagger: endpoints grouped by @Tag

Filtering OpenAPI content

The MicroProfile OpenAPI specification provides a way to customize the generated
OpenAPI document before it’s returned. Developers can implement OASFilter to
perform customizations. Let’s see how that works in the next listing.

Listing 12.10 OpenApiFilter

OpenApiFilter implements OASFilter The method to
from MicroProfile OpenAPI. filter Operation
public class OpenApiFilter implements OASFilter ({ !n“ﬁni:spﬁgfnt
@Override in the Open
. .))) . document
public Operation filterOperation (Operation operation) ({
if (operation.getOperationId().equals("closeAccount")) ({

operation.setTags (List.of ("close-account")) ;

}

. Makes a change only when the
return operation;

operationld is closeAccount. Change
} the Tag to be called close-account.

}

With the filter written, it needs to be activated with a change to application.properties.
Add the following configuration:

mp.openapi.filter=quarkus.accounts.OpenApiFilter

Refresh the Swagger Ul page and see the new method grouping the filter created.

12.3

12.3.1

Design-first development 273

We can customize and tailor any aspects of an OpenAPI document as needed.
Look through OASFilter to see all the methods that can be implemented. One thing
to bear in mind: it’s not possible to add new elements into an OpenAPI document
with a filter. Though listing 12.10 added a new tag name into the document, it wasn’t
possible to set a description for the tag.

Design-first development

Design-first development, also known as contract-first development, is when an OpenAPI
document is created by describing the service being developed before writing any
code. This approach can be a good way of validating whether an API makes sense before
writing any code. Once validated, an OpenAPI generator can then be used to gener-
ate the service based on the OpenAPI document as a starting point for implementing
a service.

One point of note with generation is it is a one-way process. When service methods
are generated from an OpenAPI document, once the methods are implemented, there
is no way to regenerate the method signatures without losing the implementation. It’s
not entirely the end of the world—developers need to make sure they're generating ser-
vice methods only after the OpenAPI document isn’t expected to change anymore. If it
does, it becomes a manual process of keeping the service implementation in sync with
an OpenAPI document as methods are added, removed, or modified.

We have many tools for designing an API using the OpenAPI specification without
code, including Swagger Editor (https://swagger.io/tools/swagger-editor/) (from the
creators of the OpenAPI Specification), Apicurio Studio (https://www.apicur.io/
studio/), and many others.

With an OpenAPI document in hand, we can use a generator such as https://
openapi-generator.tech/ to generate code from it, though using a generator is not the
focus of this chapter.

OpenAPI file base

To show how to use an existing OpenAPI document with a service in Quarkus, we cop-
ied the Account service from earlier in the chapter to /chapterl2/account-service-
external-openapi. The main difference is all references to MicroProfile OpenAPI
annotations were removed from AccountResource and Account classes—the OpenAPI
definitions will come from an external file—and the configuration in application
.properties was removed. In addition, OpenApiFilter was removed because what it
does is already present in the OpenAPI document.

With the source code in place, either by generation or removing previously exist-
ing annotations, where does the OpenAPI definition come from for the service?

First, we need the OpenAPI document as a separate file. Download the YAML of
the Account service from earlier in the chapter at http://localhost:8080/q/openapi.
Rename the downloaded file from openapi to openapi.yaml, then move it into the
/src/main/resources/META-INF directory of the new project.

https://swagger.io/tools/swagger-editor/
https://www.apicur.io/studio/
https://www.apicur.io/studio/
https://www.apicur.io/studio/
https://openapi-generator.tech/
https://openapi-generator.tech/
https://openapi-generator.tech/

274

12.3.2

CHAPTER 12 API visualization

Adding mp.openapi.scan.disable=true to application.properties will ensure the
static OpenAPI document in the project will be served “as is.” Without this setting,
Quarkus will generate an OpenAPI document combining the static document with
the model generated from the application code.

Start the service with mvn quarkus:dev, and verify the OpenAPI document and
Swagger Ul look and behave as expected. The service should behave exactly the same
as the alternative version from earlier in the chapter.

Mixing the file and annotations

We have a few options for combining a static file with annotations in code. The
OpenAPI document could be the main source of truth, with minor modifications made
to annotations in code. Or an OpenAPI document could contain common schema
definitions, with code annotations referencing them.

First, remove the mp.openapi.scan.disable configuration from application
.properties. Doing so enables the annotations in code to mix with the static OpenAPI
document.

Add eTag (name = "all-accounts", description = "Separate grouping because
we can") to AccountResource.allAccounts (), and see how Swagger UI adjusts, as
shown in figure 12.7.

admin Operations for managing accounts.

GET /accounts

POST /accounts

GET /accounts/{accountNumber}

transactions Operations manipulating account balances.
PUT /accounts/{accountNumber}/deposit

/accounts/{accountNumber}/withdrawal

al |-accou nts Separate grouping because we can

/accounts

Figure 12.7 Swagger: mixing a static OpenAPIl document and annotations

124

Summary 275

Code first or OpenAPI first?

In this chapter, we explored different ways to integrate OpenAPI documents with
code. Code-first requires adding annotations to code for @APIResponse, @Request -
Body, @Parameter, @Operation, @Tag, and others, to customize the content of a gener-
ated OpenAPI document. Design-first defines an OpenAPI document representing
the desired service and references the static file for serving the document. What'’s the
best option? It depends! (All developers’ favorite saying.)

Some situations where OpenAPI first could be the better option follow:

Nondevelopers are defining the API and are therefore more likely to be using
an OpenAPI tool to create it.

Some teams need to implement the service, whereas other teams will be com-
municating with the service as clients. If the service isn’t already implemented,
working on a shared API definition before either team begins developing can
help prevent issues later.

How about when to use code first? Some scenarios include the following:

When services are already implemented, it is often easier to autogenerate the
OpenAPI document and add annotations to customize it as needed.

If the exact structure and content of an API isn’t already known and requires
prototyping, it’s hard to define an OpenAPI document if it’s unknown what the
API needs to be.

Another factor to consider when choosing whether to use annotations in code is the
impact it has on the code itself. Comparing AccountResource content between the
two services, the version with annotations in the code is almost double the size. That’s
a large impact both to the size of the code and also the readability of the code with all
the extra annotations present.

Exercise for the reader

As an exercise for the reader, deploy the service to Minikube and view the OpenAPI
document. Try accessing Swagger Ul—it shouldn’t be present by default.

Summary

Including the quarkus-smallrye-openapi dependency is all that’s required to
generate an OpenAPI document automatically from code.

OpenAPI documentation of a service is available by accessing http://localhost:
8080/q/openapi.

While live coding, use Swagger UI at http://localhost:8080/q/swagger-ui for
visualizing the OpenAPI document content, but also to try out the API with the
actual service.

276

CHAPTER 12 API visualization

Use MicroProfile OpenAPI annotations, such as @OpenAPIDefinition and
@Operation, to customize the generated OpenAPI document.

When using a design-first approach, you modify a service to serve a static ver-
sion of the OpenAPI document instead of generating it.

Securing a microservice

This chapter covers

Securing microservices with authentication and
authorization

Quarkus authentication and authorization options
Utilizing Quarkus file-based user and role
definitions during development to secure REST
endpoints

Utilizing Keycloak and OpenlD Connect to
authenticate users and generate JWT tokens

Securing microservices using MicroProfile JWT
Quarkus features that facilitate unit testing

Enterprises require secure applications to prevent unauthorized access to informa-
tion. This chapter focuses on authentication and authorization as two primary
application security measures. This chapter updates the Bank service, Account ser-
vice, and Transaction service with new endpoints that require authenticated users.
The new, secured endpoints will exist alongside the existing insecure endpoints so
services can easily switch between them. These services will also require a user to
belong to a specific role to access new, secured REST endpoints. Existing REST
endpoints will continue to work so the reader can compare the approaches.

277

278 CHAPTER 13 Securing a microservice

13.1 Authorization and authentication overview

Let’s define a the following terms before continuing to figure 13.1:

Authentication—A user has validated that they are who they say they are by pro-
viding credentials like a username and password or a validated JWT token.
Authenticated users can be assigned roles, like Bank customer and Bank teller.
Authorization—The act of granting access to a resource. In figure 13.1, only authen-
ticated users assigned to the proper role have access to the secure endpoints.
Identity provider—A facility that manages user identities, like LDAP, a file, a data-
base, or Keycloak.

Security context—The application contains a security context for each request
that includes an authenticated user’s assigned roles.

Figure 13.1 depicts the Bank application identity providers (application.properties,
Keycloak) and the credential flow (e.g., username and role) used to access new,
secure REST endpoints added in this chapter.

Bank application authentication and authorization overview

application.properties 1. User credentials and roles are defined in properties file.

2. User credentials and roles are defined in Keycloak
and sent with each request in a JSON Web Token (JWT).

Transaction service

= /transactions/config-secure/444666/balance
Bank service

™ /transactions/jwt-secure/444666/balance

/bank/secure/secrets
T /tokeninfo e ,
) o 7 JSONWeb Token / @
i '

A o

i B! .
- . ! g h Account service
LG 12
E 2. Lo /accounts/jwt-secure/444666/balance
=y =y
o)
1o =
gl -l
3
V@ !
2 (2}

Keycloak

Figure 13.1 Authentication and authorization overview

13.2

Using file-based authentication and authorization 279

The next listing illustrates a simple code example of securing access to a method
within an application using a Java annotation. Additional authorization mechanisms,
like defining roles using Java properties, are covered as well.

Listing 13.1 Authorizing Java method access

@RolesAllowed ("customer")
public void getBalance() {

}

The getBalance() method
authorizes access only to users
ZARTE assigned the customer role.

Tables 13.1 and 13.2 list supported Quarkus authentication and authorization mecha-
nisms, respectively. Mechanisms identified with an asterisk (*) are covered in detail
throughout the remainder of the chapter.

Table 13.1 Quarkus authentication mechanisms

Mechanism Description

Basic* An HTTP user agent (e.g., web browser) requests user credentials.
Form Presents a web form (e.g., HTML) to obtain user credentials.
Mutual TLS Authenticates users based on their X.509 certificate.

OpenlID Connect An industry standard authentication layer that builds on OAuth 2.0. Delegates
(oIpC)* authentication to an OpenlD Connect provider like Keycloak. Quarkus supports
the OIDC Authorization Code and Implicit Flows.

MicroProfile JWT" Supports a JSON Web Token (JWT) bearer token containing a verified user identity.

LDAP LDAP server requests user credentials.

Table 13.2 Quarkus authorization mechanisms

Mechanism Description

OAuth 2.0 An industry standard protocol for granting a third-party authorization to access a
user’s protected resources

Configuration* Specifies application authorization rules using configuration properties

Annotations* Specifies application authorization rules using security-related annotations from
the Jakarta Annotations specification’s (https://eclipse-ee4j.github.io/common-
annotations-api/apidocs/) @PermitAll and @RolesAllowed

Using file-based authentication and authorization

One approach to securing the Transaction service uses the Quarkus built-in HTTP
policy configuration and a file-based identity provider. This approach is both effective
and highly productive when developing a microservice. To add support for defining
user credentials and roles using configuration properties, add the quarkus-elytron-
security-properties-file extension as shown in the next listing.

https://eclipse-ee4j.github.io/common-annotations-api/apidocs/
https://eclipse-ee4j.github.io/common-annotations-api/apidocs/

280

Refines the customer permission to allow only
authenticated users to access the secured endpoint

CHAPTER 13 Securing a microservice

Listing 13.2 Adding the quarkus-elytron-security-properties-file extension

cd transaction-service
mvn quarkus:add-extension -Dextensions=quarkus-elytron-security-properties-file

Next, create a method in TransactionResource.java to be secured by file security as
shown next.

Listing 13.3 Adding a new method to TransactionResource.java

secureConfigGetBalance() has the same

@GET functionality and method signature
@Path ("/config-secure/{acctnumber}/balance") as getBalance() but is available at a
@Produces (MediaType . APPLICATION JSON) different REST subpath that will be
@Consumes (MediaType . APPLICATION JSON) secured using configuration properties.

public Response secureConfigGetBalance (@PathParam("acctnumber") Long
accountNumber) {
return getBalance (accountNumber) ;

}

The Quarkus built-in HTTP request authorization implementation uses configuration
properties. Add the properties in the following listing to the Transaction service
application.properties.

Listing 13.4 Configuring the HTTP policy and file users

Defines a customer

permission that defines
Security using Quarkus built-in policy controls an endpoint to secure

quarkus.http.auth.permission.customer.paths=/transactions/config-secure/*
quarkus.http.auth.permission.customer.methods=GET Authorizes GET

quarkus.http.auth.permission.customer.policy=authenticated requests on the

endpoint
Security - Embedded users/roles (File realm)
Creates user duke with

%$dev.quarkus.security.users.embedded.enabled=true a password of duke

%dev.quarkus.security.users.embedded.plain-text=true)
%dev.quarkus.security.users.embedded.users.duke=duke <}4J Assigns user duke
%$dev.quarkus.security.users.embedded.roles.duke=customer the customer role
%dev.quarkus.security.users.embedded.users.quarkus=quarkus
%dev.quarkus.security.users.embedded.roles.quarkus=teller

Creates user
quarkus with

))))))) a password
Enable HTTP basic authentication, which this application uses of quarkus

only during development .
Assigns user quarkus the bank teller role

%dev.quarkus.http.auth.basic=true

Enables HTTP basic authentication.

Enables clear-text passwords. If set to false or omitted, then The user is prompted to provide a
the password is assumed to be an MD5 password hash. Only username and password when using
clear-text and MD5 hashed passwords are currently supported. a web browser. When using the curl

command, user credentials are

Enables embe.dded users.amil roles. Deﬁning users, roles, and provided using the --user command
passwords using properties is useful when in development mode. line option, like --user duke:duke.

Using file-based authentication and authorization 281
NOTE Using configuration files is generally too limiting for production but is
useful during development and testing.

Before testing authentication and authorization, start the required services as shown
in the following listing.

Listing 13.5 Starting the database, Account service, and Transaction service

From the chapter top-level directory,
deploys the Postgres database to
Kubernetes if it is not already running

minikube start <+—— Starts minikube

kubectl apply -f postgresqgl kubernetes.yml

kubectl port-forward service/postgres 5432:5432 Proxies the Postgres database

to localhost so it can be used

mvn gquarkus:dev bY local services

mvn clean quarkus:dev -Ddebug=5006

In a new window, starts the In a new window, starts the Account
Transaction service from the service from the account-service
transaction-service subdirectory subdirectory

Manually test the endpoint using curl as shown in the next listing, with the output
shown in the subsequent listing.

Listing 13.6 Testing a secured endpoint using built-in permissions

TRANSACTION URL=http://localhost:8088 .
- P Accesses the secured endpoint
curl -i \ without specifying a user

-H "Accept: application/json" \
$TRANSACTION URL/transactions/config-secure/444666/balance

Listing 13.7 Testing a secured endpoint output without specifying a user

HTTP/1.1 401 Unauthorized <’—‘ The result is HTTP/1.1 401 Unauthorized

www-authenticate: basic realm="Quarkus' when no authenticated user is provided.
content-length: 0

Test the endpoint with an authenticated user using curl as shown in the following list-
ing, with the output in listing 13.9.

Listing 13.8 Testing a secured endpoint with an authenticated user

Specifies user duke with a password of duke. Because duke
is an authenticated user defined using file configuration
properties, the method call is allowed (listing 13.9).

curl -i \
-H "Accept: application/json" \
--user duke:duke \
$STRANSACTION URL/transactions/config-secure/444666/balance

Listing 13.9 Validating user output

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

Grants access and returns a result when
an authenticated user, duke, is provided

3499.12

282

CHAPTER 13 Securing a microservice

Test the endpoint with second authenticated user using curl as shown in listing 13.10
with the output in listing 13.11.

Listing 13.10 Testing a secured endpoint using built-in permissions with embedded users

- " . 1 1 ! n

H "Accept: application/json" \ a password of quarkus.
--user quarkus:quarkus \
STRANSACTION URL/transactions/config-secure/444666/balance

curl -1 A Specify user quarkus with

Listing 13.11 Testing secured endpoint output with second authenticated user

HTTP/1.1 200 OK User quarkus is also an

Content-Length: 7 authenticated user, and
Content-Type: application/json access is allowed.

3499.12

To limit access to customers in a specific role, replace the authenticated authoriza-
tion policy with the one shown in the following listing.

Listing 13.12 Testing a secured endpoint output

Applies the customer-policy policy Creates a policy, customer-policy, that grants access
to the customer permission to users that are assigned the customer role

quarkus.http.auth.policy.customer-policy.roles-allowed=customer
quarkus.http.auth.permission.customer.paths=/transactions/config-secure/*
quarkus.http.auth.permission.customer.methods=GET

quarkus.http.auth.permission.customer.policy=customer-policy
quarkus.http.auth.permission.customer.policy=authenticated

Comments
out the prior
authenticated

policy

Manually test customer-policy by using curl to invoke the endpoint with a user in
the customer role and a user in the teller role, as shown in the next code, with the
expected output in listing 13.14.

Listing 13.13 Testing a secured endpoint output

Tests with user quarkus, who is assigned the teller
role. The request returns an HTTP Forbidden response
(listing 13.14) because user quarkus is assigned the
teller role and not the customer role.

curl -i \
-H "Accept: application/json" \
--user quarkus:quarkus \
STRANSACTION URL/transactions/config-secure/444666/balance

curl -i \
-H "Accept: application/json" \
--user duke:duke \
$TRANSACTION URL/transactions/config-secure/444666/balance

Tests with user duke, who is assigned the customer role. The HTTP
OK response and the account balance (listing 13.14) is returned
because user duke is assigned the customer role.

Using file-based authentication and authorization 283

Listing 13.14 Testing a secured endpoint output

HTTP/1.1 403 Forbidden
content-length: 0

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Using curl is a convenient way of testing code while making rapid iterative changes
during development. However, Quarkus makes testing secured endpoints easy as well.
Quarkus supports testing secured endpoints by defining users and roles with the
@TestSecurity annotation. To use the @TestSecurity annotation, add the quarkus-
test-security dependency in the test scope to the Transaction service pom.xml as
follows.

Listing 13.15 Adding a dependency to Transaction service pom.xml

<dependencys>
<groupld>io.quarkus</groupld>
<artifactIds>quarkus-test-security</artifactId>
<scope>test</scope>

</dependency>

Create SecurityTest.java in the transaction-service/test/java/io/quarkus/transactions
directory to be used to test the Transaction service security. See the next listing.

Listing 13.16 Testing roles and security

@TestSecurity defines a user, duke, in the customer role. Because it is applied to
the TestSecurity class, it will be applied to all test methods in the class. This duke
user applies only when running tests, whereas the embedded duke user defined
in application.properties applies only during development.

import static io.restassured.RestAssured.given; SecurityTest uses the mocked

import static org.hamcrest.CoreMatchers.containsString; Acanu?SmWKennﬂwducedln
an earlier chapter, to return

predefined values for Account

@QuarkusTest ice HTTP endpoint
@QuarkusTestResource (WiremockAccountService.class) service endpoints.
L—> @TestSecurity(user = "duke", roles = { "customer" })
public class SecurityTest
@Test .
Ei, id built i ity () | Gets the balance using
pu 1? voi uilt_in security the config-secure
9lveﬁ() 0 endpoint
.when
.get ("/transactions/config-secure/{acctNumber}/balance", 121212)
.then ()

.statusCode (200)

.body (containsString ("435.76")) ; Validates
the balance

284

13.3

13.3.1

13.3.2

CHAPTER 13 Securing a microservice

Stop the Account service to avoid a port conflict with WireMockAccountService by
pressing CTRL-C to stop the Account service running in development mode. Next,
follow the steps shown in the next listing.

Listing 13.17 Running the security test

Only runs SecurityTest to speed up the testing.

mvn test \ Optionally, run all tests by omitting this line.

-Dtest=SecurityTest

Authentication and authorization with OpenID Connect

In this section, we use OpenlID Connect (OIDC) to access new secure REST endpoints
in the Bank service.

Introduction to OpenID Connect (OIDC)

OAuth 2.0 is an industry standard authorization protocol for how a third-party appli-
cation can obtain limited access to another application.

OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 focuses on
client developer simplicity while providing specific authorization flows for web
applications, desktop applications, mobile phones, and living room devices.

—OAuth2 website

Although Quarkus supports OAuth 2.0, detailed coverage is beyond the scope of this
chapter. OIDC adds an identity layer on OAuth 2.0 that supports authentication and
controlled access to user identity. Historically, a service might have to present the
user’s login information, like a username and password, to a third-party service to gain
access to its user data and functionality. This would result in the third-party service
having the user credentials and coarse-grained access to the user’s data provided by
that service. Imagine having a third-party payment-processing service requiring a
user’s Bank service username and password!

For the remainder of the chapter, we focus on using OIDC to authenticate a user
and provide enough user identity—and their role, in particular—to access secure
endpoints.

OIDC and Keycloak

OIDC is a layer on OAuth 2.0 that adds authentication flows. This chapter focuses on
the following flows:

= Authorization Code Flow—An unauthenticated user trying to access a protected
resource is first redirected to an OpenID Connect provider to authenticate.

= Implicit Flow—A service accesses an OpenlD Connect provider directly to obtain
a token to access protected resources.

Authentication and authorization with OpenID Connect 285

In preparation for securing services using OIDC, let’s review the following points:

= First, this chapter uses Keycloak as an identity provider. Running Keycloak
alongside services supporting other chapters, like Prometheus and Grafana,
requires at least 5 GB of memory.

= The two options follow:
— Start Minikube with more memory as shown in the next listing.

Listing 13.18 Starting Minikube with more memory

mintkube delete Deletes the current Minikube
minikube start --memory=5120 cluster, which also deletes any
Starts Minikube with work done in previous chapters
5 GB of memory

— If the desktop does not have enough memory to allocate 5 GB of memory,
delete the monitoring namespace created in chapter 10, as shown in list-
ing 13.19. Metrics are still available by accessing a service’s /q/metrics end-
point directly. The monitoring namespace can be recreated by following the
steps in chapter 10.

Listing 13.19 Deleting the monitoring namespace

kubectl delete ns monitoring

After ensuring enough memory is available, install Keycloak using the Keycloak Oper-
ator (https://github.com/keycloak/keycloak-operator) as shown in listing 13.20. A
Kubernetes Operator manages the life cycle of a service, and the Keycloak Operator
manages the Keycloak life cycle. The installation uses version 14.0.0 of the Keycloak
Operator.

Listing 13.20 Installing Keycloak into the Kubernetes keycloak namespace

Adds the host keycloak.local to /etc/hosts so Keycloak host
lookups resolve to the Minikube IP address. The hosts file on
Windows 10 is at C:\Windows\System32\drivers\etc\hosts.

echo "$ (minikube ip) keycloak.local™" | sudo tee -a /etc/hosts
scripts/install keycloak.sh .
- Runs this command from the top-level chapter13
directory. The script is heavily commented.

NOTE Installing Keycloak can take several minutes depending on RAM, pro-
cessor speed, and internet connection. Several “pods keycloak-0 not found”
messages may appear during installation. Explaining the Keycloak installation
is beyond the scope of this chapter, but the script is heavily commented.

Also beyond the scope of this chapter, Keycloak console access can be useful when
problems occur. The console is available at http://keycloak.local/auth/admin/. The
username is admin. To obtain the password, run the command in the next code.

https://github.com/keycloak/keycloak-operator
http://keycloak.local/auth/admin/

286 CHAPTER 13 Securing a microservice

Listing 13.21 Getting the Keycloak admin password

kubectl get secret credential-bank-keycloak \
-n keycloak \
-0 go-template=
= {{if not $v}}
= {{"\n"}}{{enda

{{range $k,$v := .data}}{{printf "%s: " $k}}
§§$v}}{{else}}{{$v | baseé64decode}}{{end}}

The Keycloak bank realm defines four users and their assigned roles as outlined in
table 13.3.

Table 13.3 Quarkus authorization mechanisms

Username Password
admin admin bankadmin
duke duke customer
jwt jwt customer
quarkus quarkus teller

13.3.3 Accessing a protected resource with OpenID Connect

OIDC Authorization Code Flow defers user authentication to an authentication server,
Keycloak, in this case. Figure 13.2 explains the flow.
To explain with more detail:

1 The user accesses a protected resource, perhaps protected by the built-in HTTP
security policy or @RolesAllowed.

2 The Bank service will redirect the user to the OIDC provider specified with the
quarkus.oidc.auth-server-url property. The OIDC provider used in this chap-
ter is Keycloak.

2 The OIDC provider presents the user with an authentication form to enter a
username and password. This step is covered in more detail later.

4 Upon successful authentication, Keycloak returns a JWT token and an HTTP
redirect to the originally requested resource. We explain JWT’s role in the
authorization shortly.

5 The browser is redirected to the protected resource.

& The service successfully returns the resource contents.

To use OIDC with Quarkus, add the Quarkus OIDC extension to the Bank service and
start the service as follows.

Listing 13.22 Adding the OIDC extension and starting the Bank service

cd bank service

mvn quarkus:add-extension -Dextensions="quarkus-oidc" Addsthe(ﬂDC
extension

Authentication and authorization with OpenID Connect 287

OpenlD Connect Authorization Code

Bank service

User
(browser)

OIDC provider
(Keycloak)

Figure 13.2 Authorization Code Flow

After adding the OIDC extension, configure the Bank service to interoperate with the
OIDC server (Keycloak) as shown in the next code listing.

Listing 13.23 Bank service application.properties

The OIDC extension will compare the token issuer with this issuer,
ensuring the token came from the proper, trusted source.

Security Enables 0IDC Disables TLS verification of
authentication the self-signed certificate

installed by the Keycloak

quarkus.oidc.enabled=true
Operator

quarkus.oidc.tls.verification=none
quarkus.oidc.token.issuer=https://keycloak.local/auth/realms/bank

L
%dev.quarkus.oidc.auth-server-url=https://keycloak.local/auth/realms/bank
The URL for $prod.quarkus.oidc.auth-server-url=https://keycloak:8443/auth/realms/bank
Keycloak as quarkus.oidc.client-id=bank
an OpenlID The 0IDC client ID. An OIDC client ID typically has The URL for Keycloak as an
"!ent'FY an associated client secret (e.g., password), 0IDC authorization server
provider in the credentials for a client to access an when running locally. The bank
production. identity provider. To keep things simple, the realm is specified in the URL.

bank client does not have a client secret.

288

CHAPTER 13 Securing a microservice

quarkus.oidc.application-type=web-app
username=admin
password=secret

Uses the Authorization Code Flow
(web app). The OIDC extension
redirects the user to a Keycloak-

The Bank service, copied from chapter 3, requires the provided login screen.

username and password properties to be defined.
These properties are not used in this example.

Update the Bank service to add a BankResource.getSecureSecrets () method to
secure access to the /bank/secure/secrets endpoint so only an administrator can
view them, as shown here.

Listing 13.24 Securing the existing BankResource.getSecureSecrets () method

@RolesAllowed ("bankadmin")

@GET

@Produces (MediaType.APPLICATION JSON)
@Path (" /secure/secrets")

public Map<String, String> secureGetSecrets() { QAAW

return getSecrets() ; The method calls the
} existing getSecrets
method.

Secures the endpoint with @RolesAllowed so
only users in the bankadmin role can access
the /bank/secure/secrets endpoint

Creates a new method
named secureGetSecrets()

Start the Bank service as shown in the next listing.

Listing 13.25 Starting the Bank service

mvn quarkus:dev -Ddebug=5008 -Dgquarkus.http.port=8008

Starts the Bank service. The mvn command specifies the debug and HTTP ports to
avoid potential port conflicts with the Account service and Transaction service.

With the Bank service up and running, browse to http://localhost:8008/bank/secure /
secrets. As shown in figure 13.3, attempting to access /bank/secure/secrets will redi-
rect the browser to Keycloak to obtain user credentials.

<J4 P C 0 | A NotSecure | kayclo:k.lucallauth!... | - =

BANK REALM
1. Redirected to Keycloak.

Sign in to your account

Usernamw Log in with username admin, password admin.
admin

Password

Figure 13.3 Redirect

T, e
authentication

13.3.4

Authentication and authorization with OpenID Connect 289

After logging in with a username (admin) and password (admin), Keycloak redirects
the browser back to the original /bank/secure/secrets endpoint to display the
secrets as shown next.

Listing 13.26 Output of the /bank/secure/secrets endpoint

{"password":"secret","db.password":"secret","db.username":"admin","username":
"admin"}

IMPORTANT The browser will likely not trust the Keycloak self-signed certifi-
cate. However, the self-signed certificate must be trusted by “agreeing to pro-
ceed” to test Keycloak authentication and access the secured REST endpoint.
This is the final browser-related exercise, so feel free not to trust the certifi-
cate and skip testing this functionality.

Having to run Keycloak to unit test the Code Authorization Flow is heavy and tedious.
The following section introduces the OidcWiremockTestResource to replace Keycloak
as an OIDC authorization server for unit testing.

Testing the Code Authorization Flow

Keycloak has been the authentication and authorization server behind supporting the
OIDC Code Authorization Flow. Quarkus offers an OIDC WireMock that can replace
a Keycloak instance during a test of the Bank service. To use the OIDC WireMock, add
the dependency shown in the next listing to pom.xml.

Listing 13.27 The Bank service pom.xml WireMock dependency

<dependency>
<groupId>io.quarkus</grouplds <F4J Add§]Unk5
<artifactId>quarkus-junit5</artifactIds testing support
<scope>test</scope>

</dependency> .
<dependency> Tests REST endpoints

using the RESTassured

<groupld>io.rest-assured</grouplds>
framework

<artifactIds>rest-assured</artifactIds>
<scope>test</scope>
</dependency>
<dependency> The dependency that
includes the Quarkus

<groupld>io.quarkus</groupIlds>)
Jroup d group 0IDC WireMock server

<artifactIds>quarkus-test-oidc-server</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupldsnet.sourceforge.htmlunit</grouplds>
<artifactIdshtmlunit</artifactIds>
<version>2.36.0</version>
<scope>test</scope>

</dependency>

Ul-less web browser. The testing
uses HtmlUnit to browse through
the Keycloak login Ul.

290 CHAPTER 13 Securing a microservice

Next, add a src/test/java/io/quarkus/bank/BankTest.java class to the Bank ser-
vice to test the Code Authorization Flow as follows.

Listing 13.28 src/test/java/io/quarkus/bank/BankTest.java

Utilizes the OidcWiremockTestResource class to simulate an

0IDC authorization server like Keycloak. The life cycle of the Create_s 2
WireMock is bound to the life cycle of the BankTest.java class WebClient,
: : which is the
import static org.junit.jupiter.api.Assertions.assertTrue; entry point
into HtmlUnit
@QuarkusTest
@QuarkusTestResource (OidcWiremockTestResource.class)
public class BankTest { Enables HTTP
@Test redirect in the
public void testGetSecrets() throws IOException { Web(lient for
try (final WebClient webClient = createWebClient ()) { < 0IDC web

webClient.getOptions () .setRedirectEnabled (true) ; authentication

HtmlPage page =

Loads the webClient .getPage ("http://localhost:8081/bank/secure/secrets") ;
I K?ycloak Accesses the /bank/secure/secrets
oginpage L . HtmlForm loginForm = page.getForms () .get (0); endpoint, which results in a redirect to
Sets the the WireMocked Keycloak login page
username %D loginForm.getInputByName ("username") .setValueAttribute ("admin") ;
as admin loginForm.getInputByName ("password") .setValueAttribute ("admin") ;

Sets the
password
as admin

UnexpectedPage json = loginForm.getInputByValue ("login").click() ; <

{D Jsonb jsonb = JsonbBuilder.create() ;
Gets the result HashMap<String, Strings> credentials =
as a string, jsonb.fromJson (json.getWebResponse () .getContentAsString(),
parses it as HashMap.class) ;
JSON, and stores assertTrue (credentials.get ("username") .equals ("admin")) ;
}

it in a HashMap assertTrue (credentials.get ("password") .equals ("secret")) ;
} Asserts the returned password is secret

Asserts the returned username is admin

—+> private WebClient createWebClient () {
WebClient webClient = new WebClient () ;
webClient.setCssErrorHandler (new SilentCssErrorHandler ()) ;

return webClient; Clicks the Submit button, which has a form
} value parameter of login. The result is of type
} UnexpectedPage because the response is JSON

Returns an HtmlUnit WebClient as the and not an HTML page.
entry point into the HtmlUnit framework

The application needs to be configured properly to use the mocked OIDC server.
The next code listing updates the test configuration to properly utilize the mocked
server.

Authentication and authorization with OpenID Connect 291

Listing 13.29 The Bank service application.properties

%test.quarkus.oidc.auth-server-url=${keycloak.url}/realms/quarkus

Directs the test framework to the mocked OIDC server. OidcWiremockTestResource.class
replaces ${keycloak.url} with the host and port of the mocked OIDC server.
OidcWiremockTestResource.class also preconfigures a quarkus realm.

Run the test as shown in the following listing.

Listing 13.30 Running the test

Sets the role to be stored in the generated token. The role
is set to bankadmin because that is the role required to

mvn test \ access the /bank/secure/secrets endpoint.

-Dquarkus.test.oidc.token.admin-roles="bankadmin" \
-Dquarkus.test.oidc.token.issuer=https://keycloak.local/auth/realms/bank

Defines the token issuer, overriding

Test should pass
the default value (see table 13.4)

Listing 13.30 shows the OidcWiremockTestResource settings that can be overridden
using system properties. Table 13.4 shows the overridable OidcWiremockTestResource
properties. These properties must be set as system properties and are not currently
configurable using MicroProfile Config.

Table 13.4 OidcWiremockTestResource properties

Property Default Value

quarkus.test.oidc.token.user-roles user
quarkus.test.oidc.token.admin-roles | user, admin
quarkus.test.oidc.token.issuer https://server.example.com

quarkus.test.oidc.token.audience https://server.example.com

OidcWiremockTestResource also defines two users. The first is user admin, with a pass-
word of admin and assigned role of admin. The second is user alice, with a password
of alice and assigned role of user. Listing 13.30 overrides the default admin roles with
bankadmin, which is required by the /bank/secure/secrets endpoint. The default
token issuer is https://server.example.com and is overridden in listing 13.30 with
https://keycloak.local/auth/realms/bank.

The OIDC Code Authorization Flow uses a JSON Web Token (JWT) for authenti-
cation and authorization. The following section discusses JWT, the MicroProfile JWT
API, and how JWT allows access to the secured endpoint.

https://server.example.com
https://keycloak.local/auth/realms/bank

292

134

134.1

CHAPTER 13 Securing a microservice

Json Web Tokens (JWT) and MicroProfile JWT

Like the Bank example used throughout this book, a microservices architecture often
revolves around REST APIs, which in turn require REST security. REST microservices
tend to be stateless, so they benefit from the stateless security approach offered by
JWT. The security state is encapsulated in lightweight JSON Web Tokens (JWT)
defined in RFC 7519 (https://datatracker.ietf.org/doc/html/rfc7519). Because JWTs
are lightweight, they are propagated efficiently through a chain of REST service calls.
A JWT contains three sections—a header, a payload, and a signature—with a dot

“@ »

separating each section (“.”). For example, a sample token is shown in listing 13.31 in
the raw form. The italicized text is the JWT header, the bold text is the JWT payload,
and the underlined text is the JWT signature, which, if valid, verifies that the token
has not been tampered with.

Listing 13.31 Sample Base64-encoded JWT

eyJhbGci0iJSUzI1INiIsInR5cCIg0iAiS1dUIiwia2lkIiA6ICJIHN] ZaUWxs TmNoOWVLVVB3VGp
nVWJITcTBl1eTN6aFJImeFZiOUIt TUXNOGI9FInO.eyJdleHAiOjE2MjMINTM5MjIsIml1hdCI6MTYYyM
zZUlMzYyMiwiYXV0aF90aWllIjoxNjIzNTUzNjE3LCJIJqdGkiOiI3NWISMmZhZi02ZTVKLTRIMIItY
WF1Yi02NWYyOTJjMzU2YWMiLCJIpc3MiOiJodHRwczovL2t1leWNsb2FrLmxvY2FsL2F1dGgvemVhb
G1zL2JhbmsiLCJzdWIi0iJ1Z2GJiMz1kMCljNmZhLTQyMTEtYTclYy03MGQ5MzQwMzE2MjAiLCJ0e
XAiOiJCZWFyZXIiLCJhenAiOiJiYW5rIiwic2Vzc21vbl9zdGF0ZSI6IjJjYTIJiNGYWLWEONJALN
D1iMi04MTkzLWIOYzZN1YTg3ZTAXYSISImMFjciI6IjEiLCIJhbGxvd2VkLW9yaWdpbnMiOlsiaHROc
DovLzEyNy4wLjAuMTo4MDA4IiwiaHROcDovL2xvY2FsaG9zdDo4MDA4IiwiaHROcDovL2xvY2Fsa
G9zdDo4MDgxIiwiaHROcDovLzEyNy4wLjAuMTo4MDgxIiwiaHRO0cDovLzEyNy4wLjAuMTo4MDg4I
iwiaHROcDovL2xvY2FsaG9zdDo4MDg4I10sInJ1lYWxtX2FjY2VzcyI6eyJyb2xlcyI6WyJjdXNOb
211ciJdd£fSwic2NveGUiOiJveGVuaWQgcHIvZmlsZSBtaWNyb3Byb2ZpbGUtand0IGVtYW1lsIHBob
251TiwidXBuljoiZHVrZSIsImIJpcnRoZGF0ZSI6IkZ1YnJI1YXJ5IDMwWLCAYMDAWIiwiZWlhawx£fd
mVyaWZpZWQiOnRydWUsIm5hbWUiOiJEAWt1IEN1c3RvbWVyIiwiZ3JvdXBzIjpbImN1c3RvbWVYI
10sInByZWZlcnJlZF91c2VybmFtZSI6ImR1a2UiLCInaXz1bl9uYW11lIjoiRHVrZSIsImZhbWlse
VI9uYW11lIjoiQ3VzdGI9tZXIiLCJI1bWFpbCI6ImMR1a2VAYWNtZTIuY29tIn0.QrM

Su9 9VE47xih2J9t-LhSDC-JPN2ptKipOOMCE3wl bT3-IQoaX TPuHz9elGrUQUYNIjpnUuML8D2
yOomvt 50NaXjMvmxTFyEQgob2pxzbLkrQgIHhg7eSXKPLeJZtko3uWoiWDghYHFE QBOk6iIZFY4c
YUQgx0iFTk4M73L21kcy94 fyveMgr4y5UQnTIGERVTEOQCYbPy -B2nuRcpAcwB0eRTMgVsXAUSET
camVjwwelrkaHAdJvV6Z5Y8ouafSqdDMxXRElmzkwnviWOfeNthvduigba8YKOrkmvdhjOWS7Ehg74
UTtmHe5fMPvciVCSIMPVEDGKyVc45LYC2sA

JWT header

Each JWT section is Base64-encoded, including the header, so any tool that can
decode a Base64 representation can view the header contents.

IMPORTANT Because JWTs are not encrypted, it is highly recommended that
JWTs are transferred over a secure transport layer, like HT'TPS.

The base64 command in listing 13.31 decodes the header matching JWT italicized text
shown earlier to prove this point. Listing 13.32 shows the decoded header claims. A
claim is a key-value pair that makes a statement about the entity (e.g., the user or
token). The header claims are explained in table 13.5.

https://datatracker.ietf.org/doc/html/rfc7519

Json Web Tokens (JWT) and MicroProfile JW1 293

Listing 13.32 Displaying the contents of the JWT header

echo "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiS1dUIiwia2lkIiA6ICJIHN]ZaUWxsTmNOOWVLVV
> B3VGpnVWJITCcTBleTN6aFJmeFZiOUItTUxXNOGOFInO" | base64 -d <

Decodes the JWT header. Not all systems have base64 preinstalled. The following
section decodes the entire JWT using a website, so installing base64 is not necessary.

Listing 13.33 Decoded JWT header (formatted)

{I|algl|:l|RS256ll,

n typ" : |IJWTI| ,

"kid" : "G66ZQ11Nch9eKUPwTjgUbSqOuy3zhRfxVb9B-MLM8OE"
Table 13.5 JWT header claims (all three required by MicroProfile JWT)

Claim Description

alg The cryptographic algorithm used to sign the JWT. MicroProfile JWT requires this to be
RS256, which uses a public/private key pair to verify the token contents have not been
tampered with.

typ Media type, MicroProfile JWT requires this header claim to be defined as JWT.

kid Hint indicating the key used to secure the JWT. This claim is useful when multiple keys are
available to choose from, or to recognize if a key has changed between requests.

13.4.2 JWT payload

A JWT payload consists of a collection of standardized claims defined by RFC 7519.
MicroProfile JWT extends these standardized claims, and developers can also add cus-
tom claims if needed.

To view the token claims returned from Keycloak, add TokenResource.java to the
Bank service as shown in the next listing.

Listing 13.34 Viewing the contents of a token returned from OIDC Authorization Flow

) A Quarkus-specific annotation that allows access only to an
@huthenticated authenticated user. This annotation, and any protective
@Path ("/token") security annotation, will trigger the Authorization Code
PUblic class TokenResource { Flow and token creation for a successful authentication.

* %

* Injection point for the Access Token issued

* by the OpenID Connect Provider

«/ Injects the token into a
@Inject MlcroProﬁIejsonWebToken
JsonWebToken accessToken; instance
@GET Returns the token contents
@Path ("/tokeninfo") as a JSON object
@Produces (MediaType.APPLICATION_ JSON)

HashSet<String> set = new HashSet<Strings () be added to a Java

public Set<String> token() { Token contents will
for (String t : accessToken.getClaimNames()) collection (set)

294

CHAPTER 13 Securing a microservice

set.add(t + " = " + accessToken.getClaim(t)) ; Adds each claim
} and its value to
return set; Returns the the collection
} claims

Next, access the token endpoint in a browser using http://localhost:8008/token/
tokeninfo, and log in using username duke and password duke. Use of an incognito
window is recommended to ensure a prior cookie is not used.

TIP Keycloak uses cookies to track the Authorization Code Flow. Browser
incognito or private windows will delete cookies when closed, which makes test-
ing code as simple as closing and opening a new incognito browser window.

The (formatted) output will be a JSON token similar to the next listing.

Listing 13.35 Decoded JWT header (formatted for readability)

"realm access = {\"roles\":[\"customer\"]}",
"preferred username = duke",

"jti = 75b92faf-6e5d-4e22-aaeb-65f292c356ac",
"birthdate = February 30, 2000",

"iss = https://keycloak.local/auth/realms/bank",
"scope = openid profile microprofile-jwt email phone",
"uypn = duke",

"principal = duke",

"typ = Bearer",

"name = Duke Customer",

"azp = bank",

"sub = edbb39d0-c6fa-4211-a75c-70d934031620", | Theraw token is too long
vemail verified = true", to list but is identical to the

"raw token - <too long to lists", token listed in listing 13.31.

"family name = Customer",

"exp = 1623553922",

"session_state = 2ca2b4f0-a460-49b2-8193-b4c3ea87e0la",

"groups = [customer]",

"acr = 1",

"auth time = 1623553617",

"iat = 1623553622",

"allowed-origins = [\"http://127.0.0.1:8008\",\"http://localhost:8008\",
\"http://localhost:8081\",\"http://127.0.0.1:8081\",\"http://127.0.0.
1:8088\",\"http://localhost:8088\"]",

"email = duke@acme2.com",

"given name = Duke"

Table 13.6 explains the claims that are shown in listing 13.35.
The groups claim is the only one of interest to the application functionality
because its value determines method access.

13.4.3

Json Web Tokens (JWT) and MicroProfile JWT 295

Table 13.6 Payload JWT claims (“required by MicroProfile JWT)

Claim Description

typ Declares the token media type.

isg” Issuer of the MicroProfile JWT.

sub” Identifies the principal that is the subject of the JWT.

exp* JWT expiration time, at which point the JWT is considered invalid, in seconds since

January 1, 1970.

iat” The time a JWT was issued, in seconds since January 1, 1970.
i JWT unique identifier; can be used to prevent a JWT from being replayed.
upn” A human-readable MicroProfile JWT custom claim that uniquely identifies the subject or user

principal of the token across all services that will access the token. This claim is the user prin-
cipal name in java.security.Principal. JsonWebToken extends java.security
.Principal, so it can be used by existing frameworks that support java.security
.Principal. If this claim is missing, MicroProfile JWT will fall back to the preferred
username claim. If preferred username is missing, the sub claim is used.

groups” | MicroProfile JWT custom claim that lists the groups the principal belongs to.

unlisted The remaining claims have been configured by the Keycloak administrator and are not
here directly relevant to MicroProfile JWT.

JWT signature

Each JWT is signed using the algorithm defined in the header alg claim to ensure it has
not been tampered with. An easy way to view the token header claims and payload
claims and verify the signature is to paste the contents of the raw_token claim in list-
ing 13.35 into the form available at https://jwt.io/#encoded-jwt, as shown in figure 13.4.

1 Paste the JWT into the encoded form. The JWT header and payload sections
display the claim values.

2 JWT header. The header claims, although not necessarily their values, will
match claims in listing 13.33.

3 JWT payload. The claims, although not necessarily their values, will match the
claims in listing 13.35.

4 The signature is not validated because the public key has not been provided.

To obtain the public key, run the command in the next listing, which should result in
an output similar to that shown in listing 13.37.

Listing 13.36 Getting the public key

scripts/createpem.sh Prints the public key in Privacy-
Enhanced Mail (PEM) format

https://jwt.io/#encoded-jwt

296

CHAPTER 13 Securing a microservice

sy gy en - header

“alg": “RS2se”

wr
k10" *3920RFpY SHPLUAGACOIL AGIN_Z-uLhXPOfaDmSASY

3. Token payload

1. Paste token here.

4. Missing ptrblic key

/ Figure 13.4 jwt.io decoded JWT
Listing 13.37 Public key

MIIBIjANBgkghkiGOwOBAQEFAAOCAQ8AMIIBCKCAQEA]J/GYpCkgfYT1HYpa96AP8djbKiv25Yh
V1ZcHcIt2QX4VZPIM/gntF2m7ubPSz3 zHHNQUOWY1+3xI04EFfCcTPTBgL0aS1CsuT5+0RuajsFj
ejLGal9p3eKuBjtBObuqIl4SbxpitvZj4L4beBdFj+r2NZZNxeFFMrd910RW3b4cUmk8tS6ZrgbTK
Ij3adj1lVMYHOkKGQNNGBE1KJkdbi8UQtXaATuyFHiQCCYY/ENWGGomu+dXqvgnRRsdWBndsUcCNe+
NPwT1z31bfYoXkldWFVvXjBnNme/f8mCMWuKBz4 fGZUkt7Sdc5FPnFpsbT+0inarxIov3puDxHbB
gNJ9xwIDAQAB

Paste the public key into the jwt.io form public key field as shown in figure 13.5.

IMPORTANT The public key in listing 13.37 validates the token in listing 13.31.
The token and public key for any other installation will differ. Attempting to
use the public key in listing 13.37 to validate a token from another installation
will fail.

In the next section, we utilize a JWT to secure a Transaction service REST endpoint.

13.5

Securing the Transaction service using MicroProfile JW1 297

e L e e ey

QygaXt7H_trphL6TX8ikZ_Bs1ZMGStw2ZpcBZz
m3mxdw0izNGSiZpZTH1 jBMcTf _qJvm1Tif@euV
r8SHxK8CoAY1e9A3VjGlg

Paste public key here. _—— "

Private Key. Enter it in plain

RSASHAZ56 (

END PUBLIC KEY

text only if you want to gener
ate a new token. The key never
leaves your browser.

Token signature verified

)

Figure 13.5 Verified JWT

Securing the Transaction service using

MicroProfile JWT

With a firm understanding of JWT and the MicroProfile JWT API, the next step is to
secure the Transaction service with MicroProfile JWT. Before writing code, add the
quarkus-smallrye-jwt extension as shown next.

Listing 13.38 Adding MicroProfile JWT support to the Transaction service

cd transaction_service
mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-jwt"

If the transaction service is not running, start it
mvn clean quarkus:dev -Ddebug=5006
Adds the Quarkus extension that supports MicroProfile
JWT. If the Transaction service is already running, an error message
likely appears because two required MicroProfile JWT properties are missing.

The next step is to update application.properties with the public key, as shown in the
following code snippet.

Listing 13.39 Configuring the MicroProfile JWT

Verifies the trusted token issuer is Keycloak Pastes the public key obtained in listing 13.36,

without the BEGIN PUBLIC KEY and END PUBLIC

Configure MicroProfile JWT N 3
o . . KEY lines (the Base64-encoded string only)

mp.jwt.verify.publickey=<INSERT PUBLIC KEY HERE> <
mp.jwt.verify.issuer=http://keycloak.local/auth/realms/bank

Add the method in listing 13.40 to TransactionResource.java. This method adds a
secure REST method endpoint intended to test that the JWT allows method access.

Listing 13.40 Adding jwtGetBalance () to TransactionResource.java

@GET Only users in the customer role are

@RolesAllowed ("customer") allowed access to the method.

298

CHAPTER 13 Securing a microservice

@Path ("/jwt-secure/{acctnumber}/balance")
@Produces (MediaType.APPLICATION JSON)
@Consumes (MediaType.APPLICATION_ JSON)
public Response jwtGetBalance (
@PathParam("acctnumber") Long accountNumber) {
return getBalance (accountNumber) ; q——w

Specifies a URL for the
endpoint intended to be
accessed using a JWT

Calls the existing

} getBalance() method

Finally, access the endpoint to verify access as shown here.

Listing 13.41 Testing endpoint access

Start the account service in a new terminal window if it
is not running

cd account-service

mvn quarkus:dev Gets a token from Keycloak,
simulating the OIDC Implicit
In a new window from the chapter top-level directory, Flow. The token will be valid
restart the Transaction service for five minutes. To manually
refresh the token after five
cd transaction-service minutes, rerun the command.
mvn clean quarkus:dev -Ddebug=5006 Thegeﬁokemshscnptu
heavily documented.
In a new window from the chapter top-level directory .
Specifies the top-level
TOKEN="scripts/gettoken.sh” R — 'll';;\ilsactlon service
TRANSACTION URL=http://localhost:8088
curl -i \ Accesses the

[/jwt-secure/
endpoint to print
the account balance

-H "Accept: application/json" \
-H "Authorization: Bearer "${TOKEN} \
STRANSACTION URL/transactions/jwt-secure/444666/balance

Passes the token to the Transaction service using the Authorization header.
The quarkus-smallrye-jwt extension recognizes and parses the token,
creating a security context.

Listing 13.42 Testing endpoint access output

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

Accessing the endpoint without a valid bearer token, or using an expired token, will
result in an HTTP/1.1 401 Unauthorized message as shown next.

Listing 13.43 Testing endpoint access

HTTP/1.1 401 Unauthorized
www-authenticate: Bearer {token}
content-length: 0

13.6

13.6.1

Propagating the JWT 299

The Transaction service is now successfully using a JWT to access a secured endpoint.
The following section propagates the token to the Account service to authorize access
to a secured Account service endpoint.

Propagating the JWT

A request may travel across multiple secured microservices. The security context can
travel with the request using a JWT to enable access to those secured microservices.
The remainder of the JWT discussion switches from the OIDC Code Authorization
Flow to the OIDC Implicit Flow, where the JWT is obtained directly from Keycloak
and is propagated with HTTP requests. Before propagating the token, in the next sec-
tion, we add a secured endpoint to the Account service.

Secure an Account service endpoint

The process for securing an Account service endpoint is the same as for securing a
Transaction service endpoint.
First, a few Account service preparation steps are required, as shown next.

Listing 13.44 Adding MicroProfile JWT support to the Account service

Adds the Quarkus extension that supports MicroProfile JWT. If the Account
service is already running, an error message will likely appear because

two required MicroProfile JWT properties are missing.
cd account_service

mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus-smallrye-jwt"

The next step is to update the application.properties as follows.

Listing 13.45 Configuring the MicroProfile JWT

Pastes the public key obtained in listing 13.36, without

Configure MicroProfile JWT N
the BEGIN PUBLIC KEY and END PUBLIC KEY lines

mp.jwt.verify.publickey=<INSERT PUBLIC KEY HERE> <t
mp.jwt.verify.issuer=http://keycloak.local/auth/realms/bank
Verifies the trusted token issuer

Next, add a secured method to get the bank balance, as shown in the next listing.

Listing 13.46 AccountResource.java: adding the secured endpoint

lesall . . Only users in the customer role are

@RolesAllowed ("customer") allowed access to the method.

@GET

@Path ("/jwt-secure/{acctNumber}/balance")

public BigDecimal getBalanceJWT (endpoint intended to be
@PathParam("acctNumber") Long accountNumber) { accessed using a JWT

return getBalance (accountNumber) ;
} Invokes the existing, unsecured,

Specifies a URL for the

getBalance() method

In the next section, we update the Transaction service to access the new secured
endpoint.

300

CHAPTER 13 Securing a microservice

13.6.2 Propagating JWT from the Transaction service to

the Account service

The Transaction service uses the MicroProfile REST Client (via AccountService.java)
to access the Account service. Therefore, add a new method to AccountService java to
invoke the new Account service secured endpoint as shown here.

Listing 13.47 Transaction service: AccountService.java

@GET
@Path ("/jwt-secure/{acctNumber}/balance")
BigDecimal getBalanceSecure (@PathParam("acctNumber") Long accountNumber) ;

With the new MicroProfile REST Client method in place, update Transaction-
Resource.jwtGetBalance () to invoke the new secure endpoint as follows.

Listing 13.48 Transaction service: AccountService.java

@GET

@RolesAllowed ("customer") Only users in the customer

@Path ("/jwt-secure/{acctnumber}/balance") role are allowed access to

@Produces (MediaType.APPLICATION_ JSON) the method.

@Consumes (MediaType.APPLICATION JSON) Invokes the secured

public Response jwtGetBalance (Account service endpoint
@PathParam("acctnumber") Long accountNumber) { using the REST Client

String balance =

accountService.getBalanceSecure (accountNumber) .toString () ;

Returns the balance

return Response.ok (balance) .build() ;
in JSON format

}

One last step is required for the Transaction service to access the Account Service
securely. The JWT contains the user identity information, including the user’s role.
Therefore, the JWT must be propagated from the Transaction service to the Account
service on each request, so the role is available to AccountService.getBalanceJWT ().
This is as easy as updating the Transaction service application.properties to pass the
Authorization header as shown in the following listing.

Listing 13.49 Propagate the Authorization header

org.eclipse.microprofile.rest.client.propagateHeaders=Special-
Header,Authorization

Appends Authorization to the org.eclipse.microprofile.rest.client.propagateHeaders
property, so the Authorization header containing the JWT (bearer)
token is passed along with the REST calls

To test JWT propagation, run the commands in the next listing to receive the output
in listing 13.51.

Running the services in Kubernetes 301

Listing 13.50 Testing JWT propagation

If the account service is not running, start it StaﬁstheA&Fountsgrwc&
cd account-service The Transaction service
mvn clean quarkus:dev should already be running.
Specifies the .) . Gets a token from Keycloak, simulating the

P top-level TOKEN="../scripts/gettoken.sh 0IDC Implicit Flow. The token will be valid for
Transaction TRANSACTION_URL=http://localhost:8088 five minutes. To manually refresh the token

service URL after five minutes, rerun the command. The
curl -i \ gettoken.sh script is heavily documented.
-H "Accept: application/json" \
-H "Authorization: Bearer "${TOKEN} Accesses the
$TRANSACTION URL/transactions/jwt-secure/444666/balance [jwt-secure/

endpoint to print

Passes the token to the Transaction service using the the account balance

Authorization header. The quarkus-smallrye-jwt extension
recognizes and parses the token, creating a security context.

Listing 13.51 Testing JWT propagation

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

13.7 Running the services in Kubernetes

To deploy the services to Kubernetes, run the commands in the following listing to
obtain the output shown in listing 13.53.

Listing 13.52 Deploying to Kubernetes

Updates environment variables

to point to the Docker engine Deploys the
running in Minikube Account
cd account-service service

eval $(minikube -p minikube docker-env)

mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true
Deploys the
Transaction

¢ cd ../transaction-service
service

L—> mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

export TRANSACTION URL="minikube service transaction-service --url”
Gets the = €xport TOKEN="../scripts/gettoken.sh

Gets the account balance Gets the

wrt) by invoking the secured Transaction
curl ;l \, endpoint. The balance service

-H "Accept: application/json" \ should be 3499.12. Minikube URL

-H "Authorization: Bearer "${TOKEN} \
$TRANSACTION URL/transactions/jwt-secure/444666/balance

IMPORTANT Attempting to redeploy an application already present in Kuber-
netes with mvn package -Dquarkus.kubernetes.deploy=true will result in an
error in Quarkus 2.x. Follow the issue at https://github.com/quarkusio/
quarkus/issues/19701 for updates on a resolution. We can work around the

https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701
https://github.com/quarkusio/quarkus/issues/19701

302

CHAPTER 13 Securing a microservice

problem by removing the application first with kubectl delete -f /target/
kubernetes/minikube.yaml.

Listing 13.53 Deploying to Kubernetes

HTTP/1.1 200 OK
Content-Length: 7
Content-Type: application/json

3499.12

At this point, the Bank service is using the OIDC Code Authorization Flow, and the
Transaction service is using the OIDC Implicit Flow and propagating the token to the
Account service.

Summary

Authentication and authorization are necessary security strategies for web
applications.

Quarkus supports many authentication and authorization mechanisms.
Defining users and authorization strategies in application.properties is a pro-
ductive development approach.

Quarkus offers productive features to simplify testing secured applications.
OIDC Code Authorization Flow typically obtains user identity using a web form
and returns a JWT.

JWTs propagate user identity across services using the OIDC Implicit Flow.
Quarkus enhances the OIDC testing experience with a WireMock OIDC autho-
rization server.

Symbols

@APIResponse 267, 269
@ApplicationScoped 31
@Asynchronous 138-139
@Blocking 167, 169
@Bulkhead 139, 226-227
@Callback 271
@Channel 165
@CircuitBreaker 148, 150-151,
226-227
@CircuitBreaker skipOn
parameter 156
@ClientHeaderParam 106, 108
@ConcurrentGauge 222-223
@ConfigMapping 66-67
@ConfigProperties 62-64, 66
@ConfigProperty 55, 58, 187
@ConfigurationProperties 187
@CookieValue 188
@DeleteMapping 188
@ExceptionHandler 188
@Fallback 142, 151, 154, 226
@Header 271
@HeaderParam 106
@Inject 55
@Link 271
@Liveness 124
@NamedQuery 88-89
@OpenAPIDefinition 271
@QuarkusTestResource 78, 83
@Readiness 124
@RegisterClientHeaders
106-107
@RegisterClientHeaders(MyHea
derClass.class) 107

@RegisterProvider (MyProvider
.class) 109

@RegisterRestClient 96

@RequestBody 270

@RequestScoped 31

@RestControllerAdvice 188,
190

@Retry 146-147, 154, 226

@SchemaProperty 269

@Singleton 31

@Tag 271

@TestMethodOrder(Order
.class) 37

@TestSecurity 283

@Timed 220-221

@Timeout 143-144, 154, 226

@Traced 243-245

@Value 187

/metrics end point 205

/q/health/live end point
117-118

/q/health/ready end
point 117-118, 134

/q/health end point 118

/q/metrics/ end point 205

/q/metrics end point 212, 229,
285

%dev property 64

%prod production profile 100

%prod property 64

A

Accept HTTP request
header 260
Account class 79-80, 192, 273

303

mdex

account-fee topic 179-180, 182,
255
AccountHealthReadinessCheck
class 124
Account instance 32, 38
AccountRepository
interface 192
AccountResource class 273
AccountResourceTest class 89
AccountResource.withdrawal ()
method 247
Account service 300-301
instrumenting 216-217
securing 299
account-service instance 135
AccountService interface 96,
103, 105
Account service MicroProfile
Health liveness
121-123
Account service MicroProfile
Health readiness 123-124
AccountServiceProgrammatic
interface 103
account-service span 239, 241,
244
ack method 173
add-extensions maven goal 56
Agroal extension 77
All Configuration Properties Guide,
Quarkus 198
Annotated Metrics naming
convention 213
annotation parameter
values 154-155
annotation substitution 197

304

AOT (ahead-of-time)
compilation 41, 199
Apache Kafka in Minikube
177-179
API visualization
code first or OpenAPI
first 275
design-first development
273-274
mixing the file and
annotations 274
OpenAPI file base 273-274
MicroProfile OpenAPI
263-273
application information
263-265
customizing schema
output 265-266
defining operations
266-267
filtering OpenAPI
content 272-273
operation responses
267-270
tagging operations 271
viewing OpenAPI docu-
ments with Swagger
UI 258-262
application/json HTTP request
header 212
application health
Kubernetes liveness and readi-
ness probes 129-135
customizing health check
properties 131
deploying to Kubernetes
131-133
testing readiness health
check in Kubernetes
133-135
MicroProfile Health
specification 117-129
Account service liveness
health check,
creating 122-128
Account service Micro-
Profile Health liveness
121-122
Account service Micro-
Profile Health
readiness 123-124
determining liveness and
readiness status 118-119
disabling vendor readiness
health checks 124

INDEX

liveness vs. readiness 118
Quarkus health
groups 128-129
Quarkus Health UlI,
displaying 129
role of developers in 116-117
application.properties 45, 69,
82-83, 91, 100,
102-103, 107, 125, 246, 249,
263-265,
271-274, 280, 300
application tracing,
customizing 244-255
injecting tracers 245
tracing database calls 245-248
tracing Kafka messages
249-255
using @Traced 244-245
asynchronous response
types 103-105
authenticated authorization
policy 282
authentication, defined 278
authentication and authoriza-
tion with OIDC (OpenlID
Connect)
accessing protected resource
with OIDC 286-289
Keycloak and 284-286
overview 284
testing Code Authorization
Flow 289-291
authorization, defined 278
Authorization Code Flow 284

back pressure 161-163
Bank service 55-58
creating 56-57
name field 57-58
base64 command 292
base metrics 214
baseUri parameter 97
bounded context 4
builder.register (MyProvider
.class) 109
BulkheadException.class 156
bulkheads
constraining concurrency
with 138-139
updating TransactionService
with 140-142
business metrics, creating
223-226

Cc

CDI (Contexts and Dependency
Injection) 9, 55
CDI REST client 97-101
deploying to Kubernetes
99-101
mocking external service
98-99
CircuitBreakerException 148,
150
CircuitBreakerOpenException
219
circuit breakers, avoiding
repeated failures with
how circuit breaker works
148-150
MicroProfile Fault Tolerance
148
testing circuit breaker
152-153
updating TransactionService
to use @CircuitBreaker
150
CLASS_METHOD 267
ClientRequestFilter 109, 111
ClientResponseFilter 109, 111
clients for consuming other
microservices
customizing REST clients
105-113
client request headers
105-108
declaring providers 109-113
MicroProfile REST Client
94-95
service interface definition
95-105
asynchronous response
types 103-105
CDI REST client 97-101
choosing between CDI and
programmatic API 103
programmatic REST
client 101-103
clusters, Kubernetes 15
CNCF (Cloud Native Computing
Foundation) 14, 212
Code Authorization Flow
289-291
collector 233
CompletableFuture type 96
CompletionStage type 96
concurrency, constraining with
bulkheads 138-139

configKey parameter 97
ConfigMap 17
Config object 55
configuring microservices
69-74
accessing a configuration 55
Bank service 55-58
creating 56-57
name field 57-58
configuration sources 59-61
configuring mobileBanking
field 62
grouping properties with
@ConfigProperties
62-64
Kubernetes
common configuration
sources 69
ConfigMap, Editing 71-72
ConfigMap, using for
Quarkus applications
70-71
Kubernetes Secrets 72-74
MicroProfile Config architec-
ture overview 54-55
Quarkus-specific configura-
tion features 64-68
@ConfigMapping 66-67
configuration profiles
64-65
property expressions 65
runtime vs. build-time
properties 67-68
constant sampler 235
Contexts and Dependency Injec-
tion (CDI) 9, 55
contractfirst development 273
controller pattern 17
Counter metric 216
CRDs (custom resource
definitions) 206, 236
CRUD application 13
curl command 141, 181, 212
custom health group 128

D

database access with Panache
datasources 77-78
deployment to
Kubernetes 90-92
deploying PostgreSQL
90-91

JPXa;lga%i and deploy 91-92

INDEX

simplifying database
development 84-90
active record approach
84-86
data repository
approach 87-89
which approach to use
89-90
database calls, tracing 245-248
data repository approach 77
dead code elimination
process 40
default tag 265
Deployment object 209
design-first development 273
DevOps 7
dev profile 64
Dev Services, Quarkus 82
-Dextensions property 56
docker images function 47

E

EntityManager 79
entityManager 80

enum field 266

enum status 265
environment variables 69
equals() method 85
ErrorResponse type 268

eval command 47
event-driven architecture 160
exception handling 142-143
ExceptionMapper 216
execution timeouts 143-146
externalized configuration 54

F

failures
repeated, avoiding with circuit
breakers 147-153
how circuit breaker
works 148-150
MicroProfile Fault
Tolerance 148
testing circuit breaker
152-153
updating Transaction-
Service to use
@CircuitBreaker 150
temporary, recovering from
with @Retry 146-147
FallbackHandler class 150
fallbackMethod 142-143, 151

305

fallback metric 217

Fault Tolerance 226-228
Fowler, Martin 85, 87
From_overdrawn span 251
Future type 96

G

GATEWAY_TIMEOUT HTTP
status code 150
getKey method 173
getMetadata method 173
getMobileBanking () method 62
getName () method 57
getPayload method 173
getTimestamp method 173
getTopic method 173
Grafana, graphing metrics
with 206-211
greeting property 55
GreetingResource class 25
GreetingResourceTest class 26
greeting variable 55
grouping properties, with
@ConfigProperties 62—-64
groups claim 294

H

handling failed applications
116

hashCode () method 85

health end points 117

health groups 128

hidden methods 266

horizontal scaling 15

HttpHostConnectException
148

HTTP response payload 117

HTTP REST requests 13

HTTP status code 117

identity provider 278
imperative programming 164
Implicit Flow 284
incognito windows 294
incoming channels 166
incoming connection 166
initial-delay setting 132
in-memory connector 169
io.quarkus.arc.config.Config-
Properties 63
isolation 4

306

J

Jaeger 234-242
installing 235-237
setting up Minikube
environment 235
trace sampling 235
tracing microservices
with 237-242
jaeger-operator 236
Jakarta Annotations
specification 279
java.security.Principal 295
java.security.Principal.
JsonWebToken 295
JAX-RS (Java API for RESTful
Services) 9, 226-228
JMX (Java Management
Extensions) 211
JPA (Java Persistence API) 12,
78-84
JSON-P (JSON Processing) 9
JVM (Java Virtual Machine) 5,
40
JWT (JSON Web Tokens)
292-296
header 292-293
payload 293-294
propagating 299-301
from Transaction service
to Account service
300-301
securing Account service
end point 299
signature 295-296

K

Kafka
in Minikube 177-179
tracing Kafka messages
249-255
kafka-console-consumer.sh
script 180
Keycloak 284-286
kubectl get pods function 100,
120
kubectl get pods -n monitoring
function 209
kubectl get pods -w command
132
kubectl logs <POD_NAME>
commands 132
kubectl port-forward ...
command 127

INDEX

Kubernetes 14-18, 154-155
deploying CDI REST client
to 99-101
deploying database to 90-92
deploying PostgreSQL
90-91

package and deploy 91-92
deploying Reactive Messaging
to 177-182
Apache Kafka in Minikube
177-179
putting it all together
179-182
deploying Spring microser-
vices to 196-197
deploying updated Transac-
tionService to 154-155
liveness and readiness
probes 129-135
customizing health check
properties 131
deploying to Kubernetes
131-133
testing readiness health
check in Kubernetes
133-135
microservices, Kubernetes-
native 18-19
overview 14-18
running first Quarkus applica-
tion in 43-48
deploying and running
application 47-48
generating Kubernetes
YAML 44-46
packaging application
46-47
running services in 301-302
Kubernetes client API 19
Kubernetes ConfigMap 69
Kubernetes-native Java 12
Kubernetes Secret 72

L

leaky bucket rate limiter 235
literals 73

live coding 20, 27-35

load balancing 15, 116

M
MessageBodyReader provider

type 109
Message interface 173, 176

methods, executing under sepa-
rate thread with
@Asynchronous 138
METHOD strategy 267
MetricID 217
MetricRegistry 217
metrics
MicroProfile Metrics 204-230
Account service,
instrumenting 216-217
Annotated Metrics naming
convention 213
business metrics, creating
223-226
Fault Tolerance 226-228
JAX-RS integration
with 226-228
Micrometer metrics
228-230
output formats 212-213
scopes 214
simulating busy production
system 230
supported types 215-216
TransactionService,
instrumenting 217-223
Prometheus and Grafana,
graphing metrics
with 206-211
role of in microservices
architecture 204
metrics/scripts/run_all.sh
command 230
MetricUnits class 215
MicroProfile 8-11
community core
principles 10-11
history of 9-10
MicroProfile Config
architecture 54-55
MicroProfile Fault
Tolerance 148
MicroProfile Health
specification 117-129
Account service liveness
health check,
creating 122-123
Account service MicroProfile
Health liveness 121-122
Account service MicroProfile
Health readiness 123-124
creating readiness health
check 124-128
determining liveness and readi-
ness status 118-119

MicroProfile Health specifica-
tion (continued)
disabling vendor readiness
health checks 124
liveness vs. readiness 118
Quarkus health groups
128-129
Quarkus Health UI,
displaying 129
MicroProfile Metrics 204-230
Account service, instrument-
ing 216-217
Annotated Metrics naming
convention 213
business metrics, creating
223-226
Fault Tolerance 226-228
JAX-RS integration with
226-228
Micrometer metrics 228-230
output formats 212-213
scopes 214
simulating busy production
system 230
supported types 215-216
TransactionService,
instrumenting 217-223
MicroProfile OpenAPI 263-273
application information
263-265
customizing schema output
265-266
defining operations 266-267
filtering OpenAPI content
272-273
operation responses 267-270
tagging operations 271
viewing OpenAPI documents
with Swagger UI 258-262
MicroProfile REST Client 94-95
microprofile.rest.client.dis-
able.default.mapper config-
uration property 111
microservices 4-8
architecture 7-8
configuring 69-74
accessing a configuration 55
Bank service 55-58
configuration sources
59-61
configuring mobileBank-
ing field 62
grouping properties with
@ConfigProperties
62-64

INDEX

Kubernetes 69-74
MicroProfile Config archi-
tecture overview 54-55
Quarkus-specific configura-
tion features 64-68
rise of 6-7
specifications, need for 8
See also clients for consuming
other microservices
Minikube
Apache Kafka in 177-179
setting up 235
minikube service list function
48,71, 92,100, 179
minikube start function 47
minimize operating system
threads 18
mobileBanking field,
configuring 62
monitoring namespace 209
monitor telemetry and generate
alerts 204
MP_Fault_Tolerance_Metrics_
Enabled 227
MP_Fault_Tolerance_Non-
Fallback_Enabled 154
mp.messaging properties 249
mp.openapi.scan.disable
configuration 274
mvn clean install function 44
mvn package 208
mvn package function 264
mvn quarkus:dev function 187
mvn test function 40
mvn verify function 175
MyHeaderClass 107
my-topic topic 179

N

nack() method 173

name field, Bank service 57-58

name property 70

namespace 15

NativeGreetingResourcelT
class 26

native profile 42

newIransactionAsync return
type 107

newTransaction method 215

newIransaction return type 107

newTransactionWithAPI()
method 142

newTransactionWithApi()
method 140, 151

307

o

OAS (OpenAPI
specification) 258
OIDC (OpenID Connect)
accessing protected resource
with 286-289
Keycloak and 284-286
overview 284
testing Code Authorization
Flow 289-291
OidcWiremockTestResource
properties 291
OpenAPI specification 257
OpenTelemetry 243-244
OpenTracing 242-243
operationld name 267
operationldStrategy setting 267
Optional type 62
org.eclipse.microprofile.con-
fig.inject.Config-
Properties 63
org.eclipse.microprofile.rest.cli-
ent.propagateHeaders
key 106
outgoing channels 166
outgoing connection 166

P

PACKAGE_CLASS_METHOD
267
Panache, database access with
datasources 77-78
deployment to Kubernetes
90-92
deploying PostgreSQL
90-91

package and deploy 91-92
JPA 78-84
simplifying database
development 84-90
active record approach
84-86
data repository approach
87-89
which approach to use
89-90
ParamConverter provider
type 109
password property 73
Patterns of Enterprise Architecture
(Fowler) 85, 87
persistence.xml file 83-84
Pod object 209

308

pods 16
pom.xml parent 121
POST end point 262
PostgreSQL, deploying 90-91
POSTGRES_USER environ-
ment variable 69
POST method 269
POST_PROCESSING
option 173
prefix parameter 63
PRE_PROCESSING option 174
private windows 294
probabilistic sampler 235
probes 117
Processor 161
prod profile 64
profiles, Quarkus 64
programmatic API 55
programmatic REST client
101-103
Prometheus, graphing metrics
with 206-211
properties
grouping, with @Config-
Properties 62-64
overriding annotation
parameter values
using 154-155
proxy database requests 189
Publisher 161

Q

Quarkus 11-14
developer joy features 12
first application
creating native executable
40-43
creating project 21-26
developing with live
coding 27-35
running in Kubernetes
43-48
writing test 35-40
health groups 128-129
Health Ul, displaying 129
Quarkus-specific configura-
tion features 64-68
@ConfigMapping 66-67
configuration profiles 64-65
property expressions 65
runtime vs. build-time
properties 67-68
Reactive Messaging in
163-172

INDEX

blocking execution loop,
avoiding 167-169
bridging imperative to
reactive with emitters
164-167
testing “in memory”
169-172
runtime efficiency 13-14
Spring microservices, develop-
ing with
Common Quarkus/Spring
compatibility questions
197-198
comparing Spring Boot
and Quarkus startup
processes 198-199
deploying to Kubernetes
196-197
how Quarkus implements
Spring API compatibil-
ity 197
Quarkus/Spring API com-
patibility overview 184
Quarkus/Spring Data JPA
compatibility 192-196
Quarkus/Spring Web API
compatibility 188-192
Spring dependency injec-
tion and configuration
compatibility 185-188
support 13
Quarkus—All Configuration
Guide 68
Quarkus ConfigMapping Guide 66
quarkus.datasource.jdbc.driver
property 68
quarkus.datasource.jdbc.url
property 68
quarkus.http.port 67
quarkus.kubernetes.name
property 208
quarkus-micrometer-registry-
prometheus dependency
229
quarkus-mp:account-service
image 47
quarkus package 25
QUARKUS_PROFILE environ-
ment variable 65
quarkus.profile system
property 65
quarkus-resteasy dependency
30
quarkus-smallrye-fault-tolerance
extension 140

quarkus-smallrye-health
extension 121
quarkus.smallrye-health.ui
.always-include 129
quarkus.smallrye-metrics.jaxrs
.enabled 227
quarkus-smallrye-opentracing
dependency 242
quarkus.swagger-ui.always-
include 261
quarkus-testh2 dependency 78
quarkus-test-security
dependency 283

R

rate limiting 235
raw_token claim 295
Reactive Messaging
deploying to Kubernetes
177-182
Apache Kafka in Minikube
177-179
putting it all together
179-182
example 159-160
how works 172-177
message content and
metadata 173-176
messages in the stream
176-177
MicroProfile Reactive Mes-
saging specification
172-173
in Quarkus 163-172
blocking execution loop,
avoiding 167-169
bridging imperative to
reactive with emitters
164-167
testing “in memory”
169-172
Reactive Streams 160-163
back pressure 161-163
Processor 161
Publisher 161
Subscriber 161
reactive streams 158
reactive systems 160
ReaderInterceptor provider
type 109
readiness health check,
creating 124-128
Red Hat Universal Base Image
(UBI) 25

remove-extension goal 56
Replication Controller 16
ReplicationController object 18
resilience strategies
avoiding repeated failure with
circuit breakers 147-153
how circuit breaker works
148-150
MicroProfile Fault
Tolerance 148
testing circuit breaker
152-153
updating Transaction-
Service to use
@CircuitBreaker 150
constraining concurrency with
bulkheads 138-139
deploying to Kubernetes
155-156
exception handling with
fallbacks 142-143
executing method under
separate thread with
@Asynchronous 138
execution timeouts,
defining 143-146
overriding annotation
parameter values using
properties 154-155
overview 137-138
recovering from temporary
failure with @Retry
146-147
updating TransactionService
with bulkheads 140-142
resource management 5
responsive microservices 158
REST client
CDI REST client 97-101
deploying to Kubernetes
99-101
mocking external service
98-99
choosing between CDI and
programmatic API 103
programmatic REST
client 101-103
RESTEasy Reactive 138
REST end point 128
RMI (Remote Method
Invocation) 98
roles and responsibilities
117
RSS (resident set size) 40
run_all.sh script 230

INDEX

S

sampling rate 234
securing microservices
authentication and authoriza-
tion with OIDC 284-291
accessing protected
resource with
OIDC 286-289
Keycloak and 284-286
overview 284
testing Code Authorization
Flow 289-291
authorization and authentica-
tion overview 278-279
Json Web Tokens (JWT)
and MicroProfile JWT
292-296
header 292-293
payload 293-294
signature 295-296
propagating JWT 299-301
from Transaction service
to Account service
300-301
securing Account service
end point 299
running services in
Kubernetes 301-302
securing Transaction service
using MicroProfile
JWT 297-299
using file-based authentica-
tion and authorization
279-284
security context 278
separation of concerns 89
Service definition 46
service discovery 15
service interface definition
95-105
asynchronous response
types 103-105
CDI REST client 97-101
deploying to Kubernetes
99-101
mocking external service
98-99
choosing between CDI
and programmatic
APT 103
programmatic REST client
101-103
service-name value 242
Service object 209

309

SERVICE_UNAVAILABLE
HTTP status code 150
single-application stack 5
single responsibility
principle 89
smallrye-kafka connector 169
spans 234
Special-Header 108
Spring-aware extensions 197
Spring microservices, develop-
ing with Quarkus
Common Quarkus/Spring
compatibility questions
197-198
comparing Spring Boot
and Quarkus startup
processes 198-199
deploying to Kubernetes
196-197
how Quarkus implements
Spring API compatibility
197
Quarkus/Spring API compati-
bility overview 184
Quarkus/Spring Data JPA
compatibility 192-196
Quarkus/Spring Web API
compatibility 188-192
Spring dependency injection
and configuration
compatibility 185-188
converting Bank service to
use Spring Configura-
tion APIs 187-188
setting up Spring Cloud
Config server
185-186
using Spring Config server
as configuration
source 186-187
staging profile 64
Subscriber 161
summary message 266
supportConfig.email 63
support.email 65
Swagger specification 257
Swagger UI 258-262
system properties 69

T

testGetAccount() test 37
test profile 64
testRetrieveAll() method 37
test scope 169

310

TOO_MANY_REQUESTS
HTTP status code 150
tracing microservices
customizing application
tracing 244-255
injecting tracers 245
tracing database calls
245-248
tracing Kafka messages
249-255
using @Traced 244-245
Jaeger 234-242
installing Jaeger 235-237
setting up Minikube
environment 235
trace sampling 235
tracing microservices
with 237-242
overview 233-234
tracing specifications
242-244
OpenTelemetry 243-244
OpenTracing 242-243

INDEX

transact() method 104

TransactionResource class 154

TransactionResource.getBal-
ance() method 154

TransactionResource.newTrans-

action() method 223

TransactionResource.newTrans-

actionWithAPI()
method 140
TransactionService 300-301
instrumenting 217-223
updating to use
@CircuitBreaker 150
updating with
bulkheads 140-142
TransactionServiceFallback-
Handle.handle ()
method 220
TransactionServiceFallback-
Handler class 150
transaction-service Pod 209
Transaction Service properties

125

transaction-service span
heading 240

u

UBI (Red Hat Universal Base
Image) 25

UP status 135

username property 73

\'

vendor readiness health checks,
disabling 124
versioning 5

w

wait command 178

WebApplicationException 219

withdrawal method 244

WriterInterceptor provider
type 109

A ConfigSource stores A converter converts The applic.ation. accesses t!le
properties as string from a string to a configuration either by using a

key-value pairs. type-safe Java object. programmatic API or by using
a dependency injection.

’_ _______ ! r———"""-=-—-=- hl
I ConfigSource : | Converter : The confie class e
| | | | ontig | Application
I I contains all converted
|| Propertyfile | | || Integer || key-value pairs. :
I
! I I i
: | : | | Programmatic API
Environment
! variable : : Boolean : : String greeting =
: | | | | | config.get ("greeting",
[system | |[Converted™ ![Stored in> | Config | |AcCEsSedN! String.class)
I ! by | Array | by |
| parameter | | | |
I | | | vt
: ! I I I CDI Injection
! : ! ! : @Inject
: 1 : : | | @ConfigProperty (
| | Kubernetes | I | | | name = "greeting")
I | ConfigMap : | Custom | : String greeting
I I I

MicroProfile Config architecture

How many messages can you handle?

Service A Five, please. Service B

D<A DA DA DA P

Three more, please.

DA DI DA |

Back pressure helps a service to not become overloaded with too many events in a
reactive system.

JAVA/SOFTWARE ENGINEERING

Kubernetes Native Microservices

with Quarkus and MicroProfile
(lingan * Finnigan
B uild microservices efficiently with modern Kubernetes-first

tools! Quarkus works naturally with containers and Kuber-

netes, radically simplifying the development and deploy-
ment of microservices. This powerful framework minimizes
startup time and memory use, accelerating performance and
reducing hosting cost. And because it’s Java from the ground up,
it integrates seamlessly with your existing JVM codebase.

Kubernetes Native Microservices with Quarkus and MicroProfile
teaches you to build microservices using containers, Kubernetes,
and the Quarkus framework. You'll immediately start develop-
ing a deployable application using Quarkus and the MicroProfile
APIs. Then, you'll explore the startup and runtime gains Quarkus
delivers out of the box and also learn how to supercharge
performance by compiling natively using Graal VM. Along the
way, you'll see how to integrate a Quarkus application with
Spring and pick up pro tips for monitoring and managing your
microservices.

What's Inside

* Deploy enterprise Java applications on Kubernetes
e Develop applications using the Quarkus runtime framework
 Compile natively using Graal VM for blazing speed

* Take advantage of MicroProfile specifications

For intermediate Java developers comfortable with Java EE,
Jakarta EE, or Spring. Some experience with Docker and Kuber-

netes required.

John (lingan is a senior principal product manager at Red Hat,
where he works on enterprise Java standards and Quarkus.

Ken Finnigan is a senior principal software engineer at Workday,
previously at Red Hat working on Quarkus.

Register this print book to get free access to all ebook formats.
Visit https: //www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

¢€Quick, concise, just enough
of everything. I enjoyed every
part of this book.”?
—Mladen Knezié¢, CROZ

¢CCondenses in one
fantastic learning resource
the key functionalities of
Quarkus, and how to apply
its microservices patterns
implementation on a
Kubernetes cluster.”?

—David Torrubia Ifigo, Lookiero

¢CCovers the Kubernetes-
Quarkus MicroProfile stack
in great depth.
I recommend it 100%.7?
—Daniel Cortés, BBVA

¢CA fine book on Quarkus—
both for someone getting
started with this exciting
technology as well as an
experienced hand.??
—Yogesh Shetty, ING

e €
See first pg

ISBN: 978-1-61729-865-3

LN i

9
781617 " 298653 ||

9

	Kubernetes Native Microservices with Quarkus and MicroProfile
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1—Introduction
	1 Introduction to Quarkus, MicroProfile, and Kubernetes
	1.1 What is a microservice?
	1.1.1 The rise of microservices
	1.1.2 Microservices architecture
	1.1.3 The need for microservices specifications

	1.2 MicroProfile
	1.2.1 History of MicroProfile
	1.2.2 MicroProfile community core principles

	1.3 Quarkus
	1.3.1 Developer joy
	1.3.2 MicroProfile support
	1.3.3 Runtime efficiency

	1.4 Kubernetes
	1.4.1 Introduction to Kubernetes

	1.5 Kubernetes-native microservices
	Summary

	2 Your first Quarkus application
	2.1 Creating a project
	2.2 Developing with live coding
	2.3 Writing a test
	2.4 Creating a native executable
	2.5 Running in Kubernetes
	2.5.1 Generating Kubernetes YAML
	2.5.2 Packaging an application
	2.5.3 Deploying and running an application

	Summary

	Part 2—Developing microservices
	3 Configuring microservices
	3.1 MicroProfile Config architecture overview
	3.2 Accessing a configuration
	3.3 The Bank service
	3.3.1 Creating the Bank service
	3.3.2 Configuring the Bank service name field

	3.4 Configuration sources
	3.5 Configuring the mobileBanking field
	3.6 Grouping properties with @ConfigProperties
	3.7 Quarkus-specific configuration features
	3.7.1 Quarkus configuration profiles
	3.7.2 Property expressions
	3.7.3 Quarkus ConfigMapping
	3.7.4 Run-time vs. build-time properties

	3.8 Configuration on Kubernetes
	3.8.1 Common Kubernetes configuration sources
	3.8.2 Using a ConfigMap for Quarkus applications
	3.8.3 Editing a ConfigMap
	3.8.4 Kubernetes Secrets

	Summary

	4 Database access with Panache
	4.1 Data sources
	4.2 JPA
	4.3 Simplifying database development
	4.3.1 Active record approach
	4.3.2 Data repository approach
	4.3.3 Which approach to use?

	4.4 Deployment to Kubernetes
	4.4.1 Deploying PostgreSQL
	4.4.2 Package and deploy

	Summary

	5 Clients for consuming other microservices
	5.1 What is MicroProfile REST Client?
	5.2 Service interface definition
	5.2.1 CDI REST client
	5.2.2 Programmatic REST client
	5.2.3 Choosing between CDI and a programmatic API
	5.2.4 Asynchronous response types

	5.3 Customizing REST clients
	5.3.1 Client request headers
	5.3.2 Declaring providers

	Summary

	6 Application health
	6.1 The growing role of developers in application health
	6.2 MicroProfile Health
	6.2.1 Liveness vs. readiness
	6.2.2 Determining liveness and readiness status

	6.3 Getting started with MicroProfile Health
	6.3.1 Account service MicroProfile Health liveness
	6.3.2 Creating an Account service liveness health check
	6.3.3 Account service MicroProfile Health readiness
	6.3.4 Disabling vendor readiness health checks
	6.3.5 Creating a readiness health check
	6.3.6 Quarkus health groups
	6.3.7 Displaying the Quarkus Health UI

	6.4 Kubernetes liveness and readiness probes
	6.4.1 Customizing health check properties
	6.4.2 Deploying to Kubernetes
	6.4.3 Testing the readiness health check in Kubernetes

	Summary

	7 Resilience strategies
	7.1 Resilience strategies overview
	7.2 Executing a method under a separate thread with @Asynchronous
	7.3 Constraining concurrency with bulkheads
	7.4 Updating a TransactionService with a bulkhead
	7.5 Exception handling with fallbacks
	7.6 Defining execution timeouts
	7.7 Recovering from temporary failure with @Retry
	7.8 Avoiding repeated failure with circuit breakers
	7.8.1 MicroProfile Fault Tolerance: @CircuitBreaker
	7.8.2 How a circuit breaker works
	7.8.3 Updating the TransactionService to use @CircuitBreaker
	7.8.4 Testing the circuit breaker

	7.9 Overriding annotation parameter values using properties
	7.10 Deploying to Kubernetes
	Summary

	8 Reactive in an imperative world
	8.1 Reactive example
	8.2 What is Reactive Streams?
	8.2.1 Publisher, Subscriber, and Processor
	8.2.2 The importance of back pressure

	8.3 Reactive Messaging in Quarkus
	8.3.1 Bridging from imperative to reactive with emitters
	8.3.2 What about blocking?
	8.3.3 Testing “in memory”

	8.4 How does it work?
	8.4.1 MicroProfile Reactive Messaging specification
	8.4.2 Message content and metadata
	8.4.3 Messages in the stream

	8.5 Deploying to Kubernetes
	8.5.1 Apache Kafka in Minikube
	8.5.2 Putting it all together

	Summary

	9 Developing Spring microservices with Quarkus
	9.1 Quarkus/Spring API compatibility overview
	9.2 Spring dependency injection and configuration compatibility
	9.2.1 Setting up the Spring Cloud Config Server
	9.2.2 Using the Spring Config Server as a configuration source
	9.2.3 Converting the Bank service to use Spring Configuration APIs

	9.3 Quarkus/Spring Web API compatibility
	9.4 Quarkus/Spring Data JPA compatibility
	9.5 Deploying to Kubernetes
	9.6 How Quarkus implements Spring API compatibility
	9.7 Common Quarkus/Spring compatibility questions
	9.8 Comparing the Spring Boot and Quarkus startup processes
	Summary

	Part 3—Observability, API definition, and security of microservices
	10 Capturing metrics
	10.1 The role of metrics in a microservices architecture
	10.2 Getting started with MicroProfile Metrics
	10.2.1 Graphing metrics with Prometheus and Grafana
	10.2.2 MicroProfile Metrics
	10.2.3 Instrumenting the Account service
	10.2.4 Instrumenting the TransactionService
	10.2.5 Creating business metrics
	10.2.6 MicroProfile Fault Tolerance and JAX-RS integration with MicroProfile Metrics
	10.2.7 Micrometer metrics
	10.2.8 Simulating a busy production system

	Summary

	11 Tracing microservices
	11.1 How does tracing work?
	11.2 Jaeger
	11.2.1 Trace sampling
	11.2.2 Setting up the Minikube environment
	11.2.3 Installing Jaeger
	11.2.4 Microservice tracing with Jaeger

	11.3 Tracing specifications
	11.3.1 OpenTracing
	11.3.2 What is MicroProfile OpenTracing?
	11.3.3 OpenTelemetry

	11.4 Customizing application tracing
	11.4.1 Using @Traced
	11.4.2 Injecting a tracer
	11.4.3 Tracing database calls
	11.4.4 Tracing Kafka messages

	Summary

	12 API visualization
	12.1 Viewing OpenAPI documents with Swagger UI
	12.1.1 Enabling OpenAPI
	12.1.2 Swagger UI

	12.2 MicroProfile OpenAPI
	12.2.1 Application information
	12.2.2 Customizing the schema output
	12.2.3 Defining operations
	12.2.4 Operation responses
	12.2.5 Tagging operations
	12.2.6 Filtering OpenAPI content

	12.3 Design-first development
	12.3.1 OpenAPI file base
	12.3.2 Mixing the file and annotations

	12.4 Code first or OpenAPI first?
	Summary

	13 Securing a microservice
	13.1 Authorization and authentication overview
	13.2 Using file-based authentication and authorization
	13.3 Authentication and authorization with OpenID Connect
	13.3.1 Introduction to OpenID Connect (OIDC)
	13.3.2 OIDC and Keycloak
	13.3.3 Accessing a protected resource with OpenID Connect
	13.3.4 Testing the Code Authorization Flow

	13.4 Json Web Tokens (JWT) and MicroProfile JWT
	13.4.1 JWT header
	13.4.2 JWT payload
	13.4.3 JWT signature

	13.5 Securing the Transaction service using MicroProfile JWT
	13.6 Propagating the JWT
	13.6.1 Secure an Account service endpoint
	13.6.2 Propagating JWT from the Transaction service to the Account service

	13.7 Running the services in Kubernetes
	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

